А.А. Гузовец, Н.Н. Федосенко, Т.П. Желонкина
УО «Гомельский государственный университет имени Франциска Скорины», Гомель, Беларусь

ЭЛЕКТРОННО-ЛУЧЕВОЙ СИНТЕЗ И СВОЙСТВА ПОКРЫТИЙ НА ОСНОВЕ ДИОКСИДА ТИТАНА

Введение

Тонкие оксидные пленки (толщиной от долей микрометра до нескольких микрометров), обладают уникальными свойствами и их применение позволяет эффективно решать технические и научные проблемы в целом ряде отраслей, в том числе и бурно развивающейся области — нанотехнологии. В связи с интенсивным развитием нанотехнологий, технологий наноструктурных материалов разработка способов получения оксидных покрытий получила новый импульс.

Гонкие пленки широко применяются в качестве различных функциональных покрытий для повышения прочности, коррозионной стойкости, улучшения электрических и магнитных свойств материалов, используемых в авиационной и космической технике, машиностроении, медицине, энергетике, цифровой микроэлектронике. В связи с расширением возможностей применения таких покрытий, важной задачей при получении тонких пленок является определения их оптических свойств.

Существуют различные методы определения оптических постоянных тонких пленок, основными из которых являются – метод эллипсометрии и метод спектрофотометрии. Одним из наиболее широко применяемых является спектрофотометрический метод. Спектрофотометрический метод основан на измерении спектральных значений коэффициентов отражения R_{λ} или коэффициентов пропускания T_{λ} .Данные коэффициенты являются традиционными для определения оптических констант тонких пленок и используются при получении дисперсионных характеристик показателей преломления и поглощения пленки в заданном спектральном интервале [1].

Цель работы: исследование оптических свойств и спектральных характеристик покрытий на основе диоксида титана, синтезированных электронно-лучевым способом.

1. Методика нанесения тонких оксидных покрытий

Идеально чистые поверхности получить невозможно, так как они чрезвычайно активны и быстро покрываются находящимися в окружающей среде газами, влагой, пылью и различными поверхностноактивными веществами. Очищают подложки различными физикохимическими способами [2].

В качестве подложек для формирования покрытий использовались полированные пластины кремния и оптического стекла К8. Перед нанесением покрытия поверхность подложек предварительно подвергалась очистке с помощью низкоэнергетического ионно-лучевого источника типа «АИДА» в вакууме и последующему нагреву с помощью ИК-ламп до температуры 250 °C. В процессе ионной очистки ионами аргона с поверхности подложки эффективно удаляются различные поверхностные загрязнения. Параметры процесса очистки подложек перед нанесением покрытий представлены в таблице 1.

В качестве источника для синтеза покрытий применялся электронно-лучевой испаритель, состоящий из трех основных частей: электронной пушки, отклоняющей системы и водоохлаждаемого тигля различной емкости (7, 13, 15, 18, 25, 40 и 156 см³). Такая конструкция обеспечивает непрерывную работу испарителя без добавления материала мишени в процессе работы.

Тип подложки	Р _{Ar⁰} , Па	I _{соленоида} , А	І _{катода} , А	I _{анода} , А	U _{анода} , В	t _{очистки} , МИН
Кремниевая пластина, оп- тическое стекло марки К8	4,3.10-2	0,7	7	1,8	90	25

Таблица 1 – Параметры процесса ионно-лучевой очистки поверхности подложек

Электронно-лучевой испаритель размещается в камере, где поддерживается уровень вакуума в 10-4 Па, необходимый для минимизации влияния остаточного газа на эффективность прохождения электронного луча, и исключение загрязнений другими материалами структуры получаемой пленки. Около 30-40% мощности электронного луча расходуется на плавление (2 – 10%) и испарение материала (30 – 35%). Остальная мощность идет на теплообмен посредством теплопроводности, излучения и уносится вылетающими из зоны нагрева свободными электронами. Эта мощность зависит от природы испаряемого материала и параметров электронного луча. Для формирования потока электронов предназначена электронная пушка, состоящая из вольфрамового термокатода и фокусирующей системы. Эмитируемые электроны проходят эту систему, ускоряются за счет разности потенциалов до 10 кВ между катодом и анодом и формируются в электронный луч. Отклоняющую систему создает магнитное поле, перпендикулярное направлению движения выходящих из фокусирующей системы пушки электронов. Это поле направляет электронный луч в центральную часть водоохлаждаемого тигля, причем в месте падения луча создается локальная зона разогрева и испарения вещества из жидкой фазы. Поток испарившегося материала осаждается в виде тонкой пленки на подложке, которая обычно располагается на определенном расстоянии над испарителем. Изменяя ток в катушке управляющего отклоняющей системой электромагнита, можно сканировать лучом вдоль тигля, что предотвращает образование «кратера» в испаряемом материале.

В простейшем случае электронный пучок направляется на испаряемый материал отвесно сверху или под косым углом к поверхности. Для фокусировки пучка и получения на поверхности материала требуемой удельной мощности используются длиннофокусные генераторы электронных пучков. Такое расположение имеет несколько существенных недостатков: возможность образования пленки на деталях электронно-оптической системы, приводящей к изменению параметров электронного луча, и ограничение полезной площади для размещения подложки из-за затенения части технологической камеры пушкой. Этих недостатков можно избежать, если поместить пушку горизонтально, а отклонение электронного пучка на испаряемый материал осуществлять с помощью систем, обеспечивающих поворот пучка на угол до 270°.

Основным недостатком электронных пушек является то, что для их устойчивой работы необходимо достаточно низкое давление (P<10⁻² Па). В плохом вакууме возможно образование электрических разрядов между электродами, что нарушает стабильность работы пушки [<u>3</u>].

2. Результаты и их обсуждение

. . .

Для измерения оптической толщины тонких прозрачных пленок в процессе их напыления удобен фотометрический метод. Суть его заключается в том, что на контрольный образец (подложку) падает монохроматический свет с длиной волны λ_0 и контролируется интенсивность отраженного (или пропущенного) от (через) контрольного образца. Если растущая в процессе напыления тонкая пленка слабо поглощает свет длиной волны λ_0 , то имеем случай интерференции в ней. В этом случае об оптической толщине напыляемого материала можно судить по изменению коэффициента пропускания или отражения образца. Экстремальным значениям коэффициента пропускания T (или отражения R) соответствует оптическая толщина nd (где d – геометрическая толщина) пленки, кратная значениям:

$$nd = \frac{\lambda}{4}k \tag{1}$$

где d – геометрическая толщина, λ – длина волны излучения, k=1, 2, 3,

Наносились однослойные покрытия диоксида титана; контроль оптической толщины осуществлялся на длине волны $\lambda = 580,45$ нм. С помощью встраиваемой системы оптического контроля оптических характеристик (модель Iris 0211) получали на интерфейсе измеренные спектры отражения в заданном спектральном интервале для фиксированной длины волны.

Начальное значение «нулевого» сигнала с интерфейса при регистрации спектра отражения со «свидетеля» из стекла марки К8 и отсутствии покрытия из диоксида титана представлено на рисунке 1.

Рисунок 1 – Значение «нулевого» сигнала при отсутствии покрытия

На рисунке 2 представлена кривая зависимости коэффициента отражения на фиксированной длине волны для оценки оптической толщины при значении точки экстремума k=1.

Непрерывный синтез покрытий из диоксида титана электроннолучевым испарением в вакууме приводит к изменению характера зависимости коэффициента отражения для заданной длины волны с учетом увеличения точек экстремума.

Рисунок 2 – Значение коэффициента отражения покрытия TiO₂ для заданной длины волны λ=580,45 нм и k=1

На рисунке 3 представлены значения коэффициента отражения для λ=580,45 нм и точки экстремума k=3.

Дальнейший рост толщины покрытия из диоксида титана при электронно-лучевом синтезе приводит к изменению характера кривой отражения.

Рисунок 3 – Значение коэффициента отражения покрытия TiO₂ для заданной длины волны λ=580,45 нм и k=3

На рисунке 4 показана зависимость коэффициента отражения для λ=580,45 нми k=5.

Рисунок 4 – Значение коэффициента отражения покрытия TiO₂ для заданной длины волны λ=580,45 нми k=5

При непрерывном нанесении покрытия и увеличении толщины слоя в кривой отражения при k=7 на длине волны λ =580,45 нм наблюдается характерный максимум, показанный на рисунке 5.

Рисунок 5 – Значение коэффициента отражения покрытия TiO₂ для заданной длины волны λ=580,45 нм и k=7

Результаты фотометрического контроля оптической толщины покрытий из диоксида титана, полученных способом электроннолучевого синтеза представлены в таблице 2.

Таблица 2 – Результаты измерений оптической толщины с помощью системы Iris 0211

	1,	nd uu
λ,HM	K	па, нм
~~	1	145,1125
	3	435,3375
580,45	5	725,5625
	7	1015,7875

Измерение показателей преломления покрытий диоксида титана проводилось на спектрофотометре PhotonRT с помощью программы PhotonSoft.

Расчет показателя преломления указанных покрытий осуществлялся по стандартной методике определения оптических постоянных ио спектрам пропускания или отражения в заданном спектральном интервале [4]. Результаты расчета приведены в таблице 3.

Сравнительный анализ оптических констант проводился с учетом совпадения экстремумов выбранной и экспериментальной длины волны при регистрации спектров отражения и пропускания спектрофотометром PhotonRT. Совпадение экстремумов установлено на λ =625 нм и на λ =430 нм для покрытий из TiO₂.

Параметры	Покрытие				
	TiO ₂				
T′ _{max}	70,242	93,936			
T' _{min}	27,740	69,242			
R ₃	0.	,0337			
ν _{n+1} ·10 ⁻⁴ , м ⁻¹	16	23,26			
$\nu_n \cdot 10^{-4}, \text{m}^{-1}$	25,64	26,31			
T" _{max}	2,367	3,541			
T" _{min}	0,935	2,333			
T _{max}	72,609	97,477			
T _{min}	28,675	X • 71,575			
С	2,532	1,362			
n _{pacyethoe}	3,453	2,139			
R ₁	0,303	0,126			
R ₂	0,167	0,033			
$T \cdot 10^3$	3,678	10,77			
d, мкм	0,0259	0,0820			
χ ₂	4,409	3,973			

Таблица 3 – Расчет оптических характеристик по спектральным кривым пропускания

Дисперсионные кривые покрытий диоксида титана представлены на рисунках 6 и 7.

Рисунок 6 – Значение показателя преломления покрытия TiO_2 на длине волны $\lambda{=}625$ нм

Рисунок 7 – Значение показателя преломления покрытия TiO₂ на длине волны λ=430нм

Полученные значения показателей преломления покрытий от длины волны представлены в таблице 4.

Таблица 4 – Значения показателя преломления покрытий диоксида титана для заданных длин волн

Покрытие	λ,нм	n _{приборное}	n _{расчетное}
	625	1,66	2,14
	535	6,42	-
TiO ₂	455	1,65	-
	430	3,39	3,45
	630	4,30	-

Анализ таблицы показывает, что измеренный показатель преломления и расчетный для выбранных длин волн отличаются друг от друга. Отличие может быть объяснено тем, что в реальных покрытиях имеются определенные дефекты, например, поры или поверхностное загрязнение, которые могут способствовать при наличии сорбентов в порах снижению показателя преломления. Это снижение обусловлено сложением удельных рефракций вещества сорбента, например, молекулярной воды в порах и материала самого покрытия.

Заключение

Проанализировав полученные результаты, были сделаны следующие выводы:

Отличие расчетных значений и измеренных спектрофотометрическим методом значений показателей преломления может быть объяснено наличием пор в формируемых покрытиях. При достаточных размерах сквозных и открытых пор исходного покрытия возможно проникновение в поры молекулярной воды за счет адсорбции ее на поверхности и последующей диффузии. Действительная часть показателя преломления воды n_{H_2O} = 1,33. Расчетное значение при λ =625 нм и λ =430 нм, показатель преломления n_{pac4} = 2,14 и n_{pac4} = 3,45. Согласно методу сложения удельных рефракций, измеренные показатели преломления ($n_{при6}$) примерно составляют среднее значение суммы n_{pac4} и n_{H_2O} (воды в порах). Это объясняет тот факт, что $n_{при6}$ меньше n_{pac4} .

Литература

1. Котликов, Е.Н. Определение оптических констант пленок на подложках из кремния / Е.Н. Котликов, В.М. Адреев, Ю.А. Новикова // Сб. трудов Научная сессия ГУАП. ч.1. Технические науки. – СПб.: ГУАП. – 2013.

2. Лапшинов, Б.А. Нанесение тонких пленок методом вакуумного термического испарения: метод. указания к лабораторной работе / Б.А. Лапшинов; М-во образования и науки Рос. Федерации, Мос. гос. ин-т электроники и математики. – М.: МИЭМ, 2006.

3. Иванов, А, Электронно-лучевое напыление: технология и оборудование / А.Иванов, Б.Смирнов // Научно-технический журнал. – 2012. – № 6. – URL: http://www.nanoindustry.su/journal/article/3388.

4. Гольдаде, В.А., Рогачев, А.В., Федосенко, Н.Н. Тонкие пленки: Методические указания к лабораторным работам по курсу «Материалы электронной техники» для студентов физического факультета / В.А. Гольдаде, Н.Н. Федосенко. – Гомель: ГГУ им. Ф. Скорины, 2015. – С.13–18.