W. CKOPINHIP

С.В. Шалупаев¹, Ю.В. Никитюк¹, А.А. Середа¹, Г.А. Баевич¹, В.М. Кульбенков²

¹УО «Гомельский государственный университет имени Франциска Скорины», Гомель, Беларусь

²УЧПП «КУВО», Могилев, Беларусь

ИССЛЕДОВАНИЕ ВЛИЯНИЯ КОНСТРУКЦИОННЫХ ОСОБЕННОСТЕЙ ВАКУУМНЫХ СТЕКЛОПАКЕТОВ НА ИХ ТЕПЛОИЗОЛЯЦИОННЫЕ СВОЙСТВА

Введение

Стеклопакеты представляют собой герметичные изделия, состоящие из нескольких листов стекла, собранных и герметизированных в

заводских условиях, разделенных герметичным пространством, заполненным воздухом или изоляционным газом. Основная задача подобных изделий заключается в использовании термоизоляционных свойств воздуха или газа для снижения показателей теплопроводности (коэффициент Ug) остекления. Термоизоляционные свойства последнего также могут быть увеличены различными способами (низкоэмиссионными покрытиями, использованием газа и др.). Стеклопакет может быть однокамерным, двухкамерным или многокамерным.

Однако требования, предъявляемые стандартами к теплоизоляционным свойствам конструкций, заполняющих световые проемы зданий, все время возрастают, и стандартные стеклопакеты, которые использовались несколько лет назад им не отвечают. Согласно техническому кодексу установившейся практики ТКП 45-2.04-43-2006* «Строительная теплотехника. Строительные нормы проектирования» с изменениями от 2014 года нормативное сопротивление теплопередаче $R_{\text{т.норм}}$ заполнения световых проемов при строительстве, реконструкции, модернизации жилых и общественных зданий, бытовых и административных зданий производственных предприятий должно составлять 1,0 ($M^2 \cdot {}^{\circ}C$)/Вт [2]. При ремонте и реставрации – 0,6 (м²•°С)/Вт. Для производственных зданий соответствующие показатели составляют 0,6 (м²•°C)/Вт. Выполнение данных требований достигается за счет использования инертных газов в промежутках между стеклами, увеличения числа камер в стеклопакетах, либо использованием низкоэмиссионных покрытий, нанесенных на внутреннюю сторону одного из стекол.

По сравнению со стенами теплозащитные качества окон хуже. Изза более низкой теплозащиты окон через 1 м² их поверхности происходят теплопотери большие, чем через 1 м² глухой части стены. С этой целью постоянно разрабатываются новые конструкции окон, варианты возможного утепления и герметизации оконных проемов, позволяющие уменьшить теплопотери и сделать дом теплым. Все чаще, при строительстве частных жилых зданий, а также торговых, офисных или административных зданий фасады выполняют полностью из стекла и конструкционные элементы скрываются за поверхностью стекла. Это позволяет получить больше солнечного света в помещениях и захватывающие виды из окон. В этом случае теплоизоляционные свойства окон должны быть максимально приближены к аналогичным характеристикам наружных стен. При этом толщина остекления должна быть минимально возможной.

Согласно ТКП 45-2.04-43-2006* нормативное сопротивление теп-

лопередаче $R_{\text{т.норм}}$ наружных стен зданий при строительстве, реконструкции, модернизации жилых и общественных зданий, бытовых и административных зданий производственных предприятий должно составлять 3,2 (м²•°С)/Вт [2]. При ремонте и реставрации – 2,2-2,5 (м²•°С)/Вт. Для производственных зданий соответствующие показатели составляют 2,0 (м²•°С)/Вт.

Для достижения данных показателей целесообразно использовать остекление, в котором пространство между стеклами заполняется газом низкого давления, т.е. вакуумные стеклопакеты, которые практически исключают теплопередачу через остекление за счет теплопроводности и конвекции [3-4].

Важной проблемой при производстве вакуумного остекления является схлопывание стекол за счет действия атмосферного давления с наружных сторон. Для предотвращения этого в межстекольное пространство вставляют распорные элементы (спейсеры или пиллары), выполненные из металла или стеклокерамики и расставленные на расстоянии 20-40 мм друг от друга. Они обеспечивают равномерное влияние силы атмосферного давления на поверхность пакета [3].

Каждая из распорок представляет собой «мостик холода» — участок, имеющий пониженное термическое сопротивление, по которому тепло за счет теплопроводности материала распорки передается от внутреннего стекла со стороны помещения к наружному со стороны улицы, что, в целом, должно снижать приведенное сопротивление теплопередаче.

Таким образом, разработка конструкций вакуумных стеклопакетов, позволяющих обеспечить теплоизоляцию на уровне наружных стен зданий, является актуальной задачей.

1. Постановка задачи

Для определения теплоизоляционных свойств специальных вакуумных строительных стеклопакетов проведен расчет термических сопротивлений, сопротивлений теплопередаче и коэффициента теплопередачи для области остекления наиболее распространенных конструкций строительных стеклопакетов в соответствии с методикой ГОСТ и выполнено сравнение их с расчетными значениями, полученными при математическом моделировании численными методами процесса переноса тепла внутри стеклопакетов с использованием метода конечных элементов. [5]

В случае, когда тепловой поток однороден в пределах всей поверхности, используется методика расчета теплового сопротивления

остекления стеклопакета приведенная в ГОСТ Р 54166–2010 [1].

Согласно этой методике сопротивление теплопередаче R и коэффициент теплопередачи U определяют по формуле

$$R = \frac{1}{U} = \frac{1}{h_e} + \frac{1}{h_t} + \frac{1}{h_i},\tag{1}$$

 h_e и h_i – коэффициенты внешнего и внутреннего теплообмена; h_t – коэффициент общего термического пропускания остекления.

Расчет коэффициента теплового сопротивления с использованием математической модели основан на определении теплового потока сквозь многослойную стенку и температур на внешней и внутренней поверхности стенки.

Если с одной стороны многослойной стенки, состоящей из n слоев, поддерживается температура t_{θ} , а с другой стороны $t_{\theta} < t_{\theta}$, то возникает тепловой поток q, B_T/M^2 . Этот тепловой поток движется от среды с температурой t_{θ} к среде с температурой t_{η} , проходя последовательно все слои стенки [2, 4, 6-7]:

$$q = \frac{(t_{\rm B} - t_{\rm H})}{R_q},\tag{2}$$

где R_g — общее термическое сопротивление слоев ограждения.

Отсюда может быть определено термическое сопротивление:

$$R_g = \frac{(t_{\rm B} - t_{\rm H})}{q}.\tag{3}$$

Сопротивление теплопередаче однородной ограждающей конструкции определяется как отношение разности температур окружающей среды по обе стороны однородной ограждающей конструкции к плотности теплового потока через конструкцию в условиях стационарной теплопередачи [2, 5, 6]. Сопротивление теплопередаче может быть вычислено по формуле

$$R = \frac{(t_{\rm B} - t_{\rm H})}{a}.\tag{4}$$

 $R = \frac{(t_{\rm B} - t_{\rm H})}{q}. \tag{4}$ где $t_{\rm B}, t_{\rm H}$ – температура окружающей среды по обе стороны ограждающей конструкции, °С.

Сопротивление теплопередаче можно также определить по формуле, приведенной в методике ГОСТ Р 54165–2010 [<u>4</u>]

$$R = \frac{1}{U} = R_g + \frac{1}{h_e} + \frac{1}{h_i}, \tag{5}$$

В случае, когда тепловые потоки неоднородны, методика определения приведенного сопротивления теплопередаче стеклопакета представлена в работах [1, 8].

Приведенное сопротивление теплопередаче стеклопакета определяется по формуле

$$R_0^{\text{np}} = \frac{\sum_i F_i}{\sum_i F_i / R_i},\tag{6}$$

где F_i — площадь i-ой однородной зоны; R_i — сопротивление теплопередаче i-ой однородной зоны.

Таким образом на первом этапе, с использованием метода конечных элементов, выполняется расчет тепловых потоков через элементы остекления стеклопакета. Далее по формулам 1-6 выполняется расчет сопротивления теплопередачи.

2. Результаты расчетов

Для определения конструкции гибридного вакуумного стеклопакета, обеспечивающего наилучшие теплозащитные свойства, выполнены расчеты теплоизоляционных свойств для следующих типов однокамерного вакуумного остекления стеклопакетов: однокамерного (4М1-0,2-4М1), однокамерного (4М1-0,2-4К) с нанесенным твердым низкоэмиссионным покрытием и однокамерного (4М1-0,2-4М1/И) с нанесенным мягким низкоэмиссионным покрытием; проанализировано влияние распорных элементов в вакуумном промежутке на теплоизоляционные свойства однокамерного вакуумного стеклопакета; определены теплозащитные свойства гибридного стеклопакета, представляющего собой однокамерный стеклопакет с газовым промежутком, в котором одна сторона остекления заменена на однокамерный вакуумный стеклопакет при отсутствии и наличии распорных элементов в вакуумной камере (4М1-8-4М1-0,2-4К и 4М1-8-4М1-0,2-4М1/И), а также определено сопротивление теплопередачи остекления гибридного вакуумного стеклопакета 4M1-8Ar-4M1-0,2-4M1/И с наполнителем газового промежутка из аргона.

Структура гибридного стеклопакета представлена на рисунке 1. Расстоянием между пилларами 36 мм и их диаметром 0,4 мм. В качестве материала пиллара для снижения теплопередачи могут быть использованы стекло или керамика [3]. Теплопроводность распорок выбрана равной теплопроводности стекла.

В соответствии с межгосударственным стандартом ГОСТ 30733-2014 [9] при изготовлении стекла с твердым низкоэмиссионным покрытием нормальный коэффициент эмиссии должен варьироваться в пределах 0.15-0.18. Такие стекла устойчивы к воздействию влаги и не требуют дополнительного оборудования для установки. Для расчетов выбран нормальный коэффициент эмиссии $\varepsilon = 0.17$.

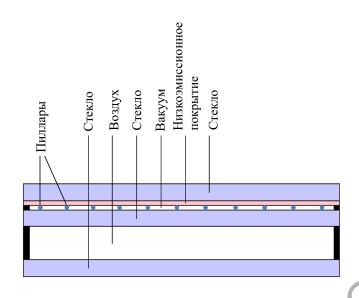


Рисунок 1 – Структура остекления гибридного стеклопакета с пилларами

В соответствии с межгосударственным стандартом ГОСТ 31364-2014 [10] при изготовлении стекла с мягким низкоэмиссионным покрытием нормальный коэффициент эмиссии не должен превышать 0,06. Для расчетов было выбрано покрытие с нормальным коэффициентом эмиссии $\varepsilon = 0,045$ [3].

На рисунке 2 представлены расчетные значения сопротивлений теплопередачи для всех исследованных в данной работе структур остекления вакуумного стеклопакета.

Расчет произведен с использованием комбинации методики ГОСТ Р 54166–2010 [1] и конечно-элементного моделирования процесса переноса тепла через остекление строительных стеклопакетов.

Полученные расчетные теплозащитные характеристики вакуумного остекления типа 4M1-0,2-4M1 (R = 0,4468 (м²·°С)/Вт, U = 2,24 Вт/(м²·°С)) выше, чем у однокамерного стеклопакета типа 4M1-16-4M1 с газовым промежутком из осушенного воздуха, но ниже, чем у двухкамерного стеклопакета 4M1-16-4M1-16-4M1. При этом толщина вакуумного остекления всего 8,2 мм, тогда как однокамерного 24 мм, а двухкамерного 44 мм.

Остекление вакуумного стеклопакета с твердым низкоэмиссионным покрытием типа 4M1-0,2-4K (R=1,3587 ($M^2\cdot ^\circ C$)/Вт, U=0,736 Вт/($M^2\cdot ^\circ C$)) при небольшой толщине обеспечивает превышение значений нормативных параметров теплоизоляции по заполнению световых проемов, но не обеспечивает достижение аналогичных значений параметров для наружных стен зданий.

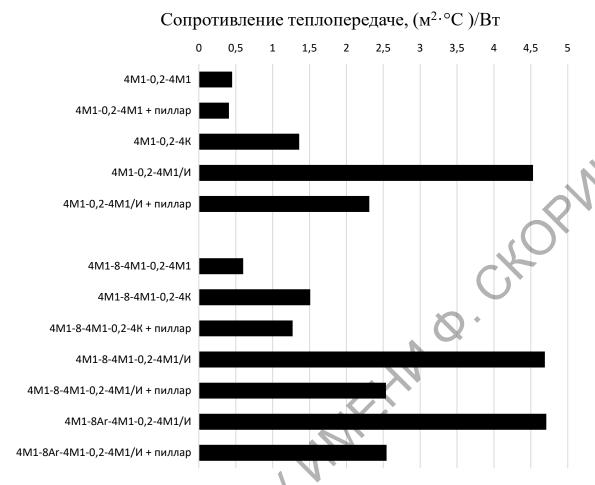


Рисунок 2 – Расчетные значения сопротивлений теплопередачи

Остекление вакуумного стеклопакета типа 4M1-0,2-4M1/U с мягким низкоэмиссионным покрытием при небольшой толщине обеспечивает значения параметров теплоизоляции ($R=4,5374~(\text{м}^2.^{\circ}\text{C})/\text{Bt}$, $U=0,2204~\text{Bt/(}\text{м}^2.^{\circ}\text{C})$), превышающие нормативные как по заполнению световых проемов, так и для наружных стен зданий.

Для предотвращения схлопывания стекол за счет действия атмосферного давления с наружных сторон в межстекольное пространство вставляют распорные элементы (спейсеры или пиллары), выполненные из металла или стеклокерамики и расставленные на расстоянии 20-40 мм друг от друга. Они обеспечивают равномерное влияние силы атмосферного давления на поверхность пакета, но при этом снижают теплозащитные свойства стеклопакетов. Приведенное сопротивление теплопередаче остекления однокамерного вакуумного стеклопакета без низкоэмиссионного покрытия с учетом теплопроводности пилларов 0,404 ($\text{M}^2.^\circ\text{C}$)/Вт оказывается меньше чем у остекления без пилларов 0,4468 ($\text{M}^2.^\circ\text{C}$)/Вт на 10 %. Приведенное сопротивление теплопередаче остекления вакуумного стеклопакета с мяг-

ким низкоэмиссионным покрытием с учетом теплопроводности пилларов $2,309~(\text{м}^2.^{\circ}\text{C})/\text{Вт}$ оказывается меньше, чем у остекления без пилларов $4,3691~(\text{м}^2.^{\circ}\text{C})/\text{Вт}$ на 47~%. Полученное значение обеспечивает требования ТКП 45-2.04-43-2006* по теплозащитным свойствам наружных стен для нежилых производственных зданий и обеспечивает требования для наружных стен зданий жилых и общественных зданий, бытовых и административных зданий производственных предприятий при ремонте и реставрации.

Гибридная конструкция стеклопакета позволяет увеличить теплозащитные свойства однокамерного вакуумного стеклопакета. Например, при отсутствии распорных элементов сопротивление теплопередаче увеличивается на 34 % для остекления без низкоэмиссионных покрытий и на 3,2 % для остекления с мягким низкоэмиссионным покрытием. Учитывая теплоперенос через распорки в вакуумной камере, сопротивление теплопередаче в гибридном пакете с мягким низкоэмиссионным покрытием оказывается меньше на 46 %, чем у стеклопакета аналогичной конструкции без пилларов.

Замена осущенного воздуха в гибридном стеклопакете на аргон приводит к незначительному увеличению значения сопротивления теплопередаче на 0.5%.

3. Выводы

Таким образом, существенное влияние на величину термического сопротивления, сопротивления теплопередаче и коэффициента теплопередачи оказывают размеры распорных элементов и свойства материала, из которых они изготовлены. Для достижения нормативных теплопередаче сопротивления значений 45-2.04-43-2006* для наружных стен зданий при строительстве, реконструкции, модернизации жилых и общественных зданий, бытовых и административных зданий производственных предприятий необходимо либо уменьшать размеры распорных элементов, либо увеличивать расстояние между ними, либо выбирать материал пиллара, теплопроводность которого меньше теплопроводности стекла. Выполнение первых двух вариантов приведут к увеличению нагрузки на распорные элементы за счет действия атмосферного давления с наружных сторон, что, в свою очередь, может привести к их разрушению.

Для достижения нормативных значений сопротивления теплопередачи для наружных стен жилых знаний при сохранении размера распорных элементов по расчетным данным необходимо выбирать

материал, теплопроводность которого должна быть ниже 0,35 BT/(м•К).

Литература

- 1. ГОСТ Р 54166–2010 (EN 673:1997). Стекло и изделия из него. Методы определения тепловых характеристик. Метод расчета сопротивления теплопередаче. Москва: Стандартинформ, 2010. 25 с.
- 2. ТКП 45-2.04-43-2006* (02250). Строительная теплотехника. Строительные нормы проектирования. Минск: Минстройархитектуры, 2014.-50 с.
- 3. Asano, О Вакуумное остекление в качестве прозрачного тепло-изоляционного материала [Электронный ресурс] / Osamu Asano, Toru Futagami, Tsuguhisa Takamoto, Tetsuo Minaai // NIPPON SHEET GLASS CO. Ltd. Пер.: Кобылкин Р.Н., 2009. URL: http://steklo.com/article/5/ Дата доступа: 16.01.2015.
- 4. Каталог продукции «YourGlassPocket» [Электронный ресурс] / Официальный сайт компании «AGC Glass Russia» URL: http://agc-info.ru/download?file=/upload/tinymce/mediaoffice/Glass_Pocket_for%20 web.pdf –Дата доступа: 26.11.2016.
- 5. Шабров, Н.Н. Метод конечных элементов в расчетах деталей тепловых двигателей / Н.Н. Шабров. Л.: Машиностроение, 1983. $212~\rm c.$
- 6. Малявина, Е.Г. Теплопотери здания. Справочное пособие / Е.Г. Малявина. 2-е изд., испр. М.: ABOK-ПРЕСС, 2011. 144 с.
- 7. ГОСТ Р 54165–2010 (ISO 10293:1997). Стекло и изделия из него. Методы определения тепловых характеристик. Метод определения сопротивления теплопередаче. Москва: Стандартинформ, 2010. 25 с.
- 8. Р 1.04.115.13 Рекомендации по расчету приведенного сопротивления теплопередаче ограждающих конструкций и расчету потерь теплоты помещений через ограждения. Минск: Институт жилища НИПТИС им. С.С. Атаева, 2013. 61с.
- 9. ГОСТ 30733-2014 (EN 1096-1:2012, EN 1096-2:2012, EN 1096-4:2004). Стекло с низкоэмиссионным твердым покрытием. Технические условия. Москва: Стандартинформ, 2015. 15 с.
- 10. ГОСТ 31364-2014 (EN 1096-1:2012, EN 1096-2:2012, EN 1096-4:2004). Стекло с низкоэмиссионным твердым покрытием. Технические условия. Москва: Стандартинформ, 2015. 15 с.