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The main line of evolution in theoretical methods of polarization optics
seems to be quite independent of that in relativistic symmetry methods,
developed, for example, in particle physics. In the paper a technique
of working with the Lorentz is used, the systematic construction of that was
given by Fedorov [1], also see a quaternionic approach [2]. This technique is
specified for looking at the problems of light polarization optics in the frames
of vector Stokes-Mueller and spinor Jones formalism.

Remembering on great differences between properties of isotropic and
time-like vectors in Special Relativity we should expect the same principal
differences in describing polarized and partly polarized light. So below we
will be considering these two cases separately: a polarized light and a partly
polarized light. In particular, substantial differences will be revealed when
turning to spinor techniques — also see [4]. Let us start with some basic
definitions concerning the polarization of the light (at this we have used [3],
though it might be another from many). For the Stokes vector of the partly
polarized light we have

S“=,I pn), S S =1*(1-p*)=>0, (1)
where [ is a general intensity, p is a degree of polarization which runs within
[0,1] interval: 0< p <1, n stands for any 3-vector. Behavior of Stokes 4-

vectors for polarized and partly polarized light under acting optics devices
may be considered as isomorphic to behavior of respectively isotropic and
time-like vectors with respect to Lorentz group in Special Relativity. This
simple observation leads tomany consequences, some of them will be
discussed below.

1. Spinor representation of Stokes 4-vector for a completely polarized
light

Let start with the well-known relations between 2-rank bi-spinors and
simplest tensors. Bi-spinor of second rank U =% ® ¥ can be resolved into

scalar @, vector @, ; pseudoscalar D, pseudovector ¢,, and antisymmetric

tensor @ ,
U=YQVY = [—iCD +y" @, +ic” D, +y°D +i7/b7/5(f)b]E_1 ; (2)
let us refer all consideration to the spinor basis
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Inverse to (2) relations look
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1 1
®, =7 SplEyUL. &, =4—l.Sp [Ey’y, U1,

. _ 1 1
CD:iSp[EU], ®=—_SplEyU], @, =-—SplEc,Ul. (&)
l

First, we are interested in two vectors obtained from spinors:
D, =&, =&y, @ =& =&y,
D, =i(E'n+Eny), @y=—(En,+Em);
for pseudovector, scalar and pseudoscalar H,=0, ,=0, H,=0,
®;=0, D=0, ® =0; and for antisymmetric tensor

o =§[<5151 —EEN (i —nmy) 1,

o =%[<5151 — &2~ —nm) 1,

o =—%[(§1§1 FEEY i +n) 1.
o' = —4%.[(5151 +&EEN) —(mm +m3m,) 1,

OF L[ ] O = [EE ],
Collecting results together:
£
yp

we see that to have real vector and tensor one should impose additional
restriction: let it be

Y="|, ¥Y®¥ = @=0,d=0, $,=0, &, ,#0, &, =0,

2

n=+ic’ & =  p=+&",n,=—&"; (5)
which results in
O, =—('E"+E2ET)<0, D, =(EET-E2ET),
CDI z(él 52*4_52 51*)’ CDZ zi(gl 52*_62 gl*)’
O =2 [(§ 6 -E ENH(E" & -8 ¢,

O =€ € -8 (T - ),

o~ =—%[<5‘ Elb B E) 4 (E" EN Y EM)],
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o7 = ‘4%-[(51 E Y E) (£ ET +EY Y],
cDO3 :_é(él 52 _52* 51*)’ (D12 :_%[51 52 +§2* 51*] (6)

There exists alternative additional restriction:
n=-ic’§ = np=-&", n=+&", (7)
which results in
D, =('E"+E7EN)>0, D =558 8T,
D =—(& ET+EET),  @,=-i(EET-E7EN);
O =[5 -ETENH(E" & -8 ¢,
1

OF = [(€ ' -E N~ g g g,

o~ =—%[<5‘ Elr B E) 4 (E" EN 4+ EY EM)],
o7 = ‘4%-[(51 E Y E) - (EN E HEY Y],
O o_l(f g, e e[S EHE ) ®

The last case (7)—(8) seems to be appropriate to describe Stokes 4-vector
and determine Stokes 2-rank tensor:

®Y = §,#0, 8, %0,

o mn

R
n=-io’g

S, =& &"+&7&7)>0,  S,=—(&&" -85,
S] =_(§l 52*4_52 51*)’ Sz =—i(§1 52*_62 §1*),

d =S =Z[EE -8 ) ET £ ¢ ),

b =St = [ E -8 8- £ - ),
@ =S =o€ ) ET ),
B oSt = [(€ € HE ) (€ £ ),
QST e(EE G, WSt (£ E+ETED. O

Let us calculate the main invariant — it turns to equal to zero:
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S8, —S,8,=0, (10)
so S, may be considered as a Stokes 4-vector for a completely polarized light.

In turn, 4-tensor S, being constructed from Jones bi-spinor W, is
a Stokes 2-rank tensor. Let us calculate two invariants for §, :

1 1
11=—55m"5mn=a2—b2=0, IZ:Zg §PS™ =0, (11)

abmn

Finally, let us specify Stokes 4-vector and 4-tensor in parameters
(M,N,A=a-p):

N ei(x
+M &7
—M e

N e—i(x
S,=M*+N?, S,=M?-N*,

S, =—2MN cos(a - ), S, =2MN sin(a - ),

, Yo = S,#0, §, #0,

and

1 : : 1
a =S" :—E(NZ sin2a —M?*sin2),b' =S* :+§(N2 cos2o — M’ cos2),

1 1 . :
a’=8" :_E(Nz cos2o +M?>cos2fB), b’ =S :—E(N2 sin2a +M*sin2),

@ =8”=+NMsin(a+ B), b’ =S"=-NMcos(a+pB). (12)

Two vectors a,b are determined by 4 parameters N,M,«, , additional
identities hold
C(NP+MPY
4
therefore the quantities a,b depend in fact upon 4 independent parameters
N,M,pB—-a,p +a; whereas Stokes 4-vector depends upon only three ones
N.M,p-«.

Instead of Stokes 4-tensor S, one may introduce a complex Stokes 3-

aZ :bZ

, ab=0;

vector s =a+i b with the components
s, +is, =—i E°E? s, —is, =+i E'E", s =—i E'EY (13)
The quantity s transforms as a vector under complex rotation group
SO(3.C), isomorphic to Lorentz group Lt. The later permits to introduce
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additionally to Jones spinor and Mueller vector formalisms one other
technique based on the use of complex 3-vector

1 l-(NZeZi(X _MZeZiﬁ)

s=a+ib=—— (N +M**"); (14)
2 : i(a+p)
—2i NM e

evidently this complex vector is isotropic s> =0, the later condition provide
us with two additional condition, so s depends on 4 parameters.

2. On possible Jones 4-spinor for a partly polarized light
Now let us examine else one possibility

E |4y | [¥Smy —&mp &g +gEr
Sl |_rem g g8 4£8" (15)
A R Y M T |
n| |+ET| [Hmany e —mE Amgt

¥ ®(—iP°) =

Corresponding 4-vector is determined by
1 * * * %
D, ZE[(UQUQ +nm)+(E7ET +EET) >0,
1

D, = —5[(772772 _771'771*)"‘(_5252* + 5151*)]3

@, =%[(mn§ ) —(EET +EEM)],

O, = L[ )+ (-EE + EE) .

We readily derive ?
D, =nm; §E" +nn; SET g, SET g SET . (16)
Let us demonstrate that this vector is time-like. With the notation
£ Nle: ’ n = Mlez:‘ ’ (17)
N,e™ M, e™
we get

QD =N'M?+N;M;+2NM, N,M, cos[(n, —n,)—(m —m,)];
therefore
(NM,—N,M,)> <®; - D> —D; —D’ <(N,M, + N,M,)" . (18)

This means that we have ground to consider 4-vector ®_ as Stokes
4-vector S :
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(NM,-N,M,)* <S; -S* <(N,M,+N,M,)*, (19)
and two 2-spinors (15) as making up a Jones bi-spinor corresponding a partly
polarized light.

It remains to find explicit form for corresponding (real) Stokes 4-
tensor S, :

O =T+ ) - &+ E ),

O = (&} + 80+ (& +nE )],

q)()z — _l
4

O =T - En) - Cng g ) T,

[ =& n))+ (& +n,6) 1,

@ =L [(@ni )0 g wn e,

O = [ - )= (g™ +n ],

] * * . 1 * *
s'=a' +ib :%(51772 +&n)), st=dlrib’ =——(Eny - &),

s*=a +ib’ 2—5(52772'_51771); (20)

besides this complex 3-vector is not isotropic: 8> =—1 (&'n" — &%) =0,
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