

Минск, Беларусь

ВЗАИМОДЕЙСТВИЕ НЕЙТРОНОВ С РАЗМНОЖАЮЩЕЙ СРЕДОЙ В МОДЕЛИ РОЖДЕНИЯ И ГИБЕЛИ С ДИСКРЕТНЫМ ВРЕМЕНЕМ ЖИЗНИ ПОКОЛЕНИЯ НЕЙТРОНОВ

Понятие времени жизни поколения нейтронов $\tau_{\text{пок}}$ – одно из основных понятий, используемых при описании взаимодействия нейтронов с размножающей средой, в том числе и в ядерном реакторе. Оно естественным образом связано с моделью рождения и гибели частиц с дискретным временем жизни поколения частиц. Поэтому при решении задач, связанных с превращением частиц, представляется возможным использовать уже известный математический формализм, изложенный во многих монографиях (см., например, [1, 2]).

В физике взаимодействия нейтронов с размножающей средой, однако, часто необходимо учитывать образующиеся при этом запаздывающие нейтроны, которые приводят к временной зависимости времени жизни поколения нейтронов $\tau_{\text{пок}}$ (см., например, [3, 4]). Так, при описании переходных процессов в ядерном реакторе в приближении одной группы запаздывающих нейтронов время жизни поколения нейтронов

$$\tau_{\text{пок}}(t) = \tau_{\text{M}\Gamma} + \beta \tau_{\text{3a}\Pi} [1 - \exp(-t/\tau_{\text{3a}\Pi})] , \qquad (1)$$

где $\tau_{\text{мг}}$ – время жизни мгновенного нейтрона, $\tau_{\text{зап}}$ – среднее время жизни i групп запаздывающих нейтронов объединенных в одну и $\beta = \sum \beta_i$ – суммарный выход запаздывающих нейтронов.

При малых временах ($t << \tau_{3an}$) время жизни поколения нейтронов практически постоянно и равно $\tau_{nok} \approx \tau_{MT}$. Аналогично при больших временах ($t >> \tau_{3an}$) время жизни поколения нейтронов также практически постоянно и равно $\tau_{nok} \approx \tau_{MT} + \beta \tau_{3an}$. В этих случаях можно использовать стандартную модель рождения и гибели с постоянным дискретным временем жизни поколения частиц.

Однако в интересных в практическом отношении случаях надо использовать для времени жизни поколения нейтронов точное выражение $\tau_{\text{пок}}$ (1). Поэтому основная цель настоящей работы – развить формализм для описания взаимодействия нейтронов с размножающей средой на основе времени жизни поколения нейтронов $\tau_{\text{пок}}$ (1).

Сначала надо рассмотреть формализм неоднородного процесса рождения и гибели частиц с непрерывным временем, а затем адаптировать его для описания такого же процесса, но с дискретным и зависящим от времени временем жизни поколения нейтронов. В рамках указанного формализма среднее число частиц дается формулой (2) [1, 5]

$$M(t) = \exp\left(\int_{0}^{t} [\lambda(\tau) - \mu(\tau)] d\tau\right), \tag{2}$$

где при отсутствии миграционных процессов $\lambda_n(t) = \lambda(t)n$ и $\mu_n(t) = \mu(t)n$ являются мгновенными зависящими от числа частиц в системе n интенсивностями рождения и гибели.

Нетрудно показать [6,7], что величина $\lambda(t) - \mu(t)$ для мгновенных и запаздывающих нейтронов имеет вид

$$[\lambda(t) - \mu(t)]_{M\Gamma} = \rho/\tau_{M\Gamma}$$
, $[\lambda(t) - \mu(t)]_{3a\Pi} = \rho/\tau_{3a\Pi}$. (4)

Эволюция во времени числа мгновенных и запаздывающих нейтронов описывается функцией

$$[\lambda(t) - \mu(t)]_{M3} = \rho[1 + \beta(1 - \exp(-t/\tau_{3a\Pi}))]/[\tau_{M\Gamma} + \beta\tau_{3a\Pi}(1 - \exp(-t/\tau_{3a\Pi}))], \quad (5)$$

где числитель играет роль реактивности, а знаменатель — времени жизни поколения нейтронов $\tau_{\text{пок}}$ (1).

Нас интересует процесс, описываемый формулой (5), хотя в качестве реактивности ρ в (5) может выступать и другая функция, в зависимости от рассматриваемой задачи. Как можно приближенно рассчитывать интеграл в M(t) (2) показано ниже.

Время жизни поколения нейтронов $\tau_{\text{пок}}$ (1) сравнительно мало. По абсолютной величине $\tau_{\text{мг}}$ варьируется примерно от $\sim \! 10^{\text{-}3}$ до $\sim \! 10^{\text{-}7}$ с. Величина $\beta \tau_{\text{зап}}$ для таких нуклидов как 235 U, 239 Pu меньше 0,1 с. Поэтому в (1) время всегда гораздо больше соответствующего времени жизни поколения нейтронов $t >> \tau_{\text{пок}}(t)$. Очевидно, что в интегралах типа

$$J(t) = \int_{0}^{t} \psi(s) ds / [\tau_{M\Gamma} + \beta \tau_{3A\Pi} (1 - \exp(-s/\tau_{3A\Pi}))], \qquad (6)$$

где $\psi(s)$ пока произвольная функция, на временном интервале равном времени жизни поколения нейтрона функция $\psi(s)$ практически не меняется и ее можно вынести за знак интеграла. Важно только проквантовать временную шкалу по времени жизни поколения нейтронов $\tau_{\text{пок}}(t)$ (1). Оказывается, что для $\tau_{\text{пок}}(t)$ (1) это сделать нетрудно.

Для краткости введем обозначения $a = \tau_{\text{мг}} + \beta \tau_{\text{зап}}, b = \beta \tau_{\text{зап}}, c = \tau_{\text{зап}},$ т.е.

$$\tau_{\text{nok}}(t) = a - b \cdot e^{-t/c} \quad . \tag{7}$$

Тогда проблема сводится к вычислению табличного интеграла

$$\int_{0}^{t} ds / (a - be^{-t/c}) = (c/a) \ln[(ae^{t/c} - b) / (a - b)].$$
 (8)

По логике вещей, время t в (8) должно быть таким, чтобы n(t) было целым числом. Нетрудно показать, что для целого числа $n(t_n) = n$ соответствующее время t_n будет выражаться формулой

$$t_n = c \cdot \ln\{[(a-b)e^{an/c} + b]/a\}.$$
 (9)

Формул (8), (9) вполне достаточно для того, чтобы проквантовать временную шкалу по времени жизни поколения нейтронов.

Найдем выражение для разности двух целых значений $n(t_k) = n_k$ и $n(t_m) = n_m$. Оно равно

$$n(t_k) - n(t_m) = (c/a) \ln[\exp(n_k - n_m)a/c].$$
 (10)

Если положить $t_m = t_{k-1}$, то $n(t_k) - n(t_m) \equiv 1$, т.е. число поколений нейтронов от времени t_{k-1} до времени t_k изменилось на 1, как и должно быть.

Разность между временами t_k и t_{k-1} , очевидно, должно дать время жизни k-го поколения нейтронов $\tau_{\text{пок}}(t_k) = \tau_k$

$$-t_{k-1} = c \cdot \ln\{[(a-b)e^{ka/c} + b]/[(a-b)e^{(k-1)a/c} + b]\}$$
 (11)

На асимптотике при больших k $\tau_{\mathbf{k}} \approx a$, что согласуется с формулой (9).

Величины t_{k-1} , t_k и τ_k связаны между собой рекуррентными соотношениями

$$t_k = t_{k-1} + \tau_k \ . \tag{12}$$

Поэтому, как и следовало ожидать, полное время t_n , соответствующее целому числу n, равно сумме времен поколений нейтронов, укладывающихся во временном интервале $0-t_n$

$$t_n = \sum_{k=1}^n \mathsf{T}_k \ . \tag{13}$$

Вследствие этого интеграл J(s) (6) можно разбить на сумму интегралов

$$J(t_n) = \sum_{k=1}^{n} \psi(s) ds / [\tau_{\text{MF}} + \beta \tau_{\text{3aII}} (1 - \exp(-s / \tau_{\text{3aII}}))], \qquad (14)$$

где, как упоминалось выше, $s >> t_k - t_{k-1}$. Поэтому интеграл (14) можно преобразовать в ряд

$$J(t_n) \approx \sum_{k=1}^{n} \psi(\langle t_k \rangle) , \qquad (15)$$

где $< t_k > -$ любая временная точка внутри интервала $t_{k-1} - t_k$. Можно показать, что лучшим значением является просто среднее значение временного интервала $< t_k > = (t_{k-1} + t_k)/2$.

В качестве примера практического использования настоящего математического аппарата рассмотрим процесс размножения мгновенных нейтронов в подкритической сборке с учетом влияния запаздывающих нейтронов на время жизни поколения нейтронов. В этом случае в (6) функция $\psi(t) = \rho = -|\rho|$, а ряд

$$J(t_n) \approx -|\rho| \sum_{k=1}^{n} k, \qquad (16)$$

т.е. $J(t_n) \approx -|\rho| n$. Тогда среднее количество рожденных нейтронов будет даваться известной формулой

$$M(t) = \sum_{n=0}^{\infty} \exp(-|\rho|n) = 1/|\rho|.$$
 (17)

Другое дело, что формула (17) для $M(t) = 1/|\rho|$ обычно получается в предположении постоянства времени жизни поколения нейтронов $\tau_{\text{пок}} = \text{const.}$ Это грубое предположение. Кроме того, в реальном топливе реактора обычно присутствуют несколько делящихся нуклидов — 235 U, 239 Pu, 241 Pu и 241 Am. Поэтому даже такая, на первый взгляд, простая задача, как оценка среднего числа рожденных в подкритической системе нейтронов на самом деле оказывается сложной.

Развиваемый в настоящей работе подход позволяет решить и эту усложненную задачу. Так его можно применить и для любого числа групп запаздывающих нейтронов и для реального реакторного топлива с различной концентрацией делящихся нуклидов, которая зависит от выгорания топлива и известна для топлива реальных реакторов.

Данная работа проводится в настоящее время для двух делящихся нуклидов 235 U, 239 Pu и шести групп запаздывающих нейтронов, но эта задача может быть решена только численным методом.

Литература

- 1. Баручча-Рид, А.Т. Элементы теории Марковских процессов и их приложения / А.Т. Баручча-Рид. М.: Наука, 1969. 512 с.
- 2. Карлин, С. Основы теории случайных процессов / С. Карлин. М. : МИР, 1971. 536 с.
- 3. Широков, С.В. Нестационарные процессы в ядерных реакторах / С.В.Широков. Киев, 2002. 286 с.

- 4. Основы теории и метода расчета ядерных энергетических реакторов. Под редакцией Г.А. Батя. Учебное пособие / Г.Г. Бартоломей и др. М. : Энергоатомиздат, 1982. 512 с.
- 5. Kendall, D.G. On the Generalized Birth-and-Death Process / D.G. Kendall // Ann. Math. Statist. 1948. Vol. 19. P. 1–15.
- 6. Рудак, Э.А. Описание переходных процессов в точечном реакторе в рамках процесса рождения и гибели нейтронов в приближении линейной связи/ Э.А. Рудак, О.И. Ячник // Препринт. Акад. наук Беларуси, Ин-т физики. Минск. 2010. № 746. 20 с.
- 7. Рудак, Э.А. Определение реактивности в подкритической сборке при облучении ее короткими импульсами нейтронов / Э.А. Рудак, О.И. Ячник // Вес. Нац. акад. навук Беларусі. Сер. физ.-мат. навук. 2011. № 2. С. 119–124.