УДК 528.8+550.8

А. П. ГУСЕВ

MIEHIN O. CKOPINHIP

ДИСТАНЦИОННАЯ ДИАГНОСТИКА ЛЕСНОГО ПОКРОВА КАК ИНДИКАТОРА ПОВЕРХНОСТНЫХ ОТЛОЖЕНИЙ (ПО ДАННЫМ SENTINEL-2)

УО «Гомельский государственный университет им. Ф. Скорины», г. Гомель, Республика Беларусь, gusev@gsu.by

Песной покров рассматривается как индикатор поверхностных отложений. Рассмотрено использование данных многозональной космической съемки Sentinel-2 для диагностики сосновых, широколиственных, черноольховых, березово-осиновых лесов. Наилучшие результаты получены при управляемой классификации методом максимального правдоподобия (общая точность классификации — 90,3 %, каппа составляет 86,1 %.).

Применение дистанционных методов для изучения поверхностных отложений может осуществляться в двух направлениях в зависимости от растительного покрова:

– отсутствие или очень низкое покрытие растительности (менее 10 %) – спектральноотражательные свойства земной поверхности в основном зависят непосредственно от характеристик почв и горных пород; – высокое покрытие растительности (более 80 %) – спектрально-отражательные свойства земной поверхности зависят от характеристик растительного покрова, которые, в свою очередь, могут в некоторых случаях выступать индикаторами почв и горных пород.

Неблагоприятные изучения поверхностных отложений условия при проективном покрытии растительности 10-80 %, когда спектрально-отражательные свойства земной поверхности зависят как от «голой» почвы, так и от особенностей растительности [1, 2]. Так, дистанционная диагностика почв и горных пород в условиях ландшафтов с развитым растительным покровом крайне затруднена. Так, в случае даже при проективном покрытии 10% регистрируется в основном спектральная характеристика растительного покрова, а при покрытии более 60% влияние почв и пород вообще не сказывается на полученных данных дистанционного зондирования [3].

В первом случае для изучения поверхностных отложений используются спектральный индексы, значения которых отражают минеральный состав, глинистость, гранулометрию и другие характеристики почв и горных пород [4, 5].

Во втором случае поверхностные отложения индицируются с помощью фитоиндикаторов, которыми могут выступать как отдельные виды растений, так и фитоценозы, определяемые с помощью дистанционных методов [6, 7].

Например, в первом случае индикация с помощью многозональной космической съемки геологического строения базируется на спектральных характеристиках наиболее распространенных минералов (классов минералов и гидроксильных групп воды в минералах). Спектры горных пород весьма разнообразны и зависят от минерального состава, размера зерен, особенностей кристаллической решетки минералов. В ближнем инфракрасном диапазоне четко различаются спектры глин, карбонатов, сульфатов [4].

Во втором случае используется связь «растительность-экотоп». Например, спектральноотражательные свойства растительного покрова зависят от плодородия, физических и химических свойств почв, которые в свою очередь обусловлены материнскими породами. Так, величина вегетационных индексов (индикатор биомассы и биопродуктивности) индицирует плодородие почв [5].

В данной статье будет рассмотрена фитоиндикация поверхностных отложений по лесному покрову. В качестве индикаторов выступают леса различных формаций, выделяемых по доминирующим породам. Это направление фитоиндикации используется достаточно давно и в разных регионах имеет существенные отличия в эффективности использования — от крайне низкой до вполне удовлетворительной [6, 7]. Основными помехами в использовании лесного покрова как индикатора поверхностных отложений выступают: стохастичность связи «растительность-экотоп», широкие экологические диапазоны большинства деревьев умеренного пояса, влияние антропогенного фактора на состав и структуры лесного покрова и другие. Тем не менее, в условиях региона Белорусского Полесья сосновые леса выступают относительно надежным индикатором песчаных отложений, широколиственные леса — супесчаных и суглинистых отложений. Черноольховые леса индицируют эвтрофные низинные болота. Мелколиственные березовые и осиновые леса вследствие широкого экологического диапазона для индикации геологических условий не используются.

Использованы материалы космической съемки спутников Sentinel-2. Программа Sentinel-2 – это два спутника, летающих на солнечно-синхронной орбите и предназначенных для систематической мультиспектральной съемки. Сенсор Sentinel-2 ведет съемку в 13 каналах, охватывающих диапазон от 433 до 2280 нанометров. Пространственное разрешение съемки в зависимости от канала – 10-60 м. Ширина полосы захвата – 290 км. Периодичность съемки – 2-3 дня. Sentinel-2A выведен на орбиту летом 2015 г., Sentinel-2B – в марте 2017 г.

Данные Sentinel-2 находятся в свободном доступе на Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home).

Атмосферная коррекция и привязка космических снимков выполнены в *QGIS 3.6*. Для контролируемой классификации использована программа *MultiSpec*.

На основе анализа имеющих материалов было предложено исследовать возможность дистанционной диагностики 4 типов лесного покрова: сосновые леса; широколиственные леса; черноольховые леса; березовые и осиновые леса. Из исследования были исключены еловые леса, которые в регионе встречаются крайне редко.

Обучающая выборка была составлена с учетом наземных геоботанических маршрутных наблюдений, а также материалов лесной таксации. Однородность обучающей выборки удовлетворительна: каждому лесному спектральному классу на гистограмме соответствует один пик.

Использованы 4 метода управляемой классификации (классификации с обучением): метод максимального правдоподобия (*Maximum likelihood*), метод наименьшего эвклидова расстояния (*Minimum Euclidean distance*), метод расстояния Махаланобиса (*Mahalanobis*), метод параллелепипеда (*Parallepiped*). Точность классификации оценивалась для каждого лесного класса по пропущенным пикселям (ошибки пропуска) и по ложно-классифицированным пикселям (ошибки ложной классификации), кроме того, оценивалась общая точность классификации (% правильно проклассифицированных пикселей) и каппа (оценка классификации после исключения случайных совпадений [2]).

Классификация выполнялась для всех каналов *Sentinel-2a MSI* и только для 4 каналов (В02, В03, В04, В08). Данные по указанным 4 каналам могут быть получены не только с *Sentinel-2 MSI*, но и многих других спутниковых систем (в том числе с более высоким пространственным разрешением, большим временным охватом и т.д.).

По спектральным диаграммам выделенных классов лесов видно, что наибольшие отличие наблюдаются в 5-9 каналах, что дает съемки *Sentinel-2 MSI* преимущество для диагностики лесного покрова по сравнению с другими спутниковыми системами (например, *Landsat 4-5, Landsat 7, ASTER*).

Видно, что в случае использования всех каналов точность классификации выше по всем показателям и для всех выделенных классов лесного покрова (таблица 1).

Таблица 1 — Оценка достоверности контролируемой классификации (снимок Sentinel-2A, 26.08.2018)

	Метод классификации							
Лесная формация	Maximum likelihood		Mahalanobis		Minimum Euclidean distance		Parallepiped	
	1	2	1	2	1	2	1	2
Сосновые леса	99,6*	99,5	98,8	99,5	100	92,9	78,4	100
	98,8	96,9	97,1	97,9	99,8	85,6	88,0	96,4
Широколиственные	84,7	96,5	78,0	97,6	54,8	72,4	74,0	82,5
леса	57,9	81,0	65,6	78,2	46,6	61,3	85,9	66,7
Черноольховые леса	88,4	64,4	37,2	88,3	57,8	30,0	27,5	43,5
	64,3	35,6	13,7	45,2	57,9	28,1	25,5	23,0
Березовые и	85,5	85,2	100,0	42,9	13,0	21,6	49,9	59,0
осиновые леса	55,8	53,9	77,1	33,1	11,8	22,1	68,6	56,7
Общая точность	90,3		82,2		65,2		66,4	
классификации	72,1		70,6		61,5		68,6	
Kappa	86,1		75,0		50,9		54,3	
	61,2		58,4		45,9		53,1	

 $^{1 -} Reference\ accuracy\ (omission - пропуск)\ 2 - Reliability\ Accuracy\ (commission - ложная классификация) * - все каналы; ** - 4 канала (B02, B03, B04, B08)$

Наиболее четко диагностируются сосновые леса — точность классификации рассматриваемыми методами составляет 90 — 100 %, причем при использовании метода максимального правдоподобия ошибки составляют менее 1 % пикселей. При использовании только 4 каналов точность классификации снижается, но остается высокой. Метод расстояния Махаланобиса также показывает хорошие результаты.

Точность диагностики широколиственных лесов ниже, но при использовании всех каналов и метода максимального правдоподобия вполне допустима. Так, 15,3 % пикселей пропущено и 3,5 % пикселей ложно классифицировано. Как и в случае сосновых лесов наилучший результат дают методы максимального правдоподобия и расстояния Махаланобиса. При использовании 4 каналов в методе максимального правдоподобия ошибка пропуска составляет 42,1 %, ошибка ложной классификации — 19,0 %, в методе расстояния Махаланобиса — 34,4 % и 21,8 % соответственно.

Точность диагностики черноольховых лесов еще ниже. Так, при использовании всех каналов в методе максимального правдоподобия ошибка пропуска составляет 11,6 %, ошибка ложной классификации — 35,6 %. При использовании 4 каналов — 35,7 и 64,4 % соответственно. Другие методы дают еще больший процент ошибок.

Схожая ситуация с березовыми и осиновыми лесами. Наилучший результат дает использование всех каналов и метода максимального правдоподобия. В этом случае ошибка пропуска составляет 14,5 %, ошибка ложной классификации – 14,8 %. Другие методы характеризуются либо очень высоким процентом пропущенных пикселей (метод параллелепипеда), либо высоким процентов ложно классифицированных пикселей (метод расстояния Махаланобиса), либо и тем и другим (метод минимального евклидового расстояния).

Если сравнивать используемые методы по общей точности классификации и критерию каппа, то лучшие результаты показывает метода максимального правдоподобия: общая точность 90,3 %, каппа — 86,1 %. В случае использования только 4 каналов точность значительно снижается (72,1 и 61,2 соответственно).

Если учитывать, что основным индикаторами поверхностных отложений являются сосновые и широколиственные леса, то использование снимков *Sentinel-2* позволяет надежно их распознавать при управляемой классификации методом максимального правдоподобия.

Список литературы

- 1 Кронберг, П. Дистанционное изучение Земли. Основы и методы дистанционных исследований в геологии / П. Кронберг. М.: Мир, 1988. 343 с.
- 2 Чандра, А.М. Дистанционное зондирование и географические информационные системы / А.М. Чандра, С.К. Гош. М. : Техносфера, 2008. 312 с.
- 3 Трофимов, Д.М. Аэрокосмические исследования на поисковом этапе геологоразведочных работ на нефть и газ / Д.М. Трофимов. – М., 2010. – 307 с.
- 4 Тронин, А.А. Спектральные методы дистанционного зондирования в геологии. Обзор / А.А. Тронин, В.И. Горный, С.Г. Крицук, И.Ш. Латыпов // Современные проблемы дистанционного зондирования Земли из космоса. − 2011. − Т.8. № 4. С. 23–36.
- 5 Гусев, А.П. Использование спектральных индексов для оценки эродированности почв в природно-антропогенных ландшафтах Беларуси / А.П. Гусев, И.И. Козюлев, И.А. Шаврин // Российский журнал прикладной экологии. 2020. № 2. С. 48–52.
- 6 Виноградов, Б.В. Растительные индикаторы и их использование при изучении природных ресурсов / Б.В. Виноградов. М. : Высшая школа, 1964. 328 с.
- 7 Викторов, С.В. Индикационная геоботаника: Учебное пособие / С.В. Викторов, Г.Л. Ремезова. М.: Изд-во Моск. ун-та, 1988. 168 с.

A. P. GUSEV

REMOTE DIAGNOSTICS OF FOREST COVER AS AN INDICATOR OF SURFACE SEDIMENTS (DATE OF SENTINEL-2)

Forest cover is considered as an indicator of surface sediment. The use of Sentinel-2 PELIOSATIOPININITY INVIETINO. CHOPINI multispectral satellite imagery data for diagnostics of pine, broad-leaved, black alder, birch-aspen forests is considered. The best results were obtained with controlled classification using the