

COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY

The structure of invariant measures on locally compact semigroups with open translations

To cite this article: A R Mirotin 1982 Russ. Math. Surv. 37 170

View the article online for updates and enhancements.

You may also like

- <u>Polyhomomorphisms of locally compact</u> <u>groups</u> Yu. A. Neretin
- Elliptic and parabolic equations for
- measures Vladimir I Bogachev, Nikolai V Krylov and Michael Röckner
- <u>Algebra, geometry, and topology of the</u> <u>substitution group of formal power series</u> I. K. Babenko

The structure of invariant measures on locally compact semigroups with open translations

A.R. Mirotin

In this note we extend the results of [1] to the case of semigroups that are not necessarily embeddable in groups. For measures we use the terminology of [2]. All measures are assumed to be non-zero and Borel. Throughout what follows S is a left ideal of a semigroup T. A measure μ on S is said to be left-invariant with respect to T if $\mu(aA) = \mu(A)$ under the condition that A and aA are measurable $(a \in T)$. A semigroup S is called a left-semitopological subsemigroup of T if S is a Hausdorff space and the left translations $\lambda_a: x \mapsto ax$ are continuous maps for every $a \in T$. If all the λ_a $(a \in T)$ are open maps, then S is called a semigroup with open left translations. Definition. A semigroup S is called a left-homogeneous subsemigroup of T if S cannot be split into two left ideals of T.

Lemma 1. a) Every semigroup can be split uniquely into left ideals each of which is a lefthomogeneous subsemigroup of it.

b) For any splitting of a left-semitopological semigroup with open right translations into left ideals the ideals occurring in the splitting are opened-and-closed.

The elements of the splitting in Lemma 1 a) are called the left homogeneous components of the semigroup in question. The existence of this splitting can be proved in the same way as in [1] (see Theorem 2 there).

Lemma 2. Let S be a left-homogeneous locally compact left-semitopological subsemigroup of T with open left translations. For any measure μ on S that is left-invariant with respect to T its support coincides with S, and left cancellation by elements of T holds in S.

Sketch of proof. If we assume that S contains nonempty μ -negligible open subsets, then the union of all these subsets and also its complement in S are left ideals of T, which is impossible. The validity of left cancellation by elements of T can now be proved as in [4].

Lemma 2 shows, in particular, that in [4] the condition on measures of open sets to be positive is superfluous.

Theorem 1. In a left-homogeneous metrizable locally compact left-semitopological subsemigroup S of a semigroup T with open left translations any two measures that are left-invariant with respect to T are proportional.

Proof. Let μ and μ_1 be two non-proportional measures on S, both left invariant with respect to T. Then the measures μ and $\nu = \mu + \mu_1$ are also non-proportional and $\mu \ll \nu$. Therefore, $d\mu/d\nu = f \neq \text{const}$ ν -almost everywhere. Then there is a c such that the sets $M_1 = \{x \mid f(x) < c\}$ and $M_2 = S \setminus M_1$ are not locally v-negligible. Since μ and v are left-invariant with respect to T, we see that f(zx) = f(x) ν -almost everywhere for every $z \in T$. Consequently, $\nu(zA_i \cap M_i) = \nu(A_i)$ (i = 1 or 2) for any Borel set $A_i \subset M_i$ and any $z \in T$. We use the concepts and results of [3], §15. For a regular sequence \mathfrak{M} of nets in a separable metric subspace $X \subset S$ and a Borel set $A \subset S$, let $D_{\mathfrak{M}}(A, x)$ denote $(v, \mathfrak{M})D(\chi \cdot v)(x)$ if $x \in X$ and zero otherwise. From [3], Theorem (15.7), it follows that $D_{\mathfrak{M}}(A, x) = \chi_A \cap_X (x)$ v-almost everywhere. Let L_1 be the set of $x \in S$ for which there is a precompact neighbourhood of X and a regular sequence \mathfrak{M} of nets in it such that $D_{\mathfrak{M}}(M_1, x) = 4$ and $L_2 = S \setminus L_1$. By the corollary to Theorem (15.7) of [3] mentioned above, $L_i \neq \phi$ (i = 1 or 2). We claim that the L_i are left ideals of T. Let $x \in L_1$, $z \in T$, and let X be that neighbourhood of x with a regular sequence \mathfrak{M} of nets for which $D_{\mathfrak{M}}(M_1, x) = 1$. In a neighbourhood zX of zx we choose a regular sequence \mathfrak{N} of nets so that \mathfrak{N}_n has the nucleus zU_n (U_n being the nucleus of the net \mathfrak{M}_n containing x). The existence of such a net follows from the continuity of λ_z . Then $\nu(M_1 \cap U_n) = \nu(M_1 \cap z(M_1 \cap U_n)) \leq \nu(M_1 \cap zU_n).$ Therefore, $D_{\mathcal{Y}}(M_1, zx) = 1$, that is $zx \in L_1$. We claim that L_2 is a left ideal of T. We assume that there exist an $x \in L_2$ and a $z \in T$ such that $zx \in L_1$. Then we can find a neighbourhood Y of zx and a regular sequence \mathfrak{N} of nets in it, such that for every $\epsilon > 0$ there exists an N such that $\nu(M_1 \cap V_n) \ge (1-\epsilon)\nu(V_n)$ for every n > N (here V_n is the nucleus of \mathfrak{N}_n containing zx). In the precompact neighbourhood $X \subset \lambda_z^{-1}(Y)$ of x we choose a

regular sequence \mathfrak{M} of nets so that the nucleus U_n of \mathfrak{M}_n containing x is such that $zU_n = V_n$. The existence of such a net follows from the fact that λ_z is open. Now $\nu(M_2 \cap U_n) \leq \nu(M_2 \cap zU_n) = \nu(M_2 \cap V_n) \leq \epsilon \nu(U_n)$ for n > N. Consequently, $D_{\mathfrak{M}}(M_2, x) = 0$, that is, $D_{\mathfrak{M}}(M_1, x) = 1$, which contradicts the choice of x. Thus, $\{L_1; L_2\}$ is a splitting of S into left

ideals of T, which is impossible. The theorem is now proved.

Theorem 2. Let S be a locally compact left-semitopological semigroup with open left and right translations. Every left-invariant measure μ on S has the form $\mu(B) = \sum_{\alpha \in \Lambda} \mu_{\alpha}(B)$, where $(L_{\alpha})_{\alpha \in \Lambda}$

is a family of left-homogeneous components of S with left cancellation by elements of S, μ_{α} is a measure in Γ_{α} that is left-invariant with respect to S (unique up to proportionality), and for every Borel set B in the sum on the right-hand side at most countably many terms are different from zero.

Proof. Let $(L_{\alpha})_{\alpha \in \Lambda}$ be the family of all not locally μ -negligible left-homogeneous components of S.

By Lemmas 1 and 2, the L_{α} are open and have left cancellation by elements of S. We denote by μ_{α} the restriction of μ to L_{α} . Since the complement of $\cup \{L_{\alpha} \mid \alpha \in \Lambda\}$ is locally μ -negligible and any Borel set B has a non-empty intersection with at most countably many L_{α} , we see that

$$\mu(B) = \sum_{\alpha \in \Lambda} \mu_{\alpha}(B)$$
, which was to be proved.

References

- [1] V.V. Mukhin, Left-invariant measures on open stable subsets of locally compact metrizable groups, Funktsional. Anal. i Prilozhen. 13:2 (1979), 87-88. MR 80g:28012b.
 = Functional Anal. Appl. 13 (1979), 147-148.
- [2] P.R. Halmos, Measure theory, 11th ed., Springer-Verlag, Berlin-Heidelberg-New York 1971. Translation: *Teoriya mery*, Izdat. Inostr. Lit., Moscow 1953.
- [3] S. Saks, Theory of the integral, second ed., Hafner, New York 1937. Translation: *Teoriya integrala*, Izdat. Inostr. Lit. Moscow 1949.
- [4] R. Rigelhoff, Invariant measures on locally compact semigroups, Proc. Amer. Math. Soc. 28 (1971), 173-176. MR 43 # 3424.

Gomel' State University

Received by the Editors 11 February 1981