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1 Introduction

Hausdorff operators are closely connected with classical harmonic analysis
(see, e.g., [4], [16], [11, Chapter XI], [2, Section 3], or [28]). The modern
stage in the development of this theory begins with the work by E. Liflyand
and F. Mòricz [17]. The concept of a Hausdorff operator in the general
framework of topological groups was introduced by the author in [19] as a
generalization of the classical definition in Euclidean spaces [14], [3] and the
definition in p-adic spaces [30] (see Definition 3 below).

In [19] sufficient conditions were given for boundedness of a Hausdorff
operator on the atomic (real) Hardy space over a locally compact metriz-
able group that satisfies the so-called doubling property. Generalizations to
homogeneous spaces of Lie groups appeared in [22]. The case of locally com-
pact groups with local doubling property and their homogeneous spaces was
considered in [20]. But there are compact connected Abelian groups that are
not metrizable (e. g., the Bohr compactum bR), or metrizable but without
local doubling property (e. g., the infinite dimensional torus T∞1). The aim
of this work is to give necessary and sufficient conditions for boundedness

1The author is indebted to Professor A. Bendikov for this observation.
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of Hausdorff operators on Hardy spaces and BMO for this case, as well.
Surprisingly, these conditions turned out to be the same for all groups and
spaces under consideration. The case of the space of continuous functions
and examples that may be of interest in their own way are also considered.
It should be noted that Hausdorff operators on Hardy spaces H1 and BMO
over Euclidean spaces Rd were studied in [14].

Due to an ingenious identification of Bohr, a lot of theory of ordinary
Dirichlet series may be seen as a sub-theory of Fourier analysis on the infi-
nite dimensional torus. This observation and especially the seminal result of
Hedenmalm, Lindqvist, and Seip [12] give us an opportunity for an applica-
tion of our results to ordinary Dirichlet series. In the case of general Dirichlet
series we use similar results obtained by Defant and Schoolman in [6], [29],
and [7]. Based on this results, classes of bounded Hausdorff operators that
act in some classical spaces of Dirichlet series (ordinary and general) are
introduced.

2 Preliminaries

This section collects all preliminary information we need in the next parts
of the paper.

In the following unless otherwise stated G stands for a compact and con-
nected Abelian group with normalized Haar measure ν and a total order
(which agrees with the group structure) is fixed on its dual group X . In
turn, X is the dual group for G by the Pontryagin - van Kampen theo-
rem. Let X+ := {χ ∈ X : χ ≥ 1} be the positive cone in X (1 denotes
the unit character). In other words, X+ is a subsemigroup of X such that
X−1

+ ∪ X+ = X , and X−1
+ ∩ X+ = {1} (see, e.g., [27, Chapter 8]). We put

also X− := X \X+. Then X− = X−1
+ \ {1}.

As is well known, a (discrete) Abelian group X can be totally ordered
if and only if it is torsion-free, which in turn is equivalent to the condition
that its character group G is connected. In general the group X may possess
many different total orderings.

In applications, often X is a dense subgroup of Rd endowed with the
discrete topology and G = bX is its Bohr compactification, or X = Zd so
that G = Td is the d-torus (T is the circle group and Z is the group of
integers). Other interesting examples are the infinite dimensional torus T∞

(see Section 6 and Examples 1 and 5 below), an a-adic solenoids Σa (see
Example 6 below), and their finite and countable products (see, e.g., [6]).
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We denote by Aut(H) the group of topological automorphisms of a topo-
logical group H endowed with its natural topology (see, e.g., [13]). If H is

Abelian and A ∈ Aut(H) the dual automorphism A∗ ∈ Aut(Ĥ) is defined by
the rule

A∗(ξ) := ξ ◦ A, ξ ∈ Ĥ.

[13, (24.37), (24.41)].
In the following Aut+(X) stands for the subset of Aut(X) that consists

of all ordered automorphisms of the group X with respect to the given order.
By definition, these automorphisms preserve the order (equivalently, these
automorphisms map the positive cone X+ into itself).

We denote also by Aut(G)+ the set of such A ∈ Aut(G) that A∗ ∈
Aut+(X).

The following simple lemma will be useful.
Lemma 1. 1) Let G be locally compact Abelian group. If A ∈ Aut(G)

then (A∗)−1 = (A−1)∗.
2) Let G be compact and connected Abelian group. Then Aut+(X) is a

subgroup of Aut(X).
3) Let G be compact and connected Abelian group. Then Aut(G)+ is a

subgroup of Aut(G).
Proof. 1) The map A 7→ A∗ is a topological anti-isomorphism of Aut(G)

onto Aut(X) [13, Theorem (26.9)]. It follows that (A−1)∗ = (A∗)−1 for
A ∈ Aut(G).

2) We shall show that if τ ∈ Aut+(X) then τ−1 ∈ Aut+(X), as well.
Since X− = X−1

+ \ {1}, the map χ 7→ χ−1 is a bijection of X+ \ {1} onto X−.
Let us assume that τ ∈ Aut+(X) and χ ∈ X+ \ {1}, but ξ := τ−1(χ) ∈ X−.
Then ξ−1 ∈ X+ \ {1}, and χ = τ(ξ) = (τ(ξ−1))−1 ∈ (X+ \ {1})−1 ⊂ X−, a
contradiction.

3) This is an immediate consequence of 1) and 2).
We denote by ϕ̂ the Fourier transform of ϕ ∈ L1(G), and by ‖ · ‖∞ the

norm in L∞(G). We put also

‖f‖p =



∫

G

|f |pdν




1/p

for f ∈ Lp(G) (0 < p <∞).

In the following the compliment X \ E of the subset E ⊂ X will be
denoted by Ec.
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The next class of spaces is important in particular for general Hilbert
transform [24] and for the theory of Dirichlet series (see, e.g., [6] and section
7 below).

Definition 1. [24], [6]. Let G be compact Abelian group, 1 ≤ p ≤ ∞,
and E ⊂ X a non-empty set. The generalized Hardy space Hp

E(G) is the
closed subspace of Lp(G) defined as follows

Hp
E(G) = {f ∈ Lp(G) : f̂(χ) = 0 ∀χ ∈ Ec}.

The case where G is connected and E = X+ is due to Helson and Low-
denslager (see, e.g., [27]). We shall write Hp(G) instead of Hp

X+
(G) in this

case. In particular, H2(G) is the subspace of L2(G) with Hilbert basis
X+. We denote by P+ the orthogonal projection L2(G) → H2(G) , and
P− = I − P+.

Of course, the space Hp(G) (as well as the spaces Hp
R(G), BMO(G), and

BMOA(G) considered below) depends on the chosen order in X .

For every u ∈ L2(G,R) there is a unique ũ ∈ L2(G,R) such that ̂̃u(1) = 0
and u + i ũ ∈ H2(G). The linear continuation of the mapping u 7→ ũ to the
complex L2(G) is called a Hilbert transform on G. This operator extends to
a bounded operator ϕ 7→ ϕ̃ on Lp(G) for 1 < p < ∞ (generalized Marcel
Riesz’s inequality), in particular ‖ϕ̃‖2 ≤ ‖ϕ‖2 for every ϕ ∈ L2(G) [27, 8.7],

[24, Theorem 8, Corollary 20]. Let Ff = f̂ be the Fourier transform on G.
Then the next formula holds

̂̃
f = −isgnX+

f̂ ,

where sgnX+
(χ) = 1 for χ ∈ X+ \ {1}, sgnX+

(1) = 0, and sgnX+
(χ) = −1

for χ ∈ X \X+ [24].
Note also that the Hilbert transform is a continuous map from L1(G) to

Lp(G) for 0 < p < 1 (see, e. g., [27, Theorem 8.7.6]).
Definition 2 [9]. We define the space BMO(G) of functions of bounded

mean oscillation on G and its subspace BMOA(G), as follows

BMO(G) := {f + g̃ : f, g ∈ L∞(G)},

BMOA(G) := BMO(G) ∩H1(G),

‖ϕ‖BMO := inf{‖f‖∞ + ‖g‖∞ : ϕ = f + g̃, f, g ∈ L∞(G)}
for ϕ ∈ BMO(G).

Lemma 2. [21, Lemma 1]. The following equalities hold:
1) BMO(G) = P−L

∞(G) + P+L
∞(G), with an equivalent norm

‖ϕ‖∗ := inf{max(‖f1‖∞, ‖g1‖∞) : ϕ = P−f1 + P+g1, f1, g1 ∈ L∞(G)};
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2) BMOA(G) = P+L
∞(G). Moreover, for the norm

‖ϕ‖∗ = inf{‖h‖∞ : ϕ = P+h, h ∈ L∞(G)}

in this space the following inequalities take place: 2

2

3
‖ϕ‖BMO ≤ ‖ϕ‖∗ ≤ 2‖ϕ‖BMO.

Definition 3. [21] We define the space H1
R(G) (the real H1 space on

G) as the completion of the space Pol(G,R) of real-valued trigonometric
polynomials on G with respect to the norm

‖q‖1∗ := ‖P−q‖1 + ‖P+q‖1.

We denote the norm in H1
R(G) by ‖ · ‖1∗, too.

The notation H1
R(G) should not lead to the confusion with Hp

E(G) from
the Definition 1.

Lemma 3 [21, Proposition 1]. (i) Projectors P±, and the Hilbert trans-
form are bounded operators on H1

R(G);
(ii) restrictions P±|Pol(G,R) extend to bounded operators P 1

± from H1
R(G)

to L1(G) and

‖f‖1∗ = ‖P−f‖1∗ + ‖P+f‖1∗ = ‖P 1
−f‖1 + ‖P 1

+f‖1 (f ∈ H1
R(G));

(iii) H1
R(G) = ImP− ∔ ImP+ (the direct sum of closed subspaces);

(iv) ∪p>1L
p(G,R) ⊂ H1

R(G) ⊂ L1(G,R);

(v) ‖f‖∼ := ‖f‖1 + ‖f̃‖1 is an equivalent norm in H1
R(G);

(vi) H1
R(G) = ReH1(G).

In [19] the next definition was proposed.
Definition 4 [19]. Let (Ω, µ) be a measure space, G a topological group,

A : Ω → Aut(G) a measurable map, and Φ a locally µ-integrable function
on Ω. We define the Hausdorff operator with the kernel Φ over the group G
by the formula

(HΦ,Af)(x) =

∫

Ω

Φ(u)f(A(u)(x))dµ(u).

In particular, we get a class of discrete Hausdorff operators of the form

f 7→
∑

u∈Ω

Φ(u)(f ◦A(u))

2Here we correct a typo made in [9, p. 139].
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where Ω is a countable set endowed with the counting measure.
Throughout we denote by L(Y ) the space of linear bounded operators on

a normed space Y .
By [19, Lemma 1] an operator HΦ,A is bounded on Lp(G) (1 ≤ p ≤ ∞)

for a locally compact group G provided Φ(u)(modA(u))−1/p ∈ L1(Ω, µ), and

‖HΦ,A‖L(Lp(G)) ≤
∫

Ω

|Φ(u)|(modA(u))−1/pdµ(u). (1)

Example 1. Let T∞ be the infinite-dimensional torus (the product of a
countably many copies of the circle group) and C := {−1, 1}∞ a Cantor group
endowed by some regular Borel measure µ (e.g., µ is the normalized Haar
measure of the compact group C). The group C acts on T∞ by coordinate-wise
automorphisms A(u)(x) = xu := (x

uj
j )j∈N where u = (u)j∈N, uj ∈ {−1, 1},

and x = (xj)j∈N, xj ∈ T. Thus, we get a Hausdorff operator

HΦf(x) =

∫

C

Φ(u)f(xu)dµ(u).

Since T∞ is unimodular, modA(u) = 1 and so this operator is bounded on
Lp(T∞) (1 ≤ p ≤ ∞) for Φ ∈ L1(µ) and ‖HΦ‖L(Lp(T∞)) ≤ ‖Φ‖L1(µ).

3 Commuting Relations for Hausdorff Oper-

ator

In this section we shall show that Hausdorff operator commutes in some sense
both with the Fourier transform and the Hilbert transform.

Theorem 1 (cf. [16, Theorem 4.4]). (i) Let G be compact (not necessary
connected) Abelian group, f ∈ L1(G), and Φ ∈ L1(µ). Then

(HΦ,Af)
∧ = HΦ,(A∗)−1 f̂ .

(ii) Let G be compact and connected Abelian group, f ∈ L2(G), Φ ∈ L1(µ),
and A(u) ∈ Aut(G)+ for µ-a. e. u ∈ Ω. Then

HΦ,Af̃ = (HΦ,Af)
∼.

Proof. (i) By the Fubini theorem

(HΦ,Af)
∧(χ) =

∫

G

(∫

Ω

Φ(u)f(A(u)(x)dµ(u)

)
χ(x)dν(x)
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=

∫

Ω

Φ(u)

(∫

G

f(A(u)(x)χ(x)dν(x)

)
dµ(u).

Moreover, since G is unimodular, we have modA(u) = 1, and we get putting
y = A(u)(x) that

∫

G

f(A(u)(x)χ(x)dν(x) =

∫

G

f(y)χ(A(u)−1(y))dν(y) = f̂((A(u)∗)−1(χ)).

So,
(HΦ,Af)

∧ = HΦ,(A∗)−1(f∧).

(ii) Note that f̃ ∈ L2(G). Then in view of (i) one has for all χ ∈ X that

F(HΦ,Af̃)(χ) = HΦ,(A∗)−1

̂̃
f(χ) = (HΦ,(A∗)−1(−isgnX+

f̂))(χ)

= −i
∫

Ω

Φ(u)sgnX+
((A∗)−1(χ))f̂((A(u)∗)−1(χ))dµ(u).

Since (A(u)∗)−1 is an order automorphism for µ-a. e. u ∈ Ω, one has
sgnX+

((A(u)∗)−1(χ)) = sgnX+
(χ) a. e. This yields (again by (i)) that

F(HΦ,Af̃)(χ) = −isgnX+
(χ)

∫

Ω

Φ(u)f̂((A(u)∗)−1(χ))dµ(u)

= −isgnX+
(χ)F(HΦ,Af)(χ) = F(HΦ,Af)

∼(χ),

which completes the proof.
Corollary 1. Let Φ ∈ L1(µ) and A(u) ∈ Aut(G)+ for µ-a. e. u ∈ Ω.

Then the range of HΦ,A in the space L2(G) is invariant with respect to the
Hilbert transform.

4 Hausdorff Operators on Spaces Hp
E(G) and

BMOA(G)

The next theorem deals with general compact Abelian groups.
Theorem 2. Let G be compact (not necessary connected) Abelian group,

E ⊂ X, and (A(u)∗)−1 : Ec → Ec for µ-a. e. u ∈ Ω. The Hausdorff operator
HΦ,A is bounded on Hp

E(G) (1 ≤ p ≤ ∞) if Φ ∈ L1(µ). In this case,

‖HΦ,A‖L(Hp

E
) ≤ ‖Φ‖L1(µ).
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Proof. Let Φ ∈ L1(µ). Since G is unimodular, modA(u) = 1. Thus, as
was mentioned in the Introduction, the operator HΦ,A is bounded in Lp(G)
and formula (1) holds with modA(u) = 1. So, it suffices to show that HΦ,A

acts in Hp
E(G). In other wards, it suffices to show that for each f ∈ Hp

E(G)
the Fourier transform of HΦ,Af is concentrated on E. But by the Theorem
1 (i)

(HΦ,Af)
∧(χ) =

∫

Ω

Φ(u)f̂((A(u)∗)−1(χ))dµ(u).

Let χ ∈ Ec. Since f̂ is concentrated on E, we have f̂((A(u)∗)−1(χ)) = 0 for
µ-a. e. u ∈ Ω. It follows that (HΦ,(A)f)

∧(χ) = 0, too. This completes the
proof.

Corollary 2. Let G be compact and connected Abelian group, and
A(u) ∈ Aut(G)+ for µ-a. e. u ∈ Ω. The Hausdorff operator HΦ,A is bounded
on Hp(G) (1 ≤ p ≤ ∞) if and only if Φ ∈ L1(µ). In this case,

‖HΦ,A‖L(Hp) ≤ ‖Φ‖L1(µ).

Proof. Since 1 ∈ Hp(G), the ”only if” part is obvious. Now let Φ ∈ L1(µ).
In our case E = X+. So, it suffices to show that (A(u)∗)−1 : X− → X− for
µ-a. e. u ∈ Ω. Indeed, let χ ∈ X− = X \ X+. Then χ−1 ∈ X+ \ {1} and
therefore (A(u)∗(χ))−1 = A(u)∗(χ−1) ∈ X+ \ {1}. Thus, A(u)∗(χ) ∈ X \X+.
This completes the proof.

From now on, we denote by Y ∗ the dual of the space Y and by B∗ the
adjoint of an operator B ∈ L(Y ).

For the proof of our next theorem we need the following
Theorem A. ([21], Theorem 1). For every ϕ ∈ BMOA(G) the formula

Fϕ(f) =

∫

G

fϕdν

defines a linear functional on H∞(G), and this functional extends uniquely to
a continuous linear functional Fϕ on H1(G). Moreover, the correspondence
ϕ 7→ Fϕ is an isometrical isomorphism of (BMOA(G), ‖ · ‖∗) and H1(G)∗,
and a topological isomorphism of (BMOA(G), ‖ · ‖BMO) and H

1(G)∗.
Theorem 3. Let A(u) ∈ Aut(G)+ for µ-a. e. u ∈ Ω. The Hausdorff

operator HΦ,A is bounded on the space BMOA(G) if and only if Φ ∈ L1(µ).
Moreover,

‖HΦ,A‖L(BMOA) ≤ ‖Φ‖L1(µ).

Proof. Since 1 ∈ BMOA(G), the ”only if” part is obvious. Now let
Φ ∈ L1(µ). In view of Theorem 2 for the proof it suffices to show that

8



HΦ,A = H∗
Φ,A−1

where HΦ,A−1 is considered in H1(G). To this end we shall

employ Theorem A. Let f ∈ H∞(G). Then it is clear thatHΦ,A−1f ∈ H∞(G),
too and for every ϕ ∈ BMOA(G) we have

H∗
Φ,A−1(Fϕ)(f) := Fϕ(HΦ,A−1f) =

∫

G

(∫

Ω

Φ(u)f(A(u)−1(x)dµ(u)

)
ϕ(x)dν(x)

=

∫

Ω

Φ(u)

(∫

G

f(A(u)−1(x)ϕ(x)dν(x)

)
dµ(u).

by the Fubini theorem.
Further, as in the proof of Theorem 1, we get putting y = A(u)(x) that

∫

G

f(A(u)−1(x)ϕ(x)dν(x) =

∫

G

f(y)ϕ(A(u)(y))dν(y).

Thus, (again by the Fubini theorem)

H∗
Φ,A−1(Fϕ)(f) =

∫

G

f(y)

(∫

Ω

Φ(u)ϕ(A(u)(y))dµ(u)

)
dν(y)

=

∫

G

f(y)HΦ,Aϕ(y)dν(y) = Fψ(f),

where ψ = HΦ,Aϕ. Since by Theorem A every continuous linear functional on
H1(G) is uniquely defied by its values on H∞, it follows that H∗

Φ,A−1
(Fϕ) =

Fψ. If we identify (again by Theorem A) Fϕ with ϕ and Fψ with ψ we have

HΦ,Aϕ = H∗
Φ,A−1ϕ,

which completes the proof.
For the next corollary we need the following
Definition 5. [27]. We call a subset E ⊂ X+ lacunary (in the sense of

Rudin) if there is a constant KE such that the number of terms of the set
{ξ ∈ E : χ ≤ ξ ≤ χ2} do not exceed KE for every χ ∈ X+.

Corollary 3. Let the subset E of X+ be lacunary, A(u) ∈ Aut(G)+ for
µ-a. e. u ∈ Ω, and Φ ∈ L1(µ). Then HΦ,A is a bounded operator from H2

E(G)
into (BMOA(G), ‖ · ‖BMO) and

‖HΦ,A‖H2
E
→BMOA ≤ 3

√
KE‖Φ‖L1 .

Proof. Let PolE(G) := spanC(E) be the space of E-polynomials. It is
known [6, Propositiuon 3.14], [23, Lemma 1] that PolE(G) is a dense subspace
of Hp

E(G) for all p ∈ [1,∞). Since E ⊂ X+, we have Hp
E(G) ⊂ Hp(G). Let

9



ϕ ∈ PolE(G). Then ϕ ∈ H1
E(G) ∩ H2(G) and by [21, Theorem 3] one has

ϕ ∈ BMOA(G) and ‖ϕ‖BMO ≤ 3
√
KE‖ϕ‖H2. Now Theorem 3 yields, that

‖HΦ,Aϕ‖BMO ≤ ‖Φ‖L1‖ϕ‖BMO ≤ 3
√
KE‖Φ‖L1‖ϕ‖H2

and the result follows.
In conclusion to this section, we discuss the necessity of the condition in

Corollary 2 of Theorem 2 and Theorem 3.
Proposition 1. Let G be metrizable. Assume in addition to the as-

sumptions of Definition 4 that
∫
E
Φdµ 6= 0 for every measurable E ⊂ Ω,

µ(E) > 0. If the Hausdorff operator HΦ,A acts in H1(G) or BMOA(G) then
A(u) ∈ Aut(G)+ for a. e. u ∈ Ω.

Proof. Since X+ ⊂ BMOA(G) ⊂ H1(G), we have for every χ ∈ X+ and
every ξ ∈ X− = X \X+ by Theorem 1 that

(HΦ,Aχ)
∧(ξ) = (HΦ,(A∗)−1χ̂)(ξ) = 0.

On the other hand, the orthogonality of characters ofG implies that χ̂ = 1{χ},
where 1A stands for the indicator function of a subset A of X . Thus,

0 = (HΦ,(A(u)∗)−11{χ})(ξ) =

∫

E(χ,ξ)

Φ(u)dµ(u),

where

E(χ, ξ) = {u ∈ Ω : (A(u)∗)−1(ξ) = χ} = {u ∈ Ω : A(u)∗(χ) = ξ}.

Therefore µ(E(χ, ξ)) = 0 for an arbitrary χ ∈ X+ and ξ ∈ X−. Moreover,

{u ∈ Ω : A(u)∗ : X+ 9 X+} = ∪{E(χ, ξ) : χ ∈ X+, ξ ∈ X−}.

Since G is metrizable, X is countable (see, e.g., [25, Corollary of Theorem
29]). It follows that A(u)∗ : X+ → X+ for µ-a. e. u, which completes the
proof.

5 Hausdorff Operators on Spaces BMO(G) and

H1
R(G)

Theorem 4. Let A(u) ∈ Aut(G)+ for µ-a. e. u ∈ Ω. The Hausdorff
operator HΦ,A is bounded on BMO(G) if and only if Φ ∈ L1(µ). In this
case,

‖HΦ,A‖L(BMO) ≤ ‖Φ‖L1(µ).
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Proof. The necessity is obvious. Let Φ ∈ L1(µ). Every function ϕ ∈
BMO(G) has the form ϕ = f + g̃ where f, g ∈ L∞(G). Then by Theorem 1

HΦ,Aϕ = HΦ,Af + (HΦ,Ag)
∼.

Note that HΦ,Af,HΦ,Ag ∈ L∞(G). Thus,

‖HΦ,Aϕ‖BMO ≤ ‖HΦ,Af‖∞ + ‖HΦ,Ag‖∞ ≤ ‖Φ‖L1(µ)(‖f‖∞ + ‖g‖∞),

and the result follows.
Below we shall use the following
Theorem B ([21], Theorem 2). For every ϕ ∈ BMO(G,R) the linear

functional

Fϕ(q) =

∫

G

qϕdν (2)

on Pol(G,R) extends uniquely to a continuous linear functional Fϕ on H1
R(G).

Moreover, the correspondence ϕ 7→ Fϕ is an isometrical isomorphism of
(BMO(G,R), ‖·‖∗) and H1

R(G)
∗, and a topological isomorphism of (BMO(G,R),

‖ · ‖BMO) and H
1
R(G)

∗.
Corollary 4. Theorem B is valid with q ∈ L2(G,R) in place of q ∈

Pol(G,R).
Proof. Since Pol(G,R) ⊂ L2(G,R) and Pol(G,R) is dense in H1

R(G),
it suffices to show that the right-hand side in (2) is continuous on the set
L2(G,R) with respect to the H1

R(G) norm. Let (Lemma 2) ϕ = P−g + P+h,
where g, h ∈ L∞(G). Then for every q ∈ L2(G,R) one has that (q is real
valued)

∫

G

qϕdν =

∫

G

P−gqdν +

∫

G

P+hqdν =

∫

G

gP−qdν +

∫

G

hP+qdν.

This yields that
∣∣∣∣
∫

G

qϕdν

∣∣∣∣ ≤ max(‖g‖∞, ‖h‖∞)(‖P−q‖1 + ‖P+q‖1).

So,
∣∣∫
G
qϕdν

∣∣ ≤ ‖ϕ‖∗‖q‖1∗ (we used Lemma 3 and the fact that P 1
±q = P±q

for q ∈ L2(G,R)) and the proof is complete.
Theorem 5. Let A(u) ∈ Aut(G)+ for µ-a. e. u ∈ Ω. The Hausdorff

operator HΦ,A with real valued Φ is bounded on the real Hardy space H1
R(G)

if and only if Φ ∈ L1(µ). Moreover,

‖HΦ,A‖L(H1
R
) ≤ ‖Φ‖L1(µ).
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Proof. As above, the ”only if” part is obvious. Let Φ ∈ L1(µ). We shall
employ Theorem 2 and the fact that H1

R(G) = ReH1(G) (Lemma 3). Let
g ∈ H1

R(G). Then g = f + f where f ∈ H1(G). But since Φ is real, we have

HΦ,Af(x) =

∫

Ω

Φ(u)f(A(u)(x)dµ(u).

Since HΦ,A is linear in L1(G), it follows that

HΦ,Ag = HΦ,Af +HΦ,Af = HΦ,Af +HΦ,Af ∈ ReH1(G) = H1
R(G).

Thus, HΦ,A acts inH1
R(G). Now we shall apply the closed graph theorem. Let

fn → f and HΦ,Afn → g in H1(G). Since there is a continuous embedding
H1

R(G) ⊂ L1(G,R) (Lemma 3), it follows that fn → f and HΦ,Afn → HΦ,Af
in L1(G). Thus, g = HΦ,Af and the proof of the continuity of HΦ,A is
complete.

Finally, due to Corollary 4 as in the proof of Theorem 3 we have H∗
Φ,A =

HΦ,A−1 , where HΦ,A−1 is considered in BMO(G). Then by Theorem 4

‖HΦ,A‖L(H1
R
) = ‖HΦ,A−1‖L(BMO) ≤ ‖Φ‖L1(µ). (3)

Remark 1. It is clear that 1 ∈ H1
R(G) and ‖1‖1∗ = 1. If Φ ≥ 0, we have

HΦ,A1 = ‖Φ‖L1(µ)1. Thus, ‖HΦ,A‖L(H1
R
) = ‖Φ‖L1(µ). Then formula (3) shows

that ‖HΦ,A‖L(BMO) = ‖Φ‖L1(µ), as well. For Φ ≥ 0 similar equalities hold for
the spaces Hp(G) (1 ≤ p ≤ ∞), H1

R(G), and BMOA(G).

6 On the Action of HΦ,A in C(G)

The next simple proposition gives sufficient conditions for boundedness of a
Hausdorff operator in C(G).

Proposition 2. Let G be compact (not necessary connected) Abelian
group, and one of the following two conditions holds:

1) G is first-countable;
2) Ω is a completely regular topological space with a bounded Radon mea-

sure µ, Φ is a bounded and continuous function on Ω, and the map Ω×G →
G, (u, x) 7→ A(u)(x) is continuous.

Then HΦ,A acts in the space C(G) and is bounded if and only if Φ ∈ L1(µ)
and in this case ‖HΦ,A‖ ≤ ‖Φ‖L1(µ).

Proof. The necessity in obvious. In the case 1) the sufficiency follows
from the Lebesgue theorem, and in the case 2) this follows, e. g., from [1,
Chapter IX, §5, Corollary of Proposition 13].

12



The following example shows that the conditions of the previous Propo-
sition are essential, because in general HΦ,A does not act in C(G).

Example 2. Let G = bR be the Bohr compactification of the reals
(see, e. g., [27, Section 1.8]). This means that G is the dual group of the
additive group X := Rd where the group R of reals is endowed with the
discrete topology and the usual order. Then X is the dual group of bR by
the Pontryagin - van Kampen theorem. The map τu(γ) := uγ belongs to
Aut(X) for every u ∈ R, u 6= 0.

For each t ∈ R let t̂(γ) = e−itγ be the corresponding continuous character
of R (γ ∈ R). Then the map β : R → bR, t 7→ t̂ is a continuous isomorphism
of R onto a dense subgroup of bR (see, e. g., [27, 1.8.2]). So we identify t̂
with t ∈ R and consider R as a dense subgroup of bR.

The space AP (R) of uniformly almost periodic functions on R (endowed
with the sup norm) is isometrically isomorphic to C(bR) via the restriction
map C(bR) → AP (R), g 7→ g|R (see, e. g., [27, 1.8.4], [18, Chapter VIII,
§41]).

Let Ω = R, dµ(u) = du, Φ ∈ L1(R). If we assume that the Hausdorff
operator

HΦ,τ∗ug(x) =

∫

R

Φ(u)g(τ ∗u(x))du

acts in C(bR) then the operator

HΦf(t) :=

∫

R

Φ(u)f(ut)du

acts in AP (R).
For the proof it suffices to show that HΦf = (HΦ,τ∗ug)|R, where g ∈

C(bR), f := g|R. But for t ∈ R one has

τ ∗u(t̂)(γ) = t̂(uγ) = e−iutγ = ût(γ) (γ ∈ R).

Thus, τ ∗u(t̂) = ût. It follows that for t ∈ R

HΦ,τ∗ug(t) = HΦ,τ∗ug(t̂) =

∫

R

Φ(u)g(τ ∗u(t̂))du =

∫

R

Φ(u)f(ût)du =

∫

R

Φ(u)f(ut)du

(recall that we identify t̂ with t ∈ R), which completes the proof.
In particular, taking f(t) = e−it, we get that for Φ ∈ L1(R) ∩ C(R) the

Fourier transform Φ̂ belongs to AP (R). But it is known (see, e. g., [10,
Theorem 3]) that in this case the measure Φ(u)du should be discrete, and we
get a contradiction.
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7 Applications to Dirichlet Series

7.1 Ordinary Dirichlet Series

In this subsection we consider the action of a Hausdorff operator on ordinary
Dirichlet series

D =
∞∑

n=1

a(n)

ns
.

Let Z∞ be the additive group of infinite sequences of integers with finite
support, Z∞

+ := {α ∈ Z∞ : ∀kαk ≥ 0}. Since every natural n has the
prime number decomposition n = pα := pα1

1 . . . pαN

N where α ∈ Z∞
+ , and

p = {2, 3, 5, . . .} the set of all primes, one can identify the series D with
the corresponding coefficient function Z∞ � α 7→ a(pα) supported in Z∞

+ . In
this case the action of a Hausdorff operator on D means the action on the
function a(p(·)) and Definition 4 takes the form

(HΦ,τa(p
(·)))(α) =

∫

Ω

Φ(u)a(pτu(α))dµ(u).

(Since the function a(p(·)) is supported in Z∞
+ , one can consider only such

automorphisms τu that τu(α) ∈ Z∞
+ .)

We show that a certain class of such operators acts in the Banach space
D∞ of all sums of ordinary Dirichlet series D which converge and define a
bounded and holomorphic function D(·) on the half-plane {Res > 0} (D∞

is endowed with the supremum norm ‖ · ‖∞ on {Res > 0}). We identify the
function D(·) ∈ D∞ with the coefficient function a(p(·)) as mentioned above
and put ‖a(p(·))‖ := ‖D(·)‖∞.

Theorem 6. Let Φ ∈ L1(µ), and a family (τu)u∈Ω of automorphisms of
Z∞ enjoys the property τu : (Z∞

+ )c → (Z∞
+ )c a.e. u ∈ Ω. Then a Hausdorff

operator HΦ,τ acts in D∞ and ‖HΦ,τ‖L(D∞) ≤ ‖Φ‖L1.
Proof. The group Z∞ can be identified with the dual of the infinite-

dimensional torus T∞ via the map α 7→ χα, where the character χα(t) =
tα := tα1

1 . . . tαN

N and α = (α1, . . . , αN , 0, 0, . . . ) ∈ Z∞.
It is proven in [12] (see also [5, Corollary 5.3] or [26, Theorem 6.2.3, p.

145]) that the map Ψ that takes a function a(p(·)) from D∞ to a function fa
on T∞ with the Fourier transform f̂a(α) = a(pα) (α ∈ Z∞

+ ) is an isometric
isomorphism of Banach spaces D∞ and H∞

Z∞

+
(T∞).

Now Theorem 1 with G = T∞ shows that for α ∈ Z∞
+ one has

(HΦ,(τ∗)−1fa)
∧(α) = (HΦ,τ f̂a)(α) = (HΦ,τa(p

(·)))(α).
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Putting A(u) = (τ ∗u)
−1, p = ∞ in Theorem 2 we get

HΦ,(τ∗)−1fa = fb,

where fb ∈ H∞
Z∞

+
(T∞) and therefore (HΦ,(τ∗)−1fa)

∧ = f̂b. Since f̂b(α) = b(pα)

for all α ∈ Z∞
+ , it follows that

HΦ,τa(p
(·)) = b(p(·)),

i.e. HΦ,τ acts in D∞.
Finally, for the isometric isomorphism Ψ : D∞ → H∞

Z∞

+
(T∞) we have

Ψ−1fa = a(p(·)) for each fa ∈ H∞
Z∞

+
(T∞). So,

ΨHΦ,τΨ
−1fa = ΨHΦ,τa(p

(·)) = Ψb(p(·)) = fb.

Thus ΨHΦ,τΨ
−1 = HΦ,(τ∗)−1 and therefore

‖HΦ,τ‖L(D∞) = ‖HΦ,(τ∗)−1‖L(H∞

Z∞
+

) ≤ ‖Φ‖L1

which completes the proof.
The next corollary is a generalization of a Theorem of Bohr (see, e.g., [27,

p. 224]).
Corollary 5. Let Φ ∈ L1(µ), and a family (τu)u∈Ω of automorphisms of

Z∞ enjoys the property τu : (Z∞
+ )c → (Z∞

+ )c a.e. u ∈ Ω. Let E be the set of
all α ∈ Z∞

+ with
∑
αj = 1. Then for every D(·) ∈ D∞ with the coefficient

function a(p(·)) we have

∑

α∈E

|(HΦ,τa(p
(·)))(α)| ≤ ‖Φ‖L1‖a(p(·))‖.

Proof. By Theorem 6 the function φ on {Res > 0} which is a sum of a
Dirichlet series with the coefficient function

c(p(·)) := HΦ,τa(p
(·))

belongs to D∞. Then by Theorem of Bohr mentioned above

∑

α∈E

|(HΦ,τa(p
(·)))(α)| =

∑

α∈E

|c(pα)| =
∑

p∈p

|c(p)| ≤ ‖φ‖∞ = ‖c(p(·))‖

= ‖HΦ,τa(p
(·))‖∞ ≤ ‖HΦ,τ‖‖a(p(·))‖ ≤ ‖Φ‖L1‖a(p(·))‖

what was required.
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Now we consider the concrete family of automorphisms of Z∞ that meet
the condition of Theorem 6.

Let Ω = Z∞
+ (with the counting measure). For each u ∈ Z∞

+ define the
map σu : Z

∞ → Z∞ as follows

σu(α) = (α1,−u1α1 + α2, . . . ,−uk−1αk−1 + αk, . . . ).

Then σu ∈ Aut(Z∞), and its inverse is given by the rule σ−1
u (β) := α where

β ∈ Z∞ and α ∈ Z∞ satisfies the following recurrent relation: α1 := β1,
αk := βk + uk−1αk−1 (k ≥ 2).

Corollary 6. Let Φ ∈ ℓ1(Z∞
+ ). Then a discrete Hausdorff operator

(HΦ,σa(p
(·)))(α) =

∑

u,σu(α)∈Z∞

+

Φ(u)a(pσu(α)) (4)

acts in D∞ and ‖HΦ,σ‖L(D∞) ≤ ‖Φ‖ℓ1.
Proof. The automorphism σu of Z∞ do maps the set (Z∞

+ )c = {α ∈ Z∞ :
∃kαk < 0} into itself (indeed, if αk is the first negative entry of α ∈ (Z∞

+ )c

and β = σu(α) then βk < 0). It remains to note that in our case the operator
HΦ,σ has the form (4) because the function a(p(·)) is supported in Z∞

+ .
For another result in this direction see Corollary 7 below.

7.2 General Dirichlet Series

To formulate and prove similar results on general Dirichlet series we need
some notation, definitions, and results from [6], [29], and [7].

Let λ = (λn) be a non-negative strictly increasing sequence of real num-
bers tending to ∞ (”a frequency”). The value L(λ) := lim supn→∞(logn)/λn
(the maximal width of the strip of convergence and non absolutely conver-
gence of the corresponding Dirichlet series) is associated to a frequency λ.

A compact Abelian group G is called a λ-Dirichlet group if there is a
continuous homomorphism β : R → G with dense range such that every
continuous character λ̂n = e−iλn· of R has an ”extension” hλn ∈ X (which

then is unique) such that hλn ◦ β = λ̂n.
We consider formal general Dirichlet series

Dλ =

∞∑

n=1

an(D)e−λns.

In [6] the next two spaces were introduced

D∞(λ) := {Dλ : Dλ converge to a function from H∞({Re > 0})},
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and Dext
∞ (λ) of all somewhere convergent λ-Dirichlet series, which have a

holomorphic and bounded extension to the right half-plane {Re > 0}. In
general D∞(λ) ⊆ Dext

∞ (λ) and Theorem 2.2 from [6] gives sufficient conditions
for the equality here. Moreover, if L(λ) < ∞ then the space Dext

∞ (λ) is
complete with respect to the supremum norm over {Re > 0} [29, Theorem
5.1].

Let (G, β) be a λ-Dirichlet group. Following [6] for f ∈ L1(G) we consider
formal general Dirichlet series of the form

Df,λ =

∞∑

n=1

f̂(hλn)e
−λns. (5)

If the space Dext
∞ (λ) is complete one has

Dext
∞ (λ) = D∞(λ) = {Df,λ : f ∈ H∞

E (G) where E = {hλn : n ∈ N}} (6)

(see [7, Theorem 4.1] and references therein).
We introduce a Hausdorff operator on (formal) general Dirichlet series

of the form (5) as follows.
Definition 6. Let (G, β) be a λ-Dirichlet group, Φ ∈ L1(µ), and {τu :

u ∈ Ω} ⊂ Aut(X). For f ∈ L1(G) we put

HΦ,τDf,λ := Dg,λ,

where g = HΦ,(τ∗)−1f .
(This definition is correct, because g ∈ L1(G).)

Since ĝ = HΦ,τ f̂ by Theorem 1, Definition 6 means that

HΦ,τ :

∞∑

n=1

f̂(hλn)e
−λns 7→

∞∑

n=1

(HΦ,τ f̂)(hλn)e
−λns.

Theorem 7. Let (G, β) be a λ-Dirichlet group, E := {hλn : n ∈ N},
τu : Ec → Ec, and Φ ∈ L1(µ). If L(λ) < ∞ then HΦ,τ acts in D∞(λ) and
‖HΦ,τ‖L(D∞) ≤ ‖Φ‖L1.

Proof. Since L(λ) < ∞, Dext
∞ (λ) is complete by [29, Theorem 5.1] and

therefore (6) holds. Let Df,λ ∈ D∞(λ). Then f ∈ H∞
E (G) and the function

g = HΦ,(τ∗)−1f belongs to the space H∞
E (G), too, by Theorem 2. Thus, the

operator HΦ,τ acts in D∞(λ).
Following [6] consider the Bohr map

B : H∞
E (G) → D∞(λ), f 7→ Df,λ.

17



As was mentioned above, in our case Dext
∞ (λ) = D∞(λ). So, Theorem 4.12

from [6] states that B is an isometrical isomorphism of this Banach spaces.
But the equality HΦ,τDf,λ = Dg,λ means that HΦ,τBf = Bg = BHΦ,(τ∗)−1f
for all f ∈ H∞

E (G). In other words,

HΦ,τ = BHΦ,(τ∗)−1B−1.

It follows that ‖HΦ,τ‖L(D∞) = ‖HΦ,(τ∗)−1‖L(H∞

E
) ≤ ‖Φ‖L1 . This completes the

proof.
One can apply Theorem 7 to the space D∞ = D∞((logn)) of ordinary

Dirichlet series and get the next
Corollary 7. Let G = bR be the Bohr compactum, Ω = {1/q : q ∈

N}, and τu(γ) = uγ for u ∈ Ω, γ ∈ R. If Φ ∈ ℓ1(Ω) then the discrete
Hausdorff operator HΦ,τ acts in the space D∞ of ordinary Dirichlet series
and ‖HΦ,τ‖L(D∞) ≤ ‖Φ‖L1.

Proof. First note that by [6, Example 3.19] the Bohr compactum (bR, β)
where β(t) = t̂ is a λ-Dirichlet group for any frequency λ. Further, in our
case λn = log n. If we identify the group Rd with the dual for bR then
E = {hλn : n ∈ N} = {logn : n ∈ N}. Since τu : Ec → Ec for all u ∈ Ω and
L((log n)) = 1, the result follows from Theorem 7.

8 Examples in the Case of Ordered Dual

Example 3. Let G = bR be the Bohr compactification of the reals, X = Rd

as in Example 2. The map τu : X → X, γ 7→ uγ belongs to Aut+(X) for
u ∈ (0,∞). Since (τ ∗u)

∗ = τu [13, (24,41)], it follows that the map A(u) := τ ∗u
belongs to Aut(bR)+ for each u > 0. If µ is some regular Borel measure on
Ω := (0,∞), the corresponding Hausdorff operator on bR is

HΦ,τ∗g(x) =

∫

(0,∞)

Φ(u)g(τ ∗u(x))dµ(u), x ∈ bR

(recall that τ ∗u(x) = x ◦ τu). This operator is bounded on Hp(bR) (1 ≤ p ≤
∞), BMOA(bR), H1

R(bR) (for real valued Φ), and BMO(bR) if and only if
Φ ∈ L1(µ) and its norm does not exceed ‖Φ‖L1(µ).

Example 4. Let G = Td be the d-dimensional torus (d ≥ 2). Let Ω
be the subgroup of the arithmetic group GL(d,Z) which consists of matrices
u = (uij)

d
i,j=1 with det u = ±1. Then every map

A(u)(z) = zu := (zu111 zu122 . . . zu1dd , . . . , zud11 zud22 . . . zuddd )
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(z = (zj)
d
j=1 ∈ Td) belongs to Aut(Td) (see, e.g., [13, (26.18)(h)]). Thus, the

corresponding Hausdorff operator over Td takes the form

(HΦ,Af)(z) =

∫

Ω

Φ(u)f(zu)dµ(u)

where µ stands for some regular Borel measure on Ω (e. g., µ is a Haar
measure of the group Ω).

Every character of Td has the form χn(z) = zn1

1 . . . znd

d , where n =
(n1, . . . , nd) ∈ Zd. Thus, the dual of Td can be identified with the group
Zd via the map χn 7→ n. We endow Zd with the lexicographic order. For this
order the positive cone is

X+ = {n ∈ Zd : n1 > 0} ∪ {n ∈ Zd : n1 = 0, n2 > 0}∪

· · · ∪ {n ∈ Zd : n1 = n2 = . . . = nd−1 = 0, nd > 0} ∪ {0}.
Consider the arithmetic strict lower triangular group T1(d,Z). This group

consists of matrices u ∈ SL(d,Z) such that uii = 1, and uij = 0 for i < j.
Then the map

τu(n) := un⊤ = (n1, u21n1 + n2, . . . , ud1n1 + · · ·+ ud,d−1nd−1 + nd)

(here n⊤ ∈ Zd is a column vector) belongs to Aut+(X). Since

τ ∗u(z) = (z1, z
u21
1 z2, . . . , z

ud1
1 zud22 . . . z

ud,d−1

d−1 zd),

in this case,

(HΦ,τ∗f)(z) =

∫

T1(d,Z)

Φ(u)f(z1, z
u21
1 z2, . . . , z

ud1
1 zud22 . . . z

ud,d−1

d−1 zd)dµ(u)

where µ is some regular Borel measure on T1(d,Z).
This operator is bounded on Hp(Td) (1 ≤ p ≤ ∞), BMOA(Td), H1

R(T
d)

(for real valued Φ), and BMO(Td) if and only if Φ ∈ L1(µ) and its norm
does not exceed ‖Φ‖L1(µ).

Example 5. Let T∞ be the infinite-dimensional torus and X = Z∞
lex —

the additive group of infinite sequences of integers with finite support en-
dowed with the lexicographic order. For this order, by definition the positive
cone is

X+ = {0} ∪ {α ∈ Z∞ : α1 > 0} ∪ {α ∈ Z∞ : α1 = 0, α2 > 0} ∪ . . . .

In other words, X+ consists of sequences whose first non-zero entry is positive
and the zero sequence.
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As above we identify the group Z∞ with the dual group of T∞ via the
map α 7→ χα where χα(z) = zα1

1 zα2

2 . . . (z ∈ T∞).
Let J(∞,Z) consists of infinite lower two-diagonal matrices u of integers

such that uii = 1, uij = 0 for i < j, and uk,1 = · · · = uk,k−2 = 0 for k ≥ 3.
Then the map

τu(α) := uα⊤ = (α1, u21α1 + α2, u32α2 + α3, . . . , uk,k−1αk−1 + αk, . . . )

(u ∈ J(∞,Z), α ∈ Z∞) belongs to Aut+(Z
∞
lex). Since

τ ∗u(z) = zu := (z1, z
u21
1 z2, . . . , z

uk,k−1

k−1 zk, . . . ),

in this case,

(HΦ,τ∗f)(z) =

∫

J(∞,Z)

Φ(u)f(zu)dµ(u)

where µ is some regular Borel measure on J(∞,Z).
This operator is bounded onHp(T∞) (1 ≤ p ≤ ∞), BMOA(T∞),H1

R(T
∞)

(for real valued Φ), and BMO(T∞) if and only if Φ ∈ L1(µ) and its norm
does not exceed ‖Φ‖L1(µ).

Example 6. Let a = (2, 3, 4, . . . ). Then the a-adic solenoid Σa (see,
e.g., [13, (10.12)]) is a compact and connected topological group and is topo-

logically isomorphic to the character group Q̂d of the discrete additive group
X = Qd of rationals [13, (25.4)]. On the other hand, by [13, (25.5)] the group

Q̂d can be identified with some subgroup G of the infinite-dimensional torus
T∞ in the following way. Let the sequence α = (αn)n∈N ∈ T∞ be such that
αn = αn+1

n+1 for all n ∈ N. Then it produces a character of Qd via the rule

χα

(m
n!

)
= αmn (m ∈ Z, n ∈ N).

Moreover, each character of Qd can be identified with such a sequence α and
we get an isomorphism α 7→ χα of the subgroup G := {α} ⊂ T∞ and Σa.
Thus, one can identify the group G with Σa. Further, for each q ∈ Q, q > 0
the map lq(x) = qx is an order automorphism of the group Qd endowed with
the usual order. It follows that the corresponding dual automorphism l∗q of
the dual group G = Σa belongs to Aut(Σa)

+. This yields that for every
measurable map k : Ω → Q+ \ {0} the corresponding Hausdorff operator

HΦ,l∗
k
f(α) =

∫

Ω

Φ(u)f(l∗k(u)(α))dµ(u)

is bounded on Hp(Σa) (1 ≤ p ≤ ∞), BMOA(Σa), H
1
R(Σa) (for real valued

Φ), and BMO(Σa) if and only if Φ ∈ L1(µ) and its norm does not exceed
‖Φ‖L1(µ).
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Example 7. Let G be a compact and connected Abelian group with
totally ordered dual and Ω a compact subgroup of Aut(G) with normalized
Haar measure µ. The generalized shift operator of Delsarte [8], [15, Ch. I, §2]
(also the terms “generalized translation operator of Delsarte”, or “generalized
displacement operator of Delsarte” are used) is defined to be

T hf(x) =

∫

Ω

f(hu(x))dµ(u) (x, h ∈ G).

Then T h = H1Sh, where

H1f(x) :=

∫

Ω

f(u(x))dµ(u)

is a Hausdorff operator on G with Φ ≡ 1, A(u) = u, and Shf(x) := f(hx).
Let u ∈ Aut(G)+ for µ-a. e. u ∈ Ω. Then for every fixed h the generalized
shift operator of Delsarte is bounded on Hp(G) (1 ≤ p ≤ ∞), BMOA(G),
BMO(G), andH1

R(G). In addition, its norm in this spaces equals to µ(Ω) = 1
(Remark 1).
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