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On the F-hypercenter and the intersection of
& -maximal subgroups of a finite group
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Abstract. Let X be a class of groups. A subgroup U of a group G is called X-maximal in G
provided that (a) U € X, and (b) if U <V <G and V € X, then U = V. A chief factor
H/K of G is called X-eccentric in G provided (H/K) x G/Cg(H/K) & X. A group G
is called a quasi-X-group if for every X-eccentric chief factor H/K and every x € G,
x induces an inner automorphism on H/K. We use X* to denote the class of all quasi-
X-groups. In this paper we describe all hereditary saturated formations % containing all
nilpotent groups such that the §*-hypercenter of G coincides with the intersection of all
& -maximal subgroups of G for every group G.

Introduction

Throughout this paper, all groups are finite, G, p and X always denote a finite
group, a prime and a class of groups, respectively.
A formation is a class X of groups with the following properties:

(a) Every homomorphic image of an X-group is an X-group.
(b) If G/M and G/ N are X-groups, then also G/(M N N) € X.
A formation X is said to be

e saturated (respectively solubly saturated) if G € X whenever G/ ®(N) € X for
some normal (respectively for some soluble normal) subgroup N of G.

e hereditary (respectively normally hereditary) if H € X whenever H < G € X
(respectively whenever H < G € X).

A subgroup U of G is called X-maximal in G provided that the following hold
(see [4, p. 288]):

(a) U € X.
b)) U<V <GandV € X,thenU = V.
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We use the symbol Intg (G) to denote the intersection of all X-maximal sub-
groups of G. A chief factor H/K of G is called X-central in G provided that
(H/K)xG/Cg(H/K) € X; otherwise it is X-eccentric (see [11, pp. 127-128]).
A normal subgroup N of G is said to be X-hypercentralin G if N = lor N # 1
and every chief factor of G below N is X-central. The symbol Zx(G) denotes
the X-hypercenter of G, that is, the largest normal X-hypercentral subgroup of G
(see [4, p.389]). If X = N is the class of all nilpotent groups, then Zy (G) is the
hypercenter of G.

It is well known that the intersection of maximal abelian subgroups of G is the
center of G. Baer [1] showed that the intersection of maximal nilpotent subgroups
of G is the hypercenter of G. Nevertheless, the intersection of maximal supersol-
uble subgroups of G does not necessarily coincide with the supersoluble hyper-
center of G (see [13, Example 5.17]). Shemetkov posed the following questions at
the Gomel Algebraic Seminar in 1995:

Question 1. (1) For what non-empty hereditary saturated formations X does the
equality Intx (G) = Zx(G) hold for every group G?

(2) For what non-empty normally hereditary solubly saturated formations X
does the equality Intx (G) = Zx(G) hold for every group G?

The solution to the first question was obtained by Skiba in [12, 13] (for the
soluble case, see also Beidleman and Heineken [3]). It is necessary to note that the
methods of the papers [12, 13] are not applicable for non-saturated or non-heredi-
tary formations. Thus, the answer to the second of Shemetkov’s questions was not
known even in such an important special case, when X = N™* is the class of all
quasinilpotent groups. The aim of this paper is to give the answer to that second
question for some wide class of solubly saturated formations that contains Jt*.

In [8,9] Guo and Skiba introduced the concept of quasi-F-group for a saturated
formation %. Recall that G is called a quasi-%-group if for every &-eccentric chief
factor H/K and every x € G, x induces an inner automorphism on H/K. We use
&* to denote the class of all quasi-&-groups. If )t C & is a normally hereditary
saturated formation, then §* is a normally hereditary solubly saturated formation
by [8, Theorem 2.6].

Our main result is the following:

Theorem 1. Suppose that & is a hereditary saturated formation containing all
nilpotent groups. Then Intg(G) = Zg(G) holds for every group G if and only if
Intg+ (G) = Zg=(G) holds for every group G.

Corollary 1. The intersection of all maximal quasinilpotent subgroups of G is
equal to Zgp« (G).
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Recall [2, Theorem 3.4.5] that every solubly saturated formation § contains
the greatest saturated subformation %; with respect to set inclusion. The proof of
Theorem 1 contains many steps. Two of them are given by the following theorems.

Theorem 2. Let § be a hereditary saturated formation containing all nilpotent
groups. Then (§*); = §.

Recall that C?(G) is the intersection of the centralizers of all abelian p-chief
factors of G (C?(G) = G if G has no such chief factors). Let f(p) be the inter-
section of all formations containing (G/C?(G) | G € ¥ and has an abelian p-chief
factor) and F(p) = (G | G/0,(G) € f(p)).

Theorem 3. Suppose that ¥ is a non-empty solubly saturated formation such that
Intg(G) = Zx(G) holds for every group G, F(p) € & for all p € P and §; is
hereditary. Then Intg, (G) = Zg, (G) holds for every group G.

Remark 1. The function F of the form P U {0} — {formations}, where P is the
set of all primes, such that F(0) = ¥ and F(p) is the same as in Theorem 3 for
every p € IP is called the canonical composition definition of §.

1 Preliminaries

The notation and terminology agree with the books [4,7]. We refer the reader to
these books for the results on formations. Recall that Gg is the soluble radical
of G, NpE = (G| G/0,H(G) € F) is a formation for a formation §, 7(G) is the
set of all prime divisors of G, 7(X) = Jgex 7(G), G is called s-critical for X if
all proper subgroups of G are X-groups and G ¢ X.

A function of the form f : P — {formations} is called a formation function.
Recall [4, Chapter 1V, Definition 3.1] that a formation & is called local if one
has § = (G |G/Cg(H/K) € f(p) for every p € n(H/K) and every chief fac-
tor H/ K of G) for some formation function f. In this case f is called a local def-
inition of . By the Gaschiitz—Lubeseder—Schmid theorem, a formation is local if
and only if it is non-empty and saturated. Recall [4, Chapter IV, Proposition 3.8]
that if % is a local formation, there exists a unique formation function F, defin-
ing &, such that F(p) = N, F(p) € & for every p € P. In this case F is called
the canonical local definition of %. Recall [13] that & is said to satisfy the bound-
ary condition if § contains every group G whose maximal subgroups all belong
to F(p) for some p.

Lemma 1 ([4, Chapter IV, Proposition 3.16]). Let F be the canonical local defini-
tion of a local formation §. Then §& is hereditary if and only if F(p) is hereditary
forall p € P.
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Lemma 2 ([7, Chapter 1, Proposition 1.15]). Let % be a local formation and let F
be its canonical local definition. Then a chief factor H/ K of G is &-central if and
only if G/Cg(H/K) € F(p) forall p € n(H/K).

Theorem 4 ([13, Theorem A)). Let & be a hereditary saturated formation. Then
Intg(G) = Zx(G) holds for every group G if and only if ¥ satisfies the boundary
condition.

Suppose that § is a normally hereditary solubly saturated formation. Then
G € & if and only if G = Zg(G) (see [7, Chapter 1, Theorem 2.6]). Also note
that Zg(G/Z%(G)) ~ 1.

Let f be a function of the form f : PU{0} — {formations}. Recall [7, p. 4] that
CLF(f) =(G|G/Gg € f(0)and G/C?(G) € f(p) forall p € w(G) such that
G has an abelian p-chief factor). If a formation § = CLF( f) for some f, then ¥
is called composition or Baer-local. A formation is solubly saturated if and only
if it is composition (Baer-local) [4, Chapter IV, Theorem 4.17]. If ¥ = CLF(f),
then, as follows from [7, Chapter 5, Lemma 1.8] and [7, Chapter 1, Theorem 1.6],
the function F such that F(0) = & and F(p) = N,(F N f(p)) coincides with
the canonical composition definition of .

Theorem 5 ([7, Chapter 1, Proposition 3.6 (b)]). Suppose that & is a saturated

formation containing all nilpotent groups with the canonical local definition F.
Then §* = CLF(f), where f(0) = & and f(p) = F(p) forall p € P.

Theorem 6 ([2, Theorem 3.4.5]). Let F' be the canonical composition definition
of a non-empty solubly saturated formation §. Then f is a local definition of &y,
where f(p) = F(p) forall p € P.

The following lemma directly follows from [10, Chapter X, Lemma 13.16 (a)].

Lemma 3. Let a normal subgroup N of G be a direct product of isomorphic simple
non-abelian groups. Then N is a direct product of minimal normal subgroups of G.

Lemma 4. Let § be a hereditary saturated formation. Then Zg«(G) < Intg«(G).

Proof. Let % be a hereditary saturated formation with the canonical local defini-
tion F, let M be an F*-maximal subgroup of G and N = MZg«(G). We will
show that N € F*. It is sufficient to show that for every chief factor H/K of N
below Zg«(G) either H/K is F-central in N or every x € N induces an inner
automorphism on H/K. Let 1 = Zg 1 Z; < --- QA Z, = Zg«(G) be a chief
series of G below Zg«(G). Then we may assume that Z; 1 < K < H < Z; for
some i by the Jordan—Holder theorem.
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If Z;/Z;_; is an &-central chief factor of G, then G/Cg(Z;i/Zi—-1) € F(p)
forall p € w(Z;/Z;—1) by Lemma 2. Since F(p) is hereditary by Lemma 1, we
have forall p € n(Z;/Z;—1),

NCG(Zi/Zi-1)/Cc(Zi/Zi—1) =~ N/CN(Zi/Zi-1) € F(p).

Note that N/Cy (H/K) is a quotient group of N/Cn(Z;/Z;i—1). Thus H/K is
an &-central chief factor of N by Lemma 2.

If Z;/Z;_1 is an F-eccentric chief factor of G, then G/Cg(Z;i/Zi—1) € F(p)
for some p € 7(F(p)) by Lemma 2. Hence Z;/Z;_ is an §-eccentric chief fac-
tor of

(Zi/Zi-1) x G/C6(Zi|Zi-1) € F*.

So every element of G/Cg(Z;/Zi—1) induces an inner automorphism on it.
Therefore every element of G induces an inner automorphism on Z;/Z;_1. It
means that Z;/Z;_; is a simple group. Hence it is also a chief factor of N.
From N < G it follows that every element of N induces an inner automorphism
onZ;/Zi_.

Thus N € §*. So N = MZg+(G) = M. Therefore Zg+(G) < M for every
&*-maximal subgroup M of G. o

2 Proofs of the main results

Proof of Theorem 2. Let Nt C § be a hereditary saturated formation, and F the
canonical local definition of &. From Theorem 5 it follows that F™* is the com-
position definition of F*, where F*(0) = §* and F*(p) = F(p) forall p € P.
Since F is the canonical local definition of ¥ and F C §*, we see that F* is
the canonical composition definition of F*. Therefore (F*); is defined by F by
Theorem 6. Thus (F*); = &. o

Proof of Theorem 3. 1f we set F(0) = &, then we may assume that F is the canon-
ical composition definition of % by Remark 1. Now f is a local definition of &y,
where F(p) = f(p) for all p € P by Theorem 6. From f(p) = F(p) € &; and
Ny, f(p) =Ny F(p) = F(p) = f(p) it follows that f is the canonical local def-
inition of ;. Note that f(p) is hereditary for all p € P by Lemma 1.

We show that Intg, (G) = Zg, (G) holds for every group G. Assume the con-
trary. Then there exists an s-critical for f(p) group G & &; for some p € P
by Theorem 4. We may assume that G is a minimal group with this property.
Then one has O,(G) = ®(G) = 1 and G has a unique minimal normal subgroup
by [13, Lemma 2.10]. Note that G is also s-critical for ;.

Assume that G ¢ . Then there exists a simple IF, G-module V' which is faithful
for G by [4, Theorem 10.3B]. Let T = V xG. Note that T ¢ . Let M be a maxi-
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mal subgroupof 7. If V< M,then M = M N VG = V(M N G),where M N G
is a maximal subgroup of G. From M NG € f(p) and f(p) = N, f(p) it fol-
lows that V(M NG) =M € f(p) €& € &. Hence M is an F-maximal sub-
groupof G.If V £ M,then M ~T/V ~ G & &;. Now it is clear that the sets of
all maximal §;-subgroups and all F-maximal subgroups of 7" coincide. Thus V is
the intersection of all §-maximal subgroups of 7. From T >~ V x T/Cr (V) € &
it follows that V' £ Z(T'), a contradiction.

Assume that G € §. Let N be a minimal normal subgroup of G. If N is abelian,
then N is a p-group. Hence G/Cg(N) € F(p) = f(p). So N is an §&;-central
chief factor of G by Lemma 2. Therefore N < Zg, (G). Since N is a unique min-
imal normal subgroup of the s-critical for §; group G and ®(G) = 1, we see that
G/N € &;. Hence G € §;, a contradiction. Thus N is non-abelian.

Let p € w(N). According to [6], there is a Frattini IF, G-module A which is
faithful for G. By the known Gaschiitz theorem [5], there exists a Frattini extension
A > R — G such that

AL O(R) and R/B(R)~G.
Assume that R € . Note that C?(R) < Cr(®(R)). So
R/®(R) = R/Cr(®(R)) >~ G € F(p) = f(p) € &,

a contradiction. Hence R ¢ .

Let M be a maximal subgroup of R. Then M/®(R) is isomorphic to a maxi-
mal subgroup of G. So M/®(R) € f(p). From N, f(p) = f(p) it follows that
M € f(p) C & C &. Hence the sets of maximal and F-maximal subgroups of R
coincide. Thus ®(R) = Zg(R). From R /Z%(R) >~ G € § it follows that R € §,
the final contradiction. o

Proof of Theorem 1. Assume that & is a hereditary saturated formation containing
all nilpotent groups with the canonical local definition F'. Then F(p) is a heredi-
tary formation for all p € P by Lemma 1.

Suppose that Intg(G) = Zg(G) holds for every group G. We will show that
Intg«(G) = Zg~(G) also holds for every group G. Let H/K be a chief factor
of G below Intg+(G).

Step 1. If H/K is an abelian group, then MCg(H/K)/Cg(H/K) € F(p) for
every &*-maximal subgroup M of G.

If H/K is abelian, then it is an elementary abelian p-group for some p and
H/K € §. Let M be an §*-maximal subgroup of G and let

K=Hy<{H, <---J1H,=H
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be a part of a chief series of M. If H;/H;_1 is &-eccentric for some i, then every
element of M induces an inner automorphism on H;/H;_1. So

M/Cy(H;/Hi—1) ~ 1€ F(p).

Therefore H;/H;—1 is an $%-central chief factor of M, a contradiction. Hence
H;/H;_; is an §-central chief factor of M for alli = 1,...,n. It follows from
Lemma 2 that M/Cps(H;/Hi—1) € F(p) foralli = 1,...,n. Therefore we have
M/Cy(H/K) € Ny F(p) = F(p) by [14, Lemma 1]. Now

MCg(H/K)/Cg(H/K) ~ M/Cy(H/K) € F(p)
for every §*-maximal subgroup M of G.

Step 2. If H/K € § is non-abelian, then MCg(H/K)/Cg(H/K) € F(p) for
every p € n(H/K) and every &*-maximal subgroup M of G.

If H/K € & is non-abelian, then it is a direct product of isomorphic non-
abelian simple &-groups. Let M be an §*-maximal subgroup of G. By Lemma 3,
H/K = H;/K x---x H, /K is a direct product of minimal normal subgroups
H;/K of M/K.From H; /K € & it follows that

(Hi/K)/Op p(Hi/K) = Hi/K € F(p)

forall p e m(H;/K) and all i = 1,...,n. Assume that H; /K is an §-eccentric
chief factor of M/ K for some i. It means that every element of M induces an inner
automorphism on H;/K.So M/Cy(H;/K) >~ H; /K € F(p), a contradiction.
Now H; /K isthe F-central chief factor of M/K foralli = 1,...,n. Therefore
M/Cpy(H;i/K) € F(p) forall p € n(H;/K) by Lemma 2. Note that

n
Cyu(H/K) = () Cu(Hi/K).
i=1
Since F(p) is a formation, we have
n
M/ () Cu(Hi/K) = M/Cyp(H/K) € F(p)
i=1

for all p € w(H/K). It means that

MCg(H/K)/Ce(H/K) >~ M/Cyp(H/K) € F(p)
for every p € m(H/K) and every &*-maximal subgroup M of G.

Step 3. If H/K € §, then all §-subgroups of G/ Cg(H/K) are F(p)-groups for
all p € n(H/K).
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Let Q/Cg(H/K) be an §-maximal subgroup of G/Cg(H/K). Then there is
an F-maximal subgroup N of G with NCg(H/K)/Cg(H/K) = Q/Cg(H/K)
by [7, Chapter 1, Lemma 5.7]. From the inclusion & C &* it follows that there
exists an §*-maximal subgroup L of G with N < L. So

Q/Ce(H/K) = LCc(H/K)/Cc(H/K) € F(p)

by Steps 1 and 2. Since F(p) is hereditary, we have Q/Cg(H/K) € F(p). It
means that all F-maximal subgroups of G/Cg(H/K) are F(p)-groups. Hence
all F-subgroups of G/Cg(H/K) are F(p)-groups.

Stepd.If H/K € &, then it is §-central in G.

Assume that H/K is not %-central in G. So G/Cg(H/K) & F(p) for some
p € n(H/K) by Lemma 2. It means that G/Cg (H/K) contains an s-critical for
F(p) subgroup S/Cg(H/K) for some p € n(H/K). Since Intg(G) = Zg(G)
holds for every group G, it follows that S/Cg(H/K) € & by Theorem 4. Hence
S/Cg(H/K) € F(p) by Step 3, a contradiction. Thus H/K is §-central in G.

Step 5. If H/K & & is non-abelian, then every element of G induces an inner
automorphism on it.

Let M be an §*-maximal subgroup of G. Then H/K = H{/K x---x H,/K
is a direct product of minimal normal subgroups H;/K of M/K by Lemma 3.
Since H; /K & & foralli = 1,...,n,itis an §-eccentric chief factor of M for all
i =1,...,n. So every element of M induces an inner automorphism on H;/K
foralli = 1,...,n. Hence every element of M induces an inner automorphism
on H/K = Hi/K x---x H,/K.

It means that for every ¥*-maximal subgroup M of G every element of M
induces an inner automorphism on H /K. Since It C §, (x) € & forevery x € G.
From & C &* it follows that for every element x of G there is an F*-maximal
subgroup M of G with x € M. Thus every element of G induces an inner auto-
morphism on H/K.

Step 6. The final step.

If H/K € &, then from § € ™ and Step 4 it follows that H/K is §*-central
in G. Assume that H/K ¢ %. By Step 5 every element of G induces an inner auto-
morphism on it. Hence H/K is a simple non-abelian group. Since G/Cg(H/K) is
isomorphic to some subgroup of Inn(H/K), we see that G/Cg(H/K) ~ H/K.
It is straightforward to check that H/K x G/Cg(H/K) ~ H/K x H/K. From
H/K e §*itfollows that H/KxG/Cg(H/K) € §*. Hence H/K is §*-central
inG.
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Thus every chief factor of G below Intg«(G) is §F*-central in G. Hence we
have Intg«(G) < Zg+(G). According to Lemma 4, Zg«(G) < Intg«(G). There-
fore Zg+(G) = Intg« (G).

Suppose that Intg«(G) = Zg+(G) holds for every group G. Let F* be the
canonical composition definition of §*. From Theorem 2 and its proof it follows
that (F*); = & and F*(p) C & for all p € P. Hence Intg(G) = Zg(G) holds
for every group G by Theorem 3. o

Now Corollary 1 directly follows from Theorem 1 when § = Jt.

Remark 2. Note that every Ji-central chief factor is central. From Steps 4 and 5
of the proof of Theorem 1 it follows that Zg« (G) is the greatest normal subgroup
of G such that every element of G induces an inner automorphism on every chief
factor of G below Zg+(G).

Final remarks

It is natural to ask if (2) of Question 1 can be reduced to (1) of Question 1. That
is why A.F. Vasil’ev suggested the following question at the Gomel Algebraic
Seminar in 2015:

Question 2. (1) Let $ be a normally hereditary saturated formation. Assume that
Intg(G) = Zg(G) holds for every group G. Describe all normally hereditary sol-
ubly saturated formations § with &; = $ such that Intg(G) = Z%(G) holds for
every group G.

(2) Let § be a normally hereditary solubly saturated formation. Assume that
Intg(G) = Z%(G) holds for every group G. Does Intg, (G) = Zg, (G) hold for
every group G?

The partial answer to part (2) of Question 2 is given in Theorem 3. Note that
the converse of Theorem 3 is false.

Example 1. Recall that i, is the class of groups whose abelian chief factors are
central and non-abelian chief factors are simple groups. It is straightforward to
check that ., is a normally hereditary solubly saturated formation (see [15]).
Note that if F is the canonical composition definition of J¢,, then F(p) = N,
for all p € P. It means that (9.,); = It Recall that Intg3 (G) = Zg (G) holds for
every group G.

Let G >~ D4(2) be a Chevalley orthogonal group and let H be an 9t.,-maximal
subgroup of Aut(G). We may assume that G >~ Inn(G) is a normal subgroup
of Aut(G). Since G is simple and HG/G € 9i.,, we have HG € N, by the def-
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inition of N.,. Hence HG = H. So G lies in the intersection of all 9t.,-maximal
subgroups of Aut(G). It is clear that Aut(G)/ Cay(G)(G) = Aut(G). In case that
G < Zg,, (Aut(G)), we obtain

G x (Aut(G)/Caw(6)(G)) = G x Aut(G) € Nea.

Note that Out(G) >~ S3 & i, is the quotient group of G x Aut(G). Therefore
GXxAut(G) € Nea. Thus G £ Zgy , (Aut(G)) and Intyy  (Aut(G)) # Zagy, (Aut(G)).

Acknowledgments. I am grateful to A.F. Vasil’ev for helpful discussions and to
the referee for his helpful report.
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