On the F-hypercenter and the intersection of F-maximal subgroups of a finite group

Viachaslau I. Murashka

Communicated by Evgenii I. Khukhro

Abstract. Let \mathfrak{X} be a class of groups. A subgroup U of a group G is called \mathfrak{X} -maximal in G provided that (a) $U \in \mathfrak{X}$, and (b) if $U \leq V \leq G$ and $V \in \mathfrak{X}$, then U = V. A chief factor H/K of G is called \mathfrak{X} -eccentric in G provided $(H/K) \rtimes G/C_G(H/K) \notin \mathfrak{X}$. A group G is called a quasi- \mathfrak{X} -group if for every \mathfrak{X} -eccentric chief factor H/K and every $x \in G$, x induces an inner automorphism on H/K. We use \mathfrak{X}^* to denote the class of all quasi- \mathfrak{X} -groups. In this paper we describe all hereditary saturated formations \mathfrak{F} containing all nilpotent groups such that the \mathfrak{F}^* -hypercenter of G coincides with the intersection of all \mathfrak{F}^* -maximal subgroups of G for every group G.

Introduction

Throughout this paper, all groups are finite, G, p and \mathfrak{X} always denote a finite group, a prime and a class of groups, respectively.

A *formation* is a class \mathfrak{X} of groups with the following properties:

- (a) Every homomorphic image of an \mathfrak{X} -group is an \mathfrak{X} -group.
- (b) If G/M and G/N are \mathfrak{X} -groups, then also $G/(M \cap N) \in \mathfrak{X}$.

A formation \mathfrak{X} is said to be

- *saturated* (respectively *solubly saturated*) if $G \in \mathfrak{X}$ whenever $G/\Phi(N) \in \mathfrak{X}$ for some normal (respectively for some soluble normal) subgroup N of G.
- *hereditary* (respectively *normally hereditary*) if $H \in \mathfrak{X}$ whenever $H \leq G \in \mathfrak{X}$ (respectively whenever $H \leq G \in \mathfrak{X}$).

A subgroup U of G is called \mathcal{X} -maximal in G provided that the following hold (see [4, p. 288]):

- (a) $U \in \mathfrak{X}$.
- (b) If $U \leq V \leq G$ and $V \in \mathfrak{X}$, then U = V.

We use the symbol $\operatorname{Int}_{\mathfrak{X}}(G)$ to denote the intersection of all \mathfrak{X} -maximal subgroups of G. A chief factor H/K of G is called \mathfrak{X} -central in G provided that $(H/K) \rtimes G/C_G(H/K) \in \mathfrak{X}$; otherwise it is \mathfrak{X} -eccentric (see [11, pp. 127–128]). A normal subgroup N of G is said to be \mathfrak{X} -hypercentral in G if N = 1 or $N \neq 1$ and every chief factor of G below N is \mathfrak{X} -central. The symbol $Z_{\mathfrak{X}}(G)$ denotes the \mathfrak{X} -hypercenter of G, that is, the largest normal \mathfrak{X} -hypercentral subgroup of G(see [4, p. 389]). If $\mathfrak{X} = \mathfrak{N}$ is the class of all nilpotent groups, then $Z_{\mathfrak{N}}(G)$ is the hypercenter of G.

It is well known that the intersection of maximal abelian subgroups of G is the center of G. Baer [1] showed that the intersection of maximal nilpotent subgroups of G is the hypercenter of G. Nevertheless, the intersection of maximal supersoluble subgroups of G does not necessarily coincide with the supersoluble hypercenter of G (see [13, Example 5.17]). Shemetkov posed the following questions at the Gomel Algebraic Seminar in 1995:

Question 1. (1) For what non-empty hereditary saturated formations \mathfrak{X} does the equality $Int_{\mathfrak{X}}(G) = Z_{\mathfrak{X}}(G)$ hold for every group *G*?

(2) For what non-empty normally hereditary solubly saturated formations \mathfrak{X} does the equality $\operatorname{Int}_{\mathfrak{X}}(G) = Z_{\mathfrak{X}}(G)$ hold for every group *G*?

The solution to the first question was obtained by Skiba in [12, 13] (for the soluble case, see also Beidleman and Heineken [3]). It is necessary to note that the methods of the papers [12, 13] are not applicable for non-saturated or non-hereditary formations. Thus, the answer to the second of Shemetkov's questions was not known even in such an important special case, when $\mathcal{X} = \mathfrak{N}^*$ is the class of all quasinilpotent groups. The aim of this paper is to give the answer to that second question for some wide class of solubly saturated formations that contains \mathfrak{N}^* .

In [8,9] Guo and Skiba introduced the concept of quasi- \mathcal{F} -group for a saturated formation \mathcal{F} . Recall that *G* is called a *quasi-\mathcal{F}-group* if for every \mathcal{F} -eccentric chief factor H/K and every $x \in G$, x induces an inner automorphism on H/K. We use \mathcal{F}^* to denote the class of all quasi- \mathcal{F} -groups. If $\mathfrak{N} \subseteq \mathcal{F}$ is a normally hereditary saturated formation, then \mathcal{F}^* is a normally hereditary solubly saturated formation by [8, Theorem 2.6].

Our main result is the following:

Theorem 1. Suppose that \mathfrak{F} is a hereditary saturated formation containing all nilpotent groups. Then $\operatorname{Int}_{\mathfrak{F}}(G) = Z_{\mathfrak{F}}(G)$ holds for every group G if and only if $\operatorname{Int}_{\mathfrak{F}^*}(G) = Z_{\mathfrak{F}^*}(G)$ holds for every group G.

Corollary 1. The intersection of all maximal quasinilpotent subgroups of G is equal to $Z_{\mathfrak{N}^*}(G)$.

Recall [2, Theorem 3.4.5] that every solubly saturated formation \mathcal{F} contains the greatest saturated subformation \mathcal{F}_l with respect to set inclusion. The proof of Theorem 1 contains many steps. Two of them are given by the following theorems.

Theorem 2. Let \mathfrak{F} be a hereditary saturated formation containing all nilpotent groups. Then $(\mathfrak{F}^*)_l = \mathfrak{F}$.

Recall that $C^{p}(G)$ is the intersection of the centralizers of all abelian *p*-chief factors of G ($C^{p}(G) = G$ if G has no such chief factors). Let f(p) be the intersection of all formations containing $(G/C^{p}(G) | G \in \mathfrak{F}$ and has an abelian *p*-chief factor) and $F(p) = (G | G/O_{p}(G) \in f(p))$.

Theorem 3. Suppose that \mathfrak{F} is a non-empty solubly saturated formation such that $\operatorname{Int}_{\mathfrak{F}}(G) = Z_{\mathfrak{F}}(G)$ holds for every group G, $F(p) \subseteq \mathfrak{F}_l$ for all $p \in \mathbb{P}$ and \mathfrak{F}_l is hereditary. Then $\operatorname{Int}_{\mathfrak{F}_l}(G) = Z_{\mathfrak{F}_l}(G)$ holds for every group G.

Remark 1. The function *F* of the form $\mathbb{P} \cup \{0\} \rightarrow \{\text{formations}\}\)$, where \mathbb{P} is the set of all primes, such that $F(0) = \mathfrak{F}$ and F(p) is the same as in Theorem 3 for every $p \in \mathbb{P}$ is called the *canonical composition definition* of \mathfrak{F}.

1 Preliminaries

The notation and terminology agree with the books [4,7]. We refer the reader to these books for the results on formations. Recall that $G_{\mathfrak{S}}$ is the soluble radical of G, $\mathfrak{N}_p\mathfrak{F} = (G \mid G/\mathcal{O}_p(G) \in \mathfrak{F})$ is a formation for a formation \mathfrak{F} , $\pi(G)$ is the set of all prime divisors of G, $\pi(\mathfrak{X}) = \bigcup_{G \in \mathfrak{X}} \pi(G)$, G is called *s*-critical for \mathfrak{X} if all proper subgroups of G are \mathfrak{X} -groups and $G \notin \mathfrak{X}$.

A function of the form $f : \mathbb{P} \to \{formations\}\$ is called a *formation function*. Recall [4, Chapter IV, Definition 3.1] that a formation \mathfrak{F} is called *local* if one has $\mathfrak{F} = (G \mid G/C_G(H/K) \in f(p)$ for every $p \in \pi(H/K)$ and every chief factor H/K of G) for some formation function f. In this case f is called a *local definition* of \mathfrak{F} . By the Gaschütz–Lubeseder–Schmid theorem, a formation is local if and only if it is non-empty and saturated. Recall [4, Chapter IV, Proposition 3.8] that if \mathfrak{F} is a local formation, there exists a unique formation function F, defining \mathfrak{F} , such that $F(p) = \mathfrak{N}_p F(p) \subseteq \mathfrak{F}$ for every $p \in \mathbb{P}$. In this case F is called the *canonical local definition* of \mathfrak{F}. Recall [13] that \mathfrak{F} is said to satisfy the *boundary condition* if \mathfrak{F} contains every group G whose maximal subgroups all belong to F(p) for some p.

Lemma 1 ([4, Chapter IV, Proposition 3.16]). Let *F* be the canonical local definition of a local formation \mathfrak{F} . Then \mathfrak{F} is hereditary if and only if F(p) is hereditary for all $p \in \mathbb{P}$. **Lemma 2** ([7, Chapter 1, Proposition 1.15]). Let \mathcal{F} be a local formation and let F be its canonical local definition. Then a chief factor H/K of G is \mathcal{F} -central if and only if $G/C_G(H/K) \in F(p)$ for all $p \in \pi(H/K)$.

Theorem 4 ([13, Theorem A]). Let \mathfrak{F} be a hereditary saturated formation. Then $\operatorname{Int}_{\mathfrak{F}}(G) = Z_{\mathfrak{F}}(G)$ holds for every group G if and only if \mathfrak{F} satisfies the boundary condition.

Suppose that \mathfrak{F} is a normally hereditary solubly saturated formation. Then $G \in \mathfrak{F}$ if and only if $G = \mathbb{Z}_{\mathfrak{F}}(G)$ (see [7, Chapter 1, Theorem 2.6]). Also note that $\mathbb{Z}_{\mathfrak{F}}(G/\mathbb{Z}_{\mathfrak{F}}(G)) \simeq 1$.

Let f be a function of the form $f : \mathbb{P} \cup \{0\} \to \{\text{formations}\}$. Recall [7, p. 4] that $\operatorname{CLF}(f) = (G \mid G/G_{\mathfrak{S}} \in f(0) \text{ and } G/C^p(G) \in f(p) \text{ for all } p \in \pi(G) \text{ such that } G$ has an abelian p-chief factor). If a formation $\mathfrak{F} = \operatorname{CLF}(f)$ for some f, then \mathfrak{F} is called *composition* or *Baer-local*. A formation is solubly saturated if and only if it is composition (Baer-local) [4, Chapter IV, Theorem 4.17]. If $\mathfrak{F} = \operatorname{CLF}(f)$, then, as follows from [7, Chapter 5, Lemma 1.8] and [7, Chapter 1, Theorem 1.6], the function F such that $F(0) = \mathfrak{F}$ and $F(p) = \mathfrak{N}_p(\mathfrak{F} \cap f(p))$ coincides with the canonical composition definition of \mathfrak{F} .

Theorem 5 ([7, Chapter 1, Proposition 3.6 (b)]). Suppose that \mathcal{F} is a saturated formation containing all nilpotent groups with the canonical local definition F. Then $\mathcal{F}^* = \text{CLF}(f)$, where $f(0) = \mathcal{F}^*$ and f(p) = F(p) for all $p \in \mathbb{P}$.

Theorem 6 ([2, Theorem 3.4.5]). Let F be the canonical composition definition of a non-empty solubly saturated formation \mathfrak{F} . Then f is a local definition of \mathfrak{F}_l , where f(p) = F(p) for all $p \in \mathbb{P}$.

The following lemma directly follows from [10, Chapter X, Lemma 13.16 (a)].

Lemma 3. Let a normal subgroup N of G be a direct product of isomorphic simple non-abelian groups. Then N is a direct product of minimal normal subgroups of G.

Lemma 4. Let \mathfrak{F} be a hereditary saturated formation. Then $Z_{\mathfrak{F}^*}(G) \leq \operatorname{Int}_{\mathfrak{F}^*}(G)$.

Proof. Let \mathfrak{F} be a hereditary saturated formation with the canonical local definition F, let M be an \mathfrak{F}^* -maximal subgroup of G and $N = MZ_{\mathfrak{F}^*}(G)$. We will show that $N \in \mathfrak{F}^*$. It is sufficient to show that for every chief factor H/K of N below $Z_{\mathfrak{F}^*}(G)$ either H/K is \mathfrak{F} -central in N or every $x \in N$ induces an inner automorphism on H/K. Let $1 = Z_0 \trianglelefteq Z_1 \trianglelefteq \cdots \trianglelefteq Z_n = Z_{\mathfrak{F}^*}(G)$ be a chief series of G below $Z_{\mathfrak{F}^*}(G)$. Then we may assume that $Z_{i-1} \le K \le H \le Z_i$ for some i by the Jordan–Hölder theorem.

If Z_i/Z_{i-1} is an \mathfrak{F} -central chief factor of G, then $G/C_G(Z_i/Z_{i-1}) \in F(p)$ for all $p \in \pi(Z_i/Z_{i-1})$ by Lemma 2. Since F(p) is hereditary by Lemma 1, we have for all $p \in \pi(Z_i/Z_{i-1})$,

$$NC_G(Z_i/Z_{i-1})/C_G(Z_i/Z_{i-1}) \simeq N/C_N(Z_i/Z_{i-1}) \in F(p)$$

Note that $N/C_N(H/K)$ is a quotient group of $N/C_N(Z_i/Z_{i-1})$. Thus H/K is an \mathfrak{F} -central chief factor of N by Lemma 2.

If Z_i/Z_{i-1} is an \mathfrak{F} -eccentric chief factor of G, then $G/C_G(Z_i/Z_{i-1}) \notin F(p)$ for some $p \in \pi(F(p))$ by Lemma 2. Hence Z_i/Z_{i-1} is an \mathfrak{F} -eccentric chief factor of

$$(Z_i/Z_{i-1}) \rtimes G/C_G(Z_i/Z_{i-1}) \in \mathfrak{F}^*.$$

So every element of $G/C_G(Z_i/Z_{i-1})$ induces an inner automorphism on it. Therefore every element of *G* induces an inner automorphism on Z_i/Z_{i-1} . It means that Z_i/Z_{i-1} is a simple group. Hence it is also a chief factor of *N*. From $N \leq G$ it follows that every element of *N* induces an inner automorphism on Z_i/Z_{i-1} .

Thus $N \in \mathfrak{F}^*$. So $N = M\mathbb{Z}_{\mathfrak{F}^*}(G) = M$. Therefore $\mathbb{Z}_{\mathfrak{F}^*}(G) \leq M$ for every \mathfrak{F}^* -maximal subgroup M of G.

2 **Proofs of the main results**

Proof of Theorem 2. Let $\mathfrak{N} \subseteq \mathfrak{F}$ be a hereditary saturated formation, and F the canonical local definition of \mathfrak{F} . From Theorem 5 it follows that F^* is the composition definition of \mathfrak{F}^* , where $F^*(0) = \mathfrak{F}^*$ and $F^*(p) = F(p)$ for all $p \in \mathbb{P}$. Since F is the canonical local definition of \mathfrak{F} and $\mathfrak{F} \subseteq \mathfrak{F}^*$, we see that F^* is the canonical composition definition of \mathfrak{F}^* . Therefore $(\mathfrak{F}^*)_l$ is defined by F by Theorem 6. Thus $(\mathfrak{F}^*)_l = \mathfrak{F}$.

Proof of Theorem 3. If we set $F(0) = \mathfrak{F}$, then we may assume that F is the canonical composition definition of \mathfrak{F} by Remark 1. Now f is a local definition of \mathfrak{F}_l , where F(p) = f(p) for all $p \in \mathbb{P}$ by Theorem 6. From $f(p) = F(p) \subseteq \mathfrak{F}_l$ and $\mathfrak{N}_p f(p) = \mathfrak{N}_p F(p) = F(p) = f(p)$ it follows that f is the canonical local definition of \mathfrak{F}_l . Note that f(p) is hereditary for all $p \in \mathbb{P}$ by Lemma 1.

We show that $\operatorname{Int}_{\mathfrak{F}_l}(G) = Z_{\mathfrak{F}_l}(G)$ holds for every group *G*. Assume the contrary. Then there exists an *s*-critical for f(p) group $G \notin \mathfrak{F}_l$ for some $p \in \mathbb{P}$ by Theorem 4. We may assume that *G* is a minimal group with this property. Then one has $O_p(G) = \Phi(G) = 1$ and *G* has a unique minimal normal subgroup by [13, Lemma 2.10]. Note that *G* is also *s*-critical for \mathfrak{F}_l .

Assume that $G \notin \mathfrak{F}$. Then there exists a simple $\mathbb{F}_p G$ -module V which is faithful for G by [4, Theorem 10.3B]. Let $T = V \rtimes G$. Note that $T \notin \mathfrak{F}$. Let M be a maxi-

mal subgroup of T. If $V \leq M$, then $M = M \cap VG = V(M \cap G)$, where $M \cap G$ is a maximal subgroup of G. From $M \cap G \in f(p)$ and $f(p) = \mathfrak{N}_p f(p)$ it follows that $V(M \cap G) = M \in f(p) \subseteq \mathfrak{F}_l \subseteq \mathfrak{F}$. Hence M is an \mathfrak{F} -maximal subgroup of G. If $V \not\leq M$, then $M \simeq T/V \simeq G \notin \mathfrak{F}_l$. Now it is clear that the sets of all maximal \mathfrak{F}_l -subgroups and all \mathfrak{F} -maximal subgroups of T coincide. Thus V is the intersection of all \mathfrak{F} -maximal subgroups of T. From $T \simeq V \rtimes T/C_T(V) \notin \mathfrak{F}$ it follows that $V \not\leq Z_{\mathfrak{F}}(T)$, a contradiction.

Assume that $G \in \mathfrak{F}$. Let *N* be a minimal normal subgroup of *G*. If *N* is abelian, then *N* is a *p*-group. Hence $G/C_G(N) \in F(p) = f(p)$. So *N* is an \mathfrak{F}_l -central chief factor of *G* by Lemma 2. Therefore $N \leq \mathbb{Z}_{\mathfrak{F}_l}(G)$. Since *N* is a unique minimal normal subgroup of the *s*-critical for \mathfrak{F}_l group *G* and $\Phi(G) = 1$, we see that $G/N \in \mathfrak{F}_l$. Hence $G \in \mathfrak{F}_l$, a contradiction. Thus *N* is non-abelian.

Let $p \in \pi(N)$. According to [6], there is a Frattini $\mathbb{F}_p G$ -module A which is faithful for G. By the known Gaschütz theorem [5], there exists a Frattini extension $A \rightarrow R \twoheadrightarrow G$ such that

$$A \stackrel{G}{\simeq} \Phi(R)$$
 and $R/\Phi(R) \simeq G$.

Assume that $R \in \mathfrak{F}$. Note that $C^p(R) \leq C_R(\Phi(R))$. So

$$R/\Phi(R) = R/C_R(\Phi(R)) \simeq G \in F(p) = f(p) \subseteq \mathfrak{F}_l,$$

a contradiction. Hence $R \notin \mathfrak{F}$.

Let *M* be a maximal subgroup of *R*. Then $M/\Phi(R)$ is isomorphic to a maximal subgroup of *G*. So $M/\Phi(R) \in f(p)$. From $\mathfrak{N}_p f(p) = f(p)$ it follows that $M \in f(p) \subseteq \mathfrak{F}_l \subseteq \mathfrak{F}$. Hence the sets of maximal and \mathfrak{F} -maximal subgroups of *R* coincide. Thus $\Phi(R) = \mathbb{Z}_{\mathfrak{F}}(R)$. From $R/\mathbb{Z}_{\mathfrak{F}}(R) \simeq G \in \mathfrak{F}$ it follows that $R \in \mathfrak{F}$, the final contradiction.

Proof of Theorem 1. Assume that \mathfrak{F} is a hereditary saturated formation containing all nilpotent groups with the canonical local definition *F*. Then *F*(*p*) is a hereditary formation for all $p \in \mathbb{P}$ by Lemma 1.

Suppose that $\operatorname{Int}_{\mathfrak{F}}(G) = Z_{\mathfrak{F}}(G)$ holds for every group *G*. We will show that $\operatorname{Int}_{\mathfrak{F}^*}(G) = Z_{\mathfrak{F}^*}(G)$ also holds for every group *G*. Let H/K be a chief factor of *G* below $\operatorname{Int}_{\mathfrak{F}^*}(G)$.

Step 1. If H/K is an abelian group, then $MC_G(H/K)/C_G(H/K) \in F(p)$ for every \mathcal{F}^* -maximal subgroup M of G.

If H/K is abelian, then it is an elementary abelian *p*-group for some *p* and $H/K \in \mathfrak{F}$. Let *M* be an \mathfrak{F}^* -maximal subgroup of *G* and let

$$K = H_0 \trianglelefteq H_1 \trianglelefteq \cdots \trianglelefteq H_n = H$$

be a part of a chief series of M. If H_i/H_{i-1} is \mathfrak{F} -eccentric for some i, then every element of M induces an inner automorphism on H_i/H_{i-1} . So

$$M/C_M(H_i/H_{i-1}) \simeq 1 \in F(p).$$

Therefore H_i/H_{i-1} is an \mathfrak{F} -central chief factor of M, a contradiction. Hence H_i/H_{i-1} is an \mathfrak{F} -central chief factor of M for all i = 1, ..., n. It follows from Lemma 2 that $M/C_M(H_i/H_{i-1}) \in F(p)$ for all i = 1, ..., n. Therefore we have $M/C_M(H/K) \in \mathfrak{N}_p F(p) = F(p)$ by [14, Lemma 1]. Now

$$MC_G(H/K)/C_G(H/K) \simeq M/C_M(H/K) \in F(p)$$

for every \mathcal{F}^* -maximal subgroup M of G.

Step 2. If $H/K \in \mathfrak{F}$ is non-abelian, then $MC_G(H/K)/C_G(H/K) \in F(p)$ for every $p \in \pi(H/K)$ and every \mathfrak{F}^* -maximal subgroup M of G.

If $H/K \in \mathfrak{F}$ is non-abelian, then it is a direct product of isomorphic nonabelian simple \mathfrak{F} -groups. Let M be an \mathfrak{F}^* -maximal subgroup of G. By Lemma 3, $H/K = H_1/K \times \cdots \times H_n/K$ is a direct product of minimal normal subgroups H_i/K of M/K. From $H_i/K \in \mathfrak{F}$ it follows that

$$(H_i/K)/\mathcal{O}_{p',p}(H_i/K) \simeq H_i/K \in F(p)$$

for all $p \in \pi(H_i/K)$ and all i = 1, ..., n. Assume that H_i/K is an \mathfrak{F} -eccentric chief factor of M/K for some i. It means that every element of M induces an inner automorphism on H_i/K . So $M/C_M(H_i/K) \simeq H_i/K \in F(p)$, a contradiction.

Now H_i/K is the *F*-central chief factor of M/K for all i = 1, ..., n. Therefore $M/C_M(H_i/K) \in F(p)$ for all $p \in \pi(H_i/K)$ by Lemma 2. Note that

$$C_M(H/K) = \bigcap_{i=1}^n C_M(H_i/K).$$

Since F(p) is a formation, we have

$$M/\bigcap_{i=1}^{n} C_M(H_i/K) = M/C_M(H/K) \in F(p)$$

for all $p \in \pi(H/K)$. It means that

$$MC_G(H/K)/C_G(H/K) \simeq M/C_M(H/K) \in F(p)$$

for every $p \in \pi(H/K)$ and every \mathfrak{F}^* -maximal subgroup M of G.

Step 3. If $H/K \in \mathfrak{F}$, then all \mathfrak{F} -subgroups of $G/C_G(H/K)$ are F(p)-groups for all $p \in \pi(H/K)$.

Let $Q/C_G(H/K)$ be an \mathfrak{F} -maximal subgroup of $G/C_G(H/K)$. Then there is an \mathfrak{F} -maximal subgroup N of G with $NC_G(H/K)/C_G(H/K) = Q/C_G(H/K)$ by [7, Chapter 1, Lemma 5.7]. From the inclusion $\mathfrak{F} \subseteq \mathfrak{F}^*$ it follows that there exists an \mathfrak{F}^* -maximal subgroup L of G with $N \leq L$. So

$$Q/C_G(H/K) \le LC_G(H/K)/C_G(H/K) \in F(p)$$

by Steps 1 and 2. Since F(p) is hereditary, we have $Q/C_G(H/K) \in F(p)$. It means that all \mathfrak{F} -maximal subgroups of $G/C_G(H/K)$ are F(p)-groups. Hence all \mathfrak{F} -subgroups of $G/C_G(H/K)$ are F(p)-groups.

Step 4. If $H/K \in \mathcal{F}$, then it is \mathcal{F} -central in G.

Assume that H/K is not \mathfrak{F} -central in G. So $G/C_G(H/K) \notin F(p)$ for some $p \in \pi(H/K)$ by Lemma 2. It means that $G/C_G(H/K)$ contains an *s*-critical for F(p) subgroup $S/C_G(H/K)$ for some $p \in \pi(H/K)$. Since $\operatorname{Int}_{\mathfrak{F}}(G) = \mathbb{Z}_{\mathfrak{F}}(G)$ holds for every group G, it follows that $S/C_G(H/K) \in \mathfrak{F}$ by Theorem 4. Hence $S/C_G(H/K) \in F(p)$ by Step 3, a contradiction. Thus H/K is \mathfrak{F} -central in G.

Step 5. If $H/K \notin \mathcal{F}$ is non-abelian, then every element of G induces an inner automorphism on it.

Let *M* be an \mathfrak{F}^* -maximal subgroup of *G*. Then $H/K = H_1/K \times \cdots \times H_n/K$ is a direct product of minimal normal subgroups H_i/K of M/K by Lemma 3. Since $H_i/K \notin \mathfrak{F}$ for all i = 1, ..., n, it is an \mathfrak{F} -eccentric chief factor of *M* for all i = 1, ..., n. So every element of *M* induces an inner automorphism on H_i/K for all i = 1, ..., n. Hence every element of *M* induces an inner automorphism on $H/K = H_1/K \times \cdots \times H_n/K$.

It means that for every \mathfrak{F}^* -maximal subgroup M of G every element of M induces an inner automorphism on H/K. Since $\mathfrak{N} \subseteq \mathfrak{F}, \langle x \rangle \in \mathfrak{F}$ for every $x \in G$. From $\mathfrak{F} \subseteq \mathfrak{F}^*$ it follows that for every element x of G there is an \mathfrak{F}^* -maximal subgroup M of G with $x \in M$. Thus every element of G induces an inner automorphism on H/K.

Step 6. The final step.

If $H/K \in \mathfrak{F}$, then from $\mathfrak{F} \subseteq \mathfrak{F}^*$ and Step 4 it follows that H/K is \mathfrak{F}^* -central in *G*. Assume that $H/K \notin \mathfrak{F}$. By Step 5 every element of *G* induces an inner automorphism on it. Hence H/K is a simple non-abelian group. Since $G/C_G(H/K)$ is isomorphic to some subgroup of $\operatorname{Inn}(H/K)$, we see that $G/C_G(H/K) \simeq H/K$. It is straightforward to check that $H/K \rtimes G/C_G(H/K) \simeq H/K \times H/K$. From $H/K \in \mathfrak{F}^*$ it follows that $H/K \rtimes G/C_G(H/K) \in \mathfrak{F}^*$. Hence H/K is \mathfrak{F}^* -central in *G*. Thus every chief factor of G below $\operatorname{Int}_{\mathfrak{F}^*}(G)$ is \mathfrak{F}^* -central in G. Hence we have $\operatorname{Int}_{\mathfrak{F}^*}(G) \leq Z_{\mathfrak{F}^*}(G)$. According to Lemma 4, $Z_{\mathfrak{F}^*}(G) \leq \operatorname{Int}_{\mathfrak{F}^*}(G)$. Therefore $Z_{\mathfrak{F}^*}(G) = \operatorname{Int}_{\mathfrak{F}^*}(G)$.

Suppose that $\operatorname{Int}_{\mathfrak{F}^*}(G) = Z_{\mathfrak{F}^*}(G)$ holds for every group *G*. Let F^* be the canonical composition definition of \mathfrak{F}^* . From Theorem 2 and its proof it follows that $(\mathfrak{F}^*)_l = \mathfrak{F}$ and $F^*(p) \subseteq \mathfrak{F}$ for all $p \in \mathbb{P}$. Hence $\operatorname{Int}_{\mathfrak{F}}(G) = Z_{\mathfrak{F}}(G)$ holds for every group *G* by Theorem 3.

Now Corollary 1 directly follows from Theorem 1 when $\mathfrak{F} = \mathfrak{N}$.

Remark 2. Note that every \mathfrak{N} -central chief factor is central. From Steps 4 and 5 of the proof of Theorem 1 it follows that $Z_{\mathfrak{N}^*}(G)$ is the greatest normal subgroup of *G* such that every element of *G* induces an inner automorphism on every chief factor of *G* below $Z_{\mathfrak{N}^*}(G)$.

Final remarks

It is natural to ask if (2) of Question 1 can be reduced to (1) of Question 1. That is why A.F. Vasil'ev suggested the following question at the Gomel Algebraic Seminar in 2015:

Question 2. (1) Let \mathfrak{H} be a normally hereditary saturated formation. Assume that $\operatorname{Int}_{\mathfrak{H}}(G) = Z_{\mathfrak{H}}(G)$ holds for every group *G*. Describe all normally hereditary solubly saturated formations \mathfrak{F} with $\mathfrak{F}_l = \mathfrak{H}$ such that $\operatorname{Int}_{\mathfrak{F}}(G) = Z_{\mathfrak{F}}(G)$ holds for every group *G*.

(2) Let \mathfrak{F} be a normally hereditary solubly saturated formation. Assume that $\operatorname{Int}_{\mathfrak{F}}(G) = \operatorname{Z}_{\mathfrak{F}}(G)$ holds for every group *G*. Does $\operatorname{Int}_{\mathfrak{F}_l}(G) = \operatorname{Z}_{\mathfrak{F}_l}(G)$ hold for every group *G*?

The partial answer to part (2) of Question 2 is given in Theorem 3. Note that the converse of Theorem 3 is false.

Example 1. Recall that \mathfrak{N}_{ca} is the class of groups whose abelian chief factors are central and non-abelian chief factors are simple groups. It is straightforward to check that \mathfrak{N}_{ca} is a normally hereditary solubly saturated formation (see [15]). Note that if *F* is the canonical composition definition of \mathfrak{N}_{ca} , then $F(p) = \mathfrak{N}_p$ for all $p \in \mathbb{P}$. It means that $(\mathfrak{N}_{ca})_l = \mathfrak{N}$. Recall that $\operatorname{Int}_{\mathfrak{N}}(G) = Z_{\mathfrak{N}}(G)$ holds for every group *G*.

Let $G \simeq D_4(2)$ be a Chevalley orthogonal group and let H be an \mathfrak{N}_{ca} -maximal subgroup of $\operatorname{Aut}(G)$. We may assume that $G \simeq \operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$. Since G is simple and $HG/G \in \mathfrak{N}_{ca}$, we have $HG \in \mathfrak{N}_{ca}$ by the def-

inition of \mathfrak{N}_{ca} . Hence HG = H. So G lies in the intersection of all \mathfrak{N}_{ca} -maximal subgroups of $\operatorname{Aut}(G)$. It is clear that $\operatorname{Aut}(G)/C_{\operatorname{Aut}(G)}(G) \simeq \operatorname{Aut}(G)$. In case that $G \leq \mathbb{Z}_{\mathfrak{N}_{ca}}(\operatorname{Aut}(G))$, we obtain

$$G \rtimes (\operatorname{Aut}(G)/C_{\operatorname{Aut}(G)}(G)) \simeq G \rtimes \operatorname{Aut}(G) \in \mathfrak{N}_{\operatorname{ca}}.$$

Note that $\operatorname{Out}(G) \simeq S_3 \notin \mathfrak{N}_{ca}$ is the quotient group of $G \rtimes \operatorname{Aut}(G)$. Therefore $G \rtimes \operatorname{Aut}(G) \notin \mathfrak{N}_{ca}$. Thus $G \not\leq \mathbb{Z}_{\mathfrak{N}_{ca}}(\operatorname{Aut}(G))$ and $\operatorname{Int}_{\mathfrak{N}_{ca}}(\operatorname{Aut}(G)) \neq \mathbb{Z}_{\mathfrak{N}_{ca}}(\operatorname{Aut}(G))$.

Acknowledgments. I am grateful to A. F. Vasil'ev for helpful discussions and to the referee for his helpful report.

Bibliography

- R. Baer, Group elements of prime power index, *Trans. Amer. Math. Soc.* 75 (1953), 20–47.
- [2] A. Ballester-Bolinches and L. M. Ezquerro, *Classes of Finite Groups*, Math. Appl. (Springer) 584, Springer, Dordrecht, 2006.
- [3] J. C. Beidleman and H. Heineken, A note on intersections of maximal *F*-subgroups, J. Algebra 333 (2011), 120–127.
- [4] K. Doerk and T. Hawkes, *Finite Soluble Groups*, De Gruyter Exp. Math. 4, De Gruyter, Berlin, 1992.
- [5] W. Gaschütz, Über modulare Darstellungen endlicher Gruppen, die von freien Gruppen induziert werden, *Math. Z.* 60 (1954), 274–286.
- [6] R. L. Griess and P. Schmid, The Frattini module, Arch. Math. (Basel) 30 (1978), no. 3, 256–266.
- [7] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg, 2015.
- [8] W. Guo and A. N. Skiba, On finite quasi-*F*-groups, *Comm. Algebra* 37 (2009), no. 2, 470–481.
- [9] W. Guo and A. N. Skiba, On some classes of finite quasi-*F*-groups, J. Group Theory 12 (2009), no. 3, 407–417.
- [10] B. Huppert and N. Blackburn, *Finite Groups. III*, Grundlehren Math. Wiss. 243, Springer, Berlin, 1982.
- [11] L. A. Shemetkov and A. N. Skiba, *Formations of Algebraic Systems* (in Russian), Mod. Algebra, "Nauka", Moscow, 1989.
- [12] A. N. Skiba, On the intersection of all maximal *F*-subgroups of a finite group, J. Algebra 343 (2011), 173–182.

- [13] A. N. Skiba, On the *F*-hypercentre and the intersection of all *F*-maximal subgroups of a finite group, *J. Pure Appl. Algebra* **216** (2012), no. 4, 789–799.
- [14] A. F. Vasil'ev and T. I. Vasilyeva, On finite groups whose principal factors are simple groups, *Russ. Math.* 41 (1997), no. 11, 8–12.
- [15] V. A. Vedernikov, Some classes of finite groups (in Russian), *Dokl. Akad. Nauk BSSR* 32 (1988), no. 10, 872–875, 956.

Received May 10, 2017; revised September 20, 2017.

Author information

Viachaslau I. Murashka, Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University, Gomel 246019, Belarus. E-mail: mvimath@yandex.ru