—ИНФОРМАТИКА-

УДК 681.3.06:624.131

СИСТЕМНЫЙ АНАЛИЗ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ГРУНТОВОГО ОСНОВАНИЯ ПРИ ОПТИМИЗАЦИИ ПАРАМЕТРОВ ПОСТРОЕНИЯ СВАИ РИТ

В.Е. Быховцев, В.С. Смородин, Ю.Д. Бондарева

Гомельский государственный университет им. Ф. Скорины

SYSTEM ANALYSIS OF THE MATHEMATICAL MODEL OF GROUND BASIS AT THE OPTIMIZATION OF PARAMETERS OF BUILDING RIT-PILE

V.E. Bykhovtsev, V.S. Smorodin, Yu.D. Bondareva

F. Scorina Gomel State University

На основе разработки математической модели сложной системы, как многопараметрического образа объекта исследования, методом системного анализа получены условия построения РИТ-сваи оптимальной материалоёмкости под заданную нагрузку.

Ключевые слова: многопараметрический образ, конечное множество математических моделей, грунтовые основания, РИТ-сваи, оптимизация материалоемкости.

Based on the development of a mathematical model of a complex system, as a multiparameter image of an object of investigation, the conditions of constructing a RIT-pile of optimal material capacity for a given load were obtained by the method of system analysis.

Keywords: multiparametric image, finite set of mathematical models, soil bases, RIT-piles, optimization of material consumption.

1 Особенности объекта моделирования

Устойчивость грунтовых оснований фундаментов зданий, как известно, в значительной мере зависит от уровня контакта конструктивных элементов фундамента с грунтовым основанием, что является определяющим фактором при расчете свай, устроенных с применением разрядноимпульсной технологии (РИТ-свай) [1], [2].

При математическом моделировании соответствующих деформационных процессов в твердых деформируемых средах [2], [3] такие системы грунтов и фундаментов характеризуются наиболее высокой степенью связности. В физическом плане РИТ-свая состоит из центральной части (прямой бетонный стержень длинной L см и диаметром d_c см) и уширений (кольцевые элементы с диаметром $d_{yu} > d_c$) высотой $h_{yu} = d_{yu}$. Количество уширений $n \ge 1$, $n_{\text{max}} = L / h_{yu}$, в этом случае расстояние между уширениями отсутствует. Вокруг уширений при резонансно-импульсной обработке грунтового основания образуются зоны уплотнения. Особенности конструктивной формы РИТ-сваи и возникающие уплотнения грунта в зонах резонансно-импульсной обработки (зоны РИО) значительно повышают несущую способность физической системы в целом.

Следовательно, возникают проблемные задачи по определению рациональной конструктивной формы РИТ-сваи и физико-механических характеристик измененного состояния грунта в зонах РИО. В рамках данной статьи исследуются условия построения РИТ-сваи минимальной материалоёмкости под заданную нагрузку на основе построения математической модели сложной системы как многопараметрического образа объекта исследования, представленного конечным множеством математических моделей, каждая из которых отражает конкретную группу свойств исходной твердой деформируемой среды.

2 Основы методики исследования материалоёмкости РИТ-сваи

В формализованной постановке поставленная задача классифицируется как краевая задача нелинейной математической физики с краевыми условиями Дирихле – Неймана [4]. Это может быть осесимметричная задача с особенностями, обусловленными конструктивной формой несущего элемента деформируемой системы. В качестве такого элемента в настоящей работе рассматривается свая, устроенная методом резонансно-импульсной технологии – РИТ-свая. При условии $n = n_{max}$ РИТ-свая может рассматриваться как прямая цилиндрическая свая с радиусом ствола $r_0 = d_{yuu}/2$.

Анализ вычисленных значений горизонтальных U и вертикальных W составляющих перемещений грунтового основания прямой цилиндрической сваи показал, что выше плоскости конца сваи для деформаций имеют место условия

$$\varepsilon_r = \varepsilon_{\theta} = \varepsilon_z = 0, \ \gamma_{rz} = \frac{\partial W}{\partial r},$$

© Быховцев В.Е., Смородин В.С., Бондарева Ю.Д., 2018

и, как следствие,

$$U|_{z\leq L} = (0.01 \div 0.001)W,$$

т. е. смещения грунта вокруг ствола сваи W = f(r), это значит, что вокруг ствола сваи выше плоскости её конца существует, так называемый, телескопический сдвиг грунта. При телескопическом сдвиге U = 0, W = f(r) и состояние равновесия исследуемой системы можно представить только одним уравнением [5], [6]:

$$\frac{\partial^2 W}{\partial r^2} + \frac{1}{r} \frac{\partial W}{\partial r} = 0$$

или в более компактной форме

$$\frac{\partial}{\partial r} \left(r \frac{\partial w}{\partial r} \right) = 0. \tag{2.1}$$

Решение уравнения (2.1) должно отвечать и физическим условиям задачи, т. е. в решении должны содержаться физические параметры сваи и физико-механические характеристики грунтового основания. Решение в виде:

$$W = c_1 \ln \frac{c_2}{r}, \ c_1 > 0, \ c_2 > r$$
 (2.2)

удовлетворяет (2.1) и поставленным требованиям, если константы c_1 и c_2 будут определены посредством указанных параметров. В случае линейного деформирования основания осадка сваи линейно зависит от нагрузки и обратно пропорциональна модулю сдвига грунта основания и длине сваи. Вследствие проведенного компьютерного моделирования при различных значениях r_0 , r_{yu} , L, μ и последующей обработки результатов получено:

– для прямой сваи при учёте радиуса ствола

$$c_1 = \frac{\mu P}{GL}, \ c_2 = \frac{(1+\mu)L - 4r_0}{2};$$
 (2.3)

 – для прямой сваи при учёте радиуса ствола и уширения на её конце:

$$c_{1} = \frac{\mu P}{GL}, \ c_{2} = \frac{(1+\mu)L - 4r_{0}}{2\left(1 + 2\mu \frac{r_{yu} - r_{0}}{r_{0}}\right)};$$
(2.4)

– для РИТ-сваи при $r_0 = r_{yuu}$

$$c_1 = \frac{\mu P}{GL}, \ c_2 = \frac{(1+\mu)L - 4r_{yu}}{2},$$
 (2.5)

G – модуль сдвига, μ – коэффициент Пуассона, Р (кг) – нагрузка.

Как видим, (2.3) и (2.5) являются частным случаем (2.4). Таким образом, для определения осадки прямой одиночной сваи, сваи с уширенным концом и РИТ-сваи в линейно-деформируемом грунтовом основании будем иметь общую формулу:

$$W = \frac{\mu P}{GL} \ln \frac{(1+\mu)L - 4r_0}{2\left(1 + 2\mu \frac{r_{yu} - r_0}{r_0}\right)r_i}.$$
 (2.6)

РИТ-свая в общем случае при количестве уширений $1 < n < n_{max}$ и расположенных на некотором расстоянии друг от друга не является цилиндрической. Вследствие этого возникает вопрос существования телескопического сдвига и применимости изложенного подхода решения поставленной задачи. Удовлетворяя условиям минимизации материалоёмкости РИТ-сваи необходимо рассмотреть несколько конструктивных вариантов РИТ-свай, $1 < n < n_{max}$, которые будут отличаться количеством уширений и расстояниями между ними [5], [6].

Моделируемые конфигурации РИТ-сваи представлены на рисунках 3.1-3.4. Варьируя расстояниями между уширениями и их количеством можно получить условия, при которых будет существовать телескопический сдвиг. Возле каждого уширения вследствие резонансноимпульсной обработки грунта будет возникать уплотненная зона, повторяющая форму самого уширения, при этом $d_{ynn} > d_{yuu}$. В [7] показано, что $d_{ynn} = (1 + 2\mu) d_{yuu}$. Зоны уплотнения грунта вокруг уширений могут не соприкасаться, контактировать или накладываться. Грунт между уширениями будет уплотнен. Степень уплотнения определяется взаимным расположением уширений, физико-механическими характеристиками уплотняемого грунта и энергией уплотнения. При выполнении этих условий вокруг РИТ-сваи образуется уплотненная зона и может наблюдаться телескопический сдвиг. Для уплотненной зоны определяется эквивалентный по интегральной прочности модуль деформации.

3 Компьютерное моделирование материалоёмкости РИТ-свай

Методом системного анализа исследовано пять вариантов математической модели поставленной задачи. Варьировалось количество уширений и расстояние между ними. Конструктивные схемы РИТ-свай и их осадок в деформируемом грунтовом основании при нагрузке P = 12 т представлены на рисунках 3.1-3.4 и в таблицах 3.1-3.4.

Для каждой приведенной модели РИТ-сваи методом компьютерного моделирования на основе метода конечных элементов в сочетании с методом энергетической линеаризации используя программный комплекс «Энергия ОС» для заданных условий определены деформации грунтового основания сваи, осадки сваи и условия образования телескопического сдвига. Для телескопического сдвига характерно выполнение условия U=0, W=f(r). Для модельных задач (рисунок 3.1, рисунок 3.3 и рисунок 3.4) подтверждается существование телескопического сдвига и отсутствие его для модели РИТ-сваи (рисунок 3.2).

Системный анализ математической модели грунтового основания при оптимизации параметров построения сваи РИТ

Рисунок 3.1 – РИТ-свая с одним уширением

Таблица 3.1 – Деформации грунтового основания РИТ-сваи с одним уширением

N⁰	1	2	3	4	5	6
U	0	-0.121	-0.212	-0.101	-0.054	-0.026
V	1.096	1.100	0.285	0.092	0.049	0.024
№	10	11	12	13	14	15
U	0	-0.090	-0.063	-0.028	-0.013	-0.004
V	1.084	1.110	0.439	0.073	0.037	0.014
$\underline{N}\underline{o}$	19	20	21	22	23	24
U	0	-0.086	-0.013	-0.011	-0.005	-0.003
V	1.093	1.119	0.383	0.066	0.034	0.012
№	28	29	30	31	32	33
U	0	-0.097	-0.045	-0.030	-0.014	-0.006
V	1.105	1.131	0.200	0.053	0.027	0.011
N⁰	37	38	39	40	41	42
<u>№</u> <i>U</i>	37 0	38 -0.050	39 -0.011	40 -0.007	41 -0.003	42 -0.002
$\underbrace{\mathbb{N}}{\mathbb{Q}}$ U V	37 0 1.124	38 -0.050 1.134	39 -0.011 0.141	40 -0.007 0.052	41 -0.003 0.026	42 -0.002 0.011
$\frac{N_{2}}{U}$ V N_{2}	37 0 1.124 46	38 -0.050 1.134 47	39 -0.011 0.141 48	40 -0.007 0.052 49	41 -0.003 0.026 50	42 -0.002 0.011 51
$\frac{N_{\rm P}}{U}$ $\frac{V}{N_{\rm P}}$ U	37 0 1.124 46 0	38 -0.050 1.134 47 -0.059	39 -0.011 0.141 48 -0.049	40 -0.007 0.052 49 -0.017	41 -0.003 0.026 50 -0.010	42 -0.002 0.011 51 -0.007
$\begin{array}{c} \mathbb{N}_{0} \\ U \\ V \\ \mathbb{N}_{0} \\ U \\ V \\ \end{array}$	37 0 1.124 46 0 1.130	38 -0.050 1.134 47 -0.059 1.141	39 -0.011 0.141 48 -0.049 0.222	40 -0.007 0.052 49 -0.017 0.043	41 -0.003 0.026 50 -0.010 0.027	42 -0.002 0.011 51 -0.007 0.016
$\frac{\mathbb{N}_{0}}{U}$ $\frac{\mathbb{N}_{0}}{V}$ $\frac{\mathbb{N}_{0}}{V}$	37 0 1.124 46 0 1.130 55	38 -0.050 1.134 47 -0.059 1.141 56	39 -0.011 0.141 48 -0.049 0.222 57	40 -0.007 0.052 49 -0.017 0.043 58	41 -0.003 0.026 50 -0.010 0.027 59	42 -0.002 0.011 51 -0.007 0.016 60
$\begin{array}{c c} \mathbb{N}_{\underline{0}} \\ \mathbb{V} \\ \mathbb{V} \\ \mathbb{N}_{\underline{0}} \\ \mathbb{V} \\ \mathbb{V} \\ \mathbb{V} \\ \mathbb{U} \\ \mathbb{V} \\ \mathbb{V} \\ \mathbb{U} \\ \mathbb{V} \\ $	37 0 1.124 46 0 1.130 55 0	38 -0.050 1.134 47 -0.059 1.141 56 -0.088	39 -0.011 0.141 48 -0.049 0.222 57 -0.035	40 -0.007 0.052 49 -0.017 0.043 58 -0.031	41 -0.003 0.026 50 -0.010 0.027 59 -0.023	42 -0.002 0.011 51 -0.007 0.016 60 -0.016
$\begin{array}{c c} \mathbb{N}_{\underline{0}} & \\ U & V \\ \mathbb{N}_{\underline{0}} & \\ U \\ V \\ \mathbb{N}_{\underline{0}} & \\ U \\ V \\ \end{array}$	37 0 1.124 46 0 1.130 55 0 1.124	$\begin{array}{r} 38 \\ -0.050 \\ 1.134 \\ 47 \\ -0.059 \\ 1.141 \\ 56 \\ -0.088 \\ 1.151 \end{array}$	39 -0.011 0.141 48 -0.049 0.222 57 -0.035 0.277	40 -0.007 0.052 49 -0.017 0.043 58 -0.031 0.043	41 -0.003 0.026 50 -0.010 0.027 59 -0.023 0.032	42 -0.002 0.011 51 -0.007 0.016 60 -0.016 0.020
$\begin{array}{c c} \mathbb{N}^{\underline{0}} & U \\ V \\ \mathbb{N}^{\underline{0}} \\ U \\ V \\ \mathbb{N}^{\underline{0}} \\ U \\ V \\ \mathbb{N}^{\underline{0}} \end{array}$	37 0 1.124 46 0 1.130 55 0 1.124 64	38 -0.050 1.134 47 -0.059 1.141 56 -0.088 1.151 65	39 -0.011 0.141 48 -0.049 0.222 57 -0.035 0.277 66	40 -0.007 0.052 49 -0.017 0.043 58 -0.031 0.043 67	41 -0.003 0.026 50 -0.010 0.027 59 -0.023 0.032 68	42 -0.002 0.011 51 -0.007 0.016 60 -0.016 0.020 69
$\begin{array}{c c} \mathbb{N}_{\mathbb{Q}} & \\ \mathbb{U} & \\ \mathbb{V} & \\ \mathbb{U} & \\ \mathbb{V} & \\ \mathbb{U} & \\ \mathbb{V} $	37 0 1.124 46 0 1.130 55 0 1.124 64 0	$\begin{array}{r} 38 \\ -0.050 \\ 1.134 \\ 47 \\ -0.059 \\ 1.141 \\ 56 \\ -0.088 \\ 1.151 \\ 65 \\ -0.099 \end{array}$	39 -0.011 0.141 48 -0.049 0.222 57 -0.035 0.277 66 -0.070	40 -0.007 0.052 49 -0.017 0.043 58 -0.031 0.043 67 -0.053	41 -0.003 0.026 50 -0.010 0.027 59 -0.023 0.032 68 -0.038	42 -0.002 0.011 51 -0.007 0.016 60 -0.016 0.020 69 -0.024

Problems of Physics, Mathematics and Technics, № 1 (34), 2018

нования РИТ-сваи с двумя уширениями							
N⁰	1	2	3	4	5		
U	0	-0.055	-0.191	-0.158	-0.117		
V	0.500	0.501	0.11	0.11	0.117		
N⁰	10	11	12	13	14		
U	0	-0.041	-0.088	-0.074	-0.054		
V	0.498	0.510	0.178	0.163	0.159		
N⁰	19	20	21	22	23		
U	0	-0.39	-0.113	-0.104	-0.086		
V	0.498	0.510	0.178	0.163	0.159		
N₂	28	29	30	31	32		
U	0	-0.043	-0.202	-0.231	0.021		
V	0.503	0.515	0.394	0.379	0.265		
N⁰	37	38	39	40	41		
U	0	-0.065	-0.110	-0.130	-0.021		
V	0.506	0.521	0.516	0.503	0.255		
N⁰	46	47	48	49	50		
U	0	-0.010	0.001	0.001	-0.010		
V	0.500	0.502	0.502	0.502	0.245		
N⁰	55	56	57	58	59		
U	0	-0.039	-0.057	-0.008	0.003		
V	0.495	0.507	0.423	0.354	0.191		
N⁰	64	65	66	67	68		
U	0	-0.044	-0.133	-0.089	-0.049		
V	0.500	0.512	0.226	0.139	0.107		

Таблица 3.2 – Деформации грунтового ос-

Рисунок 3.3 – РИТ-свая с четырьмя уширениями

Таблица 3.3 – Деформации грунтового основания РИТ-сваи с четырьмя уширениями

	I UDull	ан с тетырымя уширениями					
№	1	2	3	4	5	6	
U	0	-0.080	-0.121	-0.142	-0.90	-0.064	
V	0.349	0.356	0.350	0.330	0.205	0.108	
№	10	11	12	13	14	15	
U	0	-0.011	0.001	0.001	-0.023	-0.009	
V	0.326	0.329	0.329	0.929	0.237	0.094	
№	19	20	21	22	23	24	
U	0	-0.026	-0.083	-0.065	-0.045	-0.023	
V	0.324	0.332	0.277	0.268	0.241	0.065	
№	28	29	30	31	32	33	
U	0	-0.028	-0.103	-0.101	-0.082	-0.035	
V	0.327	0.335	0.279	0.280	0.241	0.065	

	Продолжение таблицы 3.3							
№	37	38	39	40	41	42		
U	0	-0.043	-0.072	-0.085	-0.016	-0.007		
V	0.329	0.339	0.336	0.327	0.218	0.061		
$\underline{N}\underline{o}$	46	47	48	49	50	51		
U	0	-0.006	0	0	-0.011	-0.007		
V	0.325	0.327	0.327	0.327	0.224	0.068		
№	55	56	57	58	59	60		
U	0	-0.025	-0.093	-0.080	-0.058	-0.029		
V	0.322	0.330	0.268	0.252	0.222	0.069		
№	64	65	66	67	68	69		
U	0	-0.028	-0.088	-0.100	-0.088	-0.046		
V	0.325	0.333	0.281	0.272	0.228	0.068		

Рисунок $\overline{3.4 - PUT}$ -свая с диаметром ствола $d_c = d_{yuu}$

нон	нования РИТ-сваи с диаметром ствола $d_c = d_{yuu}$							
№	1	2	3	4	5	6		
U	0	-0.061	-0.098	-0.120	-0.064	-0.53		
V	0.303	0.310	0.322	0.334	0.284	0.105		
№	10	11	12	13	14	15		
U	0	-0.055	-0.080	-0.095	-0.044	-0.019		
V	0.272	0.288	0.305	0.328	0.278	0.091		
№	19	20	21	22	23	24		
U	0	-0.043	-0.067	-0.083	-0.032	-0.024		
V	0.289	0.309	0.319	0.331	0.268	0.082		
№	28	29	30	31	32	33		
U	0	-0.050	-0.074	-0.089	-0.060	-0.034		
V	0.298	0.309	0.319	0.332	0.269	0.071		
№	37	38	39	40	41	42		
U	0	-0.023	-0.037	-0.045	-0.006	-0.005		
V	0.313	0.317	0.324	0.334	0.263	0.068		
№	46	47	48	49	50	51		
U	0	-0.044	-0.064	-0.075	-0.030	-0.017		
V	0.309	0.317	0.327	0.341	0.269	0.072		
N⁰	55	56	57	58	59	60		
U	0	-0.044	-0.069	-0.086	-0.042	-0.031		
V	0.308	0.317	0.330	0.350	0.265	0.073		
№	64	65	66	67	68	69		
U	0	-0.053	-0.078	-0.094	-0.074	-0.048		
V	0.315	0.327	0.337	0.351	0.275	0.078		

При компьютерном моделировании необходимые исходные данные были приняты по мате-

риалам натурного эксперимента, выполненного в БелНИИС, г. Минск [8].

Характеристика сваи:

– буронабивная, выполнена по технологии
 РИТ с диаметром ствола 151 мм, длина 3 м, с
 уширением в уровне пяты диаметром 460 мм;

 - грунтовые условия: пылеватый суглинок на всю разведанную глубину;

– удельный вес ү, кН/м3 – 19,4;

- угол внутреннего трения φ, град 23;
- сцепление *с*, МПа 0,018;

– модуль деформации *E*, МПа – 6.

Методом компьютерного моделирования были исследованы осадки РИТ-свай в зависимости от физических и геометрических характеристик свай и физико-механических характеристик грунтового основания деформируемой области включая зоны РИО. Результаты проведенного вычислительного эксперимента представлены в таблице 3.5 и в виде графиков на рисунке 3.5.

Таблица 3.5 – Осадка сваи-РИТ при заданной нагрузке с учетом уплотнения и нелинейности деформирования грунтового основания при различном количестве уширений

P(T)	3	6	9	12	14	Конструкция сваи
n	0.0	1.0	5.4	10.1	10.0	1
опыт	0,2	1,3	5,4	12,1	19,2	1 уширение снизу
1	0,3	1,89	5,2	10,95	18,5	1 уширение снизу
2	0,15	0,85	2,7	5,2	8,8	2 уширения
3	0,1	0,62	1,7	3,4	5,4	3 уширения
4	0,1	0,59	1,4	3,1	4,6	4 уширения
$d_c = d_{yu}$	0,06	0,4	1,16	2,9	4,4	$d_c = d_{yuu}$

Рисунок 3.5 – Графики осадки сваи-РИТ с различным количеством уширений

Показано, что:

- рациональное количество уширений

$$n \leq \frac{n_{\max}}{2}$$

— рациональное расстояние между уширениями $h \le d_{yu}$;

Проблемы физики, математики и техники, № 1 (34), 2018

– телескопический сдвиг получается при расстоянии между уширениями $h \le d_{yw}$;

 несущая способность РИТ-сваи рациональной конструкции уменьшается не более чем на 5%, а расход материала на устройство уширений сваи может быть уменьшен до 50%.

Таким образом, на основе разработки конечного множества математических моделей объекта исследования методом системного анализа определены параметры построения РИТ-сваи оптимальной материалоёмкости под заданную нагрузку.

Полученные результаты являются основанием для их применения при проектировании фундаментов на основе РИТ-свай для промышленных и гражданских зданий и сооружений при грунтовых условиях Республики Беларусь.

ЛИТЕРАТУРА

1. Быховцев, В.Е. Методика расчета по предельным состояниям свай, устроенных с применением разрядно-импульсной технологии / В.Е. Быховцев, В.С. Смородин, Д.В. Прокопенко // Доклады БГУИР. – 2016. – № 8 (102). – С. 71–75.

2. *Цытович*, *Н.А.* Механика грунтов / Н.А. Цытович. – М.: Стройиздат, 1963. – 542 с.

3. Журавков, М.А. Математическое моделирование деформационных процессов в твёрдых деформируемых средах / М.А. Журавков. – Минск: БГУ, 2002. – 456 с.

4. *Партон*, *В.З.* Методы математической теории упругости / В.З. Партон, П.И. Перлин. – М.: Наука, 1981. – 688 с.

5. Быховцев, В.Е. Компьютерное объектноориентированное моделирование нелинейных систем деформируемых твёрдых тел / В.Е. Быховцев. – Гомель: УО «ГГУ им. Ф. Скорины», 2007. – 219 с.

6. Быховцев, В.Е. Расчет РИТ-сваи по первому предельному состоянию / В.Е. Быховцев, Д.В. Прокопенко, Л.А. Цурганова // Проблемы физики, математики и техники. – 2015. – № 3 (25). – С. 90–93.

7. Быховцев, В.Е. Математическое и компьютерное моделирование осадки РИТ-сваи в нелинейно-деформируемом грунтовом основании / В.Е. Быховцев, Ю.Д. Бондарева // Известия Гомельского государственного университета им. Ф. Скорины. – 2016. – № 3 (96). – С. 92–95.

8. Быховцев, В.Е. Деформации локальноуплотняемого нелинейно-деформируемого грунтового основания РИТ-сваи минимальной материалоёмкости под заданную нагрузку / В.Е. Быховцев, В.С. Смородин, Ю.Д. Бондарева // Доклады БГУИР. – 2018. – № 1 (111). – С. 51–57.

Поступила в редакцию 12.01.18.