пластом та радіус розтікання з часом і віддаленням від вибою свердловини різко гальмуються і залежать, як від ємнісно-фільтраційних властивостей породи-колектора, так і від загального об'єму закачаних у свердловину розсолів. А також створено програмний продукт, за допомогою якого можна оцінити масштаби забруднення водоносного горизонту та спрогнозувати довготривалу міграцію розсолів у підземних водах.

Запроектовано комплекс заходів з охорони навколишнього середовища у процесі захоронення високомінералізованого розсолу у виснажений розробкою поклад вуглеводнів. Так, навколо полігону високомінералізованого розсолу запроектовано обгрунтовано встановлення санітарно-захисних зон, у межах яких гідрогеологічного, передбачено проведення гідрохімічного технічного контролю, а також передбачено буріння спостережних свердловин як основного методу контролю за закачуванням розсолу. Результати контрольних спостережень дадуть можливість вибрати і забезпечити раціональний режим захоронення економне використання природної місткості колекторних горизонтів.

Отже, запропонована методика утилізації розсолів у виснажені розробкою поклади вуглеводнів є екологічно безпечною для довкілля і гарантує надійність захоронення високомінералізованих розсолів на сталу перспективу. Отримані ж результати можуть бути використані під час розвідки, проектування, будівництва та експлуатації полігонів підземного захоронення промислових відходів гірничої промисловості, що гарантує підвищення екологічної безпеки держави.

А. В. ХАРЬКОВА

(УО «ГГУ им. Ф. Скорины», г. Гомель)

КРИВЫЕ СПЕКТРАЛЬНОЙ ЯРКОСТИ НЕКОТОРЫХ ТЕХНОГЕННЫХ ОБЪЕКТОВ ГОМЕЛЬСКОЙ ОБЛАСТИ

В настоящее время данные дистанционного зондирования Земли получают в виде набора снимков территории, выполненных в различных диапазонах электромагнитного спектра. Это позволяет учитывать при дешифрировании значение не только интегральной яркости, но и значения яркости отдельно в каждой зоне (спектральной яркости). Это значения представляются в виде кривых спектральной яркости – графиков, по оси абсцисс которых отложены значения длин электромагнитных волн или диапазоны, в которых ведется съемка в

каждом из спектральных каналов мультиспектрального снимка, а по оси ординат значения яркости изучаемого пиксела в этих спектральных каналах.

Целью нашего исследования было построить кривые спектральной яркости для различных техногенных объектов Гомельской области.

Для анализа использовался снимок спутника Landsat-7 в шести каналах: 1) 450-515 нм; 2) 525-605 нм; 3) 630-690 нм; 4) 760-900 нм; 5) 1550-1750 нм; 6) 2080-2350 нм. Для синтезирования мультиспектрального снимка и построения кривых спектральной яркости использовалась программа MultiSpec.

На рисунке 1а показана кривая спектральной яркости для одного из наиболее экологически опасных объектов региона — отвалов фосфогипса. Уровень яркости в каналах оптического диапазона максимален среди всех проанализированных объектов, затем в инфракрасной части спектра он стремительно снижается с увеличением длины волны, и в шестом канале яркость наименьшая среди всех объектов, за исключением водных.

На рисунке 16 показана кривая для карьера по добыче песка «Осовцы». На синтезированном цветном снимке и естественной цветопередачей этот объект выглядит аналогично предыдущему – оба яркие белого цвета. Существенные различия появляются при варианте синтеза *Red-6*, *Green-5*, *Blue-4*, то есть синтезе снимков, выполненных исключительно в инфракрасной части спектра. В этом случае отвалы фосфогипса имеют светло-голубой, а песчаный карьер – светло-жёлтый цвет. Максимум яркости приходится на 5 канал, также существенно повышается яркость в красном (третьем) канале. Кривая пашни с убранным урожаем (рисунок 1в) имеет схожий характер, однако отсутствует пик в красной зоне и увеличивается яркость в синей зоне.

Сравнение кривой для пашен с неубранным и убранным (рисунок 1г) урожаем показывает, что максимальное значение яркости для пашни с неубранным урожаем приходится на ближнюю инфракрасную зону спектра, а минимумы — на 3 и 6 каналы, тогда как для пашни с убранным урожаем минимум приходится на 2, а максимум на 5 каналы.

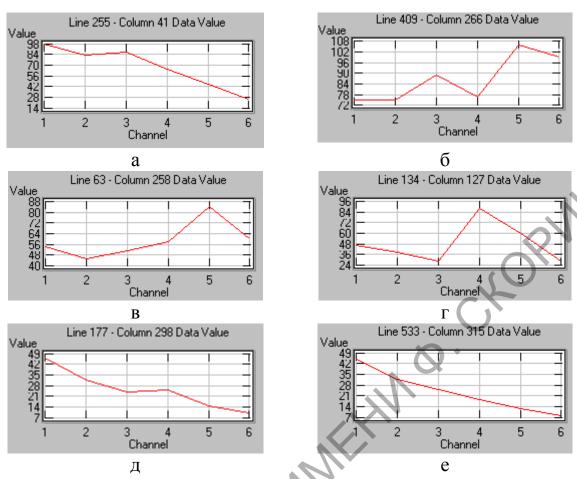


Рисунок 1 – Кривые спектральной яркости: а – отвалов фосфогипса; б – карьера по добыче песка; в – пашни с убранным урожаем; г – пашни с неубранным урожаем; д – водоёма в черте города; е – участка реки за чертой города

На рисунках 1д и 1е показаны кривые для водоёма в черте города и участка реки за чертой города. Водоём в черте города подвергся антропогенной трансформации в значительно большей степени, что проявляется в заметно большем уровне яркости в ближней ИК зоне. Это обусловлено большим развитием растительности в городском водоёме. Яркости в других спектральных зонах не отличаются.