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ВВЕДЕНИЕ 

 
На основе современных научных теорий в изучении 

молекулярной физики наметились два подхода: макроскопический и 

молекулярно-кинетический. Первый метод основан на изучении 

свойств макроскопических тел без учета особенностей их внутреннего 

строения. Такой метод называется термодинамическим. В этом методе 

главная роль отводится закону сохранения энергии. 

При изучении молекулярно-кинетической теории особое 

внимание обращается на более глубокое изучение свойств вещества на 

основе введения представлений об их внутреннем строении. Учитывая 

то, что вещество состоит из молекул, можно в общих чертах объяснить 

различие между тремя состояниями вещества – газообразным, жидким 

и твердым. 

Основная цель молекулярно-кинетической теории – рассмотрение 

макроскопических свойств тел как проявление суммарного действия 

молекул. В этом случае в теории пользуются статистическим методом, 

который позволяет определить не поведение отдельных молекул, а 

только средние величины, характеризующие движение и взаимо-

действие огромной совокупности частиц. 

Именно поэтому молекулярно-кинетическая теория имеет другое 

название – статистическая физика. 

Статистическая физика как научное направление имеет 

длительную историю развития, но современная ее структура сложилась 

в начале ХХ в. благодаря работам Дж. Максвелла, Л. Больцмана и        

Д. Гиббса. 

Оба метода изучения физических явлений – макроскопический и 

микрофизический – дополняют друг друга. 

Настоящее издание включает избранные главы молекулярно-

кинетической теории и предназначено для оказания помощи 

иностранным студентам, обучающимся на факультете физики и ИТ, в 

овладении знаний в области молекулярной физики, уяснении физических 

понятий, применяемых в молекулярно-кинетической теории. 

Практическое пособие написано на английском языке в соответст-

вии с программой курса общей физики для физических специальностей 

и может быть использовано для самостоятельной работы. 
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1 THE ROLE OF RANDOM PROCESSES IN 

MOLECULAR PHYSICS. BROWNIAN MOTION 
 

1.1 The main provisions of the molecular-kinetic theory 
 
The bodies around us are perceived by us as solid, continuous. Hence 

the mechanistic representation of such a model of an absolutely solid body, 

which nevertheless allowed us to understand and use the concepts of 

coordinate, force, momentum, energy, and others known to us from the 

course of mechanics. But even to explain such simple properties of 

substances as the fact that they are in three aggregate states with their 

features, the model of an absolutely solid body is not suitable. The 

development of laboratory research methods, engineering and technical 

means of studying the surrounding objective reality lead to an unambiguous 

conclusion that all bodies of the real world have a discrete (“discontinuous”) 

structure. 

Originated in the V century BC in the works of ancient philosophers, 

the idea of the discrete structure of matter, which was developed in the       

VIII–XIX centuries, is now a fully established scientific doctrine, known as 

the molecular kinetic theory (MKT) of the structure of matter. 

When it comes to molecular-kinetic theory, it is always appropriate to 

quote the outstanding scientist of the XX century, Richard Feynman         

(1918–1988): “If, in some cataclysm, all of scientific knowledge were to be 

destroyed, and only one sentence passed on to the next generation of 

creatures, what statement would contain the most information in the fewest 

words? I believe it is the atomic hypothesis that all things are made of     

atoms – little particles that move around in perpetual motion, attracting each 

other when they are a little distance apart, but repelling upon being squeezed 

into one another. In that one sentence, you will see, there is an enormous 

amount of information about the world, if just a little imagination and 

thinking are applied.” 

Currently, all the variety of laws and conclusions of molecular kinetic 

theory are based on three immutable rules, known as the basic provisions of 

molecular kinetic theory. We will take them as a starting point in our 

reasoning. 

First provision: 

All substances (bodies) – liquid, solid and gaseous – are formed 

(consist) of the smallest particles-molecules, which themselves consist of 

atoms (“elementary molecules”). The molecules of a chemical can be simple 
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or complex, and consist of one or more atoms. Molecules and atoms are 

electrically neutral particles. Under certain conditions, molecules and     

atoms can acquire an additional electric charge, and turn into positive               

or negative ions. 

Second provision: 

Particles (atoms and/or molecules) are in continuous chaotic motion. 

In the future, we will use the term “thermal motion”. 

Third provision:  

The particles interact with each other with forces that have an electrical 

nature. The gravitational interaction between the particles is negligible. 

We will not dwell in detail on the modern interpretation of each of the 

presented statements, as well as on the definitions of concepts and terms 

used in MKT and thermodynamics, but consider what role the case, or rather 

the probability of a particular phenomenon, plays in the described processes. 

 

 

1.2 Statistical and thermodynamic methods in 

molecular physics 
 
As you know, the random chaotic motion of molecules is called 

thermal motion. In this case, the average (averaged) kinetic energy of 

thermal motion (both translational and rotational!) increases with increasing 

temperature. At relatively low temperatures, the average kinetic energy of 

the molecules may be less than the depth of the potential well of the 

Coulomb interaction field (E0). In this case, the molecules form a condensed 

state (i. e., a liquid or solid). In this case, the average distance between the 

molecules will be comparable to a certain characteristic value of                  

d0  10
-9

 м – we will call it the effective diameter of the sphere of molecular 

action. As the temperature increases, the average kinetic energy of the 

molecule becomes greater than E0, the molecules fly apart, and a gaseous 

substance   is formed. 

Even at distances equal to several d0 (we will later in some of our 

arguments roughly understand this value as the average diameter of a 

molecule), the interaction between the particles is negligible, and this allows 

us to propose a model of an ideal gas, that is, not to take into account the 

interaction at all. In addition to the absence of Coulomb forces of attraction 

and repulsion, we will assume that all particles are material points, the 

interaction between which is reduced only to absolutely elastic collisions. 
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Such reasonable assumptions, together with the consequences of some 

theorems from probability theory, allow us to obtain the basic equation of 

the molecular kinetic theory (MKT) of an ideal gas: 
 

                    

2
2 0

0

1 2 2
   

3 3 2 3
k

m v
p p nm v n n E

 
          ,                  (1) 

 

where p – is the pressure of an ideal gas (macroscopic parameter), n – is the 

concentration of particles( molecules), m0 – is the mass of a single particle, 
2v   and Ek  – are the average square of the velocity and the average 

kinetic energy of the translational motion of the particles, respectively. 

In this case, the equality: 
 

 2222

3

1
vzyx  ,                                  (2) 

 

where  2
x   2

y   2
z  – the mean value of the squares of the projections of 

the Cartesian coordinate system. It is the expression (2) that is the direct 

consequence of statistical consideration, namely, from the assumption that 

all directions of motion in an ideal gas in the absence of external fields are 

equally probable. 

The description of the state of an ideal gas is reduced to the joint use of 

dynamic, statistical and thermodynamic methods for describing systems 

consisting of a huge number of particles. 

In molecular physics, there is a special constant that is closely related 

to the ideal gas model – the Loschmidt number. This constant is 2,6868∙10
19

, 

and represents the number of minimal structural units (atoms, molecules, 

ions, electrons, or any other particles) under normal conditions in 1 cm
3
 of a 

substance. This means that, according to the dynamic approach, to record at 

some point in time the positions and velocities of all the molecules would 

need to be recorded 6·2,7·10
19

 numbers. If some device were to record them 

at a rate of 1 million/second, it would take ≈ 6 million years. It is clear that 

such a task is technically impossible in principle, and moreover, useless from 

a practical point of view. 

Statistical methods in physics are more widely used than dynamic 

methods. This is due to the fact that the dynamic method is only effective when 

applied to systems with a small number of degrees of freedom (for example, to 

each individual molecule). Most physical systems have a huge number of 

degrees of freedom, and can be studied only by statistical methods.  
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A system consisting of a huge number of particles can also be considered as 
“solid”, without being interested in its internal structure. In this approach, you 
need to use the concepts and physical quantities related to the system as a whole 
(volume, pressure, temperature, and entropy!). The theory constructed in this way 
is phenomenological. It is not interested in the internal mechanisms of the 
processes that determine the behavior of the system under study as a whole; this 
method of studying systems of many particles is called thermodynamic. 

Statistical and thermodynamic methods of studying systems consisting of a 
huge number of identical particles (or groups of identical particles) complement 
each other. In this case, the dynamic approach is applicable to a single molecule, 
and leads to such an important concept as the number of degrees of freedom. At the 
same time, the number of degrees of freedom ultimately determines the 
macroscopic (thermodynamic) parameter internal energy. 

 

 

1.3 Uniform distribution of kinetic energy by degrees of 

freedom 
 
In the derivation of formula (1), according to the ideal gas model, it is 

assumed that all particles are the same, all directions of the velocity of a single 

particle are equally probable in view of their huge number, and there could be only 

three such directions in Cartesian space. This statement, reflected in the        

formula (2), unobtrusively suggests the following conclusion: if you divide the 

kinetic energy into three equal parts, you get the share that falls on each of the 

Cartesian directions. However, in addition to the translational components of 

motion, as is known from classical mechanics, there are also rotational 

components-hence the concept of rotational and translational degrees of freedom. 

Consider a lightly moving piston of mass M in a cylindrical vessel with 

an ideal gas (see Figure 1). 
 

 
 

Figure 1 – Balance of the piston with mass M in a vessel with an ideal gas 
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For the mechanical equilibrium of the piston, it is necessary to meet 

the condition of equal pressure to the left and right of the piston P1 = P2 or, 

according to the basic equation of the MKT: 

 

2 2

1 1 1 2 2 2

1 1
.

3 3
кв квn m n m    

 

The equality of n concentrations in both parts of the vessel leads to the 

condition of equality of the average kinetic energies of the molecules on the 

left and on the right: 

 

1 1ε εk k
.
 

 

In the system under consideration, the piston can move freely only in 

one direction – along the axis of the cylinder or the axis of the cylinder. In 

this situation, it is said that the piston has one degree of freedom. 

For any particle of an ideal gas, taking into account the expressions (1) 

and (2), we can write: 

 

 nkT
m

np
23

2 2
 

 222
2

22

3

2
zyxk

m
kT

m
E 


 

22 2
1

.
2 2 2 2

yx z
mm m

kT
 

                              (3) 

 

The obtained relation reflects the content of the theorem on the 

uniform distribution of kinetic energy over degrees of freedom. 
The number of degrees of freedom – is the number of independent 

variables that determine the state of the system, or the number of 

independent variables (“coordinates”) that completely determine the position 

of the system in space. 

In the vast majority of problems, a monatomic gas molecule is considered 

as a material point, which is attributed to three degrees of freedom of 

translational motion (i = 3). In this case, the energy of the rotational motion can 

be ignored. However, in the general case – a polyatomic gas – it should be 

taken into account that the molecules can perform both translational and 
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rotational movements, in this case the number of degrees of freedom changes is 

taken into account as follows: i = 3 – for a monatomic gas, i = 5 – for a 

diatomic gas, and i = 6 – for a polyatomic gas (Figure 2). 

 

 
 

Figure 2 – Number of degrees of freedom of molecules 

 

In classical mechanics, a diatomic gas molecule in the first 
approximation is considered as a set of two material points rigidly connected 
by a non-deformable bond. This system, in addition to the three degrees of 
freedom of translational motion, has two more degrees of freedom of 
rotational motion. Rotation around the third axis (the axis passing through 
both atoms) is meaningless. Thus, a diatomic gas has five degrees of 
freedom (i = 5).  

A triatomic (generally polyatomic) nonlinear molecule has six degrees 
of freedom (i = 6): three translational and three rotational.  

Naturally, there is no rigid bond between the atoms. Therefore, for real 
molecules, it is also necessary to take into account the degrees of freedom of 
oscillatory motion. 

For a statistical system in a state of thermodynamic equilibrium, each 

translational and rotational degree of freedom has an average kinetic energy 

equal to  
2

kT
, and each vibrational degree of freedom has an average energy 

equal to kT. The vibrational degree “has” twice as much energy because it 

accounts not only for kinetic energy (as in the case of translational and 

rotational movements), but also for potential energy, and the average values 

of the kinetic and potential energies are the same. Thus, the average energy 

of a molecule is: 

 

,
2

i
kT                                                    (4) 
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where i = itranslational + irotational + 2∙ioscillatory. We will adhere to the classical 

consideration, i.e., assume that molecules have a “rigid” bond between atoms; 

for them, i coincides with the number of degrees of freedom of the molecule. 

For further discussion, we will take into account the fact that the piston 
(see Figure 1) also has a molecular structure. We can calculate the average 
kinetic energy of the translational motion of its molecules. The velocity of 
the center of mass can be determined from the expression: 

 

1
.i ix

i

u m u
M

   

 

Then, squaring both parts of the expression and averaging the result over 

time, we get: 
 

2
2 21

.
2 2

i ix
i

Mu
m u

M
   

 

Let all mi be the same, and their number in the entire piston is equal to N. 

Then you can write: 
 

2 2

2 2 2 21 1
.

2 2 2 2

i ix

i ix i ix
i

M u m uM
Nm u m u

M M m
    

 

Therefore, using the expression (4), we get: 
 

2 2 2
0 1

.
2 2 2 2

i ix xM u m u m
kT


                                (5) 

 

The obtained ratio (5) shows that for the piston molecules, 1 degree of 

freedom also accounts for a fraction of the energy equal to 
2

.
kT

 Therefore, this 

result is valid not only for rarefied gases, but also for relatively large particles that 

are in a state of thermodynamic equilibrium with a gas (or liquid in the general 

case). So, if instead of a piston, a body is placed in the gas so that it interacts with 

the gas from all sides. Such a body will be able to move freely in any direction 

and due to the mechanical interaction with the molecules, and its center of mass 

will make a random movement. Then, for the kinetic energy of such an object, 

we can write the expression: 
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2 2

2 21 1 1 3 3 3
.

2 2 2 2 2 2

i i

i i i i
i i i

M m M
m m m kT kT kT

M M M M

 
           (6) 

 

From the obtained expression (6), the following conclusions can be drawn: 
the translational motion of the center of mass of a macroscopic body accounts for 
the same energy as the translational motion of a single molecule. At the same 
time, with an increase in the mass of the particle M, the average square of its 
velocity will be smaller. In other words, a macroscopic object behaves like a 
giant molecule. These conclusions allow us to consider the theory of random 
walk of a Brownian particle, known as the Einstein-Smoluchowski theory. 

 
 

1.4 Einstein-Smolukhovsky theory 
 
The most striking experimental confirmation of the ideas of the molecular-

kinetic theory about the disordered motion of atoms and molecules is the 
Brownian motion. This is the thermal motion of the smallest microscopic 
particles suspended in a liquid or gas. It was discovered by the English botanist 
R. Brown (1827). Brownian particles move under the influence of random 
impacts of molecules. Due to the chaotic thermal motion of the molecules, these 
shocks never balance each other. As a result, the velocity of a Brownian particle 
randomly varies in modulus and direction, and its trajectory is a complex zigzag 
curve (Figure 3). The theory of Brownian motion was created by A. Einstein 
(1905). Experimentally, the theory of Einstein was confirmed in the experiments 
of the French physicist Jean Batist Perrin (1908–1911). 

 

 
 

Figure 3 – Model of the trajectory of a Brownian particle 
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Since the Brownian particle continuously moves chaotically (shakes), 
it is necessary to choose an adequate parameter that can be calculated 
(predicted) theoretically. Since the instantaneous motion of a particle along 
any of the coordinates on the plane (X or Y) is equally probable, this means 
that the average displacement both in the projection on the X-axis and in the 
projection on the Y-axis for a sufficiently long period of time will be zero – 
this also applies to the average value of the projection of the particle 
velocity. Therefore, it is obviously necessary to choose a numerical measure 
of the trajectory that can be both experimentally observed and theoretically 
calculated. This value is the average square of the displacement of the 
Brownian particle <x

2
>. In order to obtain the equation of motion of a 

mechanical particle, we use the basic equation of dynamics, which is a 
consequence of Newton’s second law: 

 

mpmr F F   ,                                            (7) 

 

where r – is the radius-vector of the Brownian particle, m is the mass 
of the particle, F is the resultant of the acting forces, Fmp is the force of 
resistance to motion (the force of viscous friction), which is proportional to 
the velocity v (b is the proportionality coefficient): 

 

.mpF b br                                                   (8) 

 

In the projection on the selected axis, for example X, we get:  
 

xbFxm x   .                                                (9) 

 

To get the square of the displacement multiply both parts of the equation by x: 
 

xbxxFxmx x   .                                            (10) 

 

Using the differentiation rules, you can get: 
 

2 2 ,
d

x xx
dt

                   
2

2 2

2
2 2 .

d
x x xx

dt
   

 

Therefore: 
 

 2
1

,
2

d x
xx

dt
             

 2 2 2

2

1
.

2

d x dx
xx

dtdt
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Let’s use these relations, and rewrite the expression (10) in the 
following form: 

 

   2
2

2

22

22
x

dt

db
xF

dt

dx
m

dt

xdm
x 








  .                       (11) 

 

The resulting expression (11) is valid for any particle, and therefore it 
is also valid for the average values of the quantities included in it, if the 
averaging is carried out over a large number of particles. Averaging over a 
large number of particles allows you to write the following expression: 

 
2

2 2 2

22 2
x x

m d b d
x m xF x

dtdt
          

 

in this case, <xFx> ≡ 0, since it can be both positive and negative with equal 
probability. In addition, it follows from formula (3) that:  
 

2
2

3

1


dt

dx
 

 

hence, 
 

22
2

.
3 2

m
dx

m kT
dt


   

 

Then in the final form we can write: 
 

2 2 2

22 2

d x d xm b
kT

dtdt
   .                                 (12) 

 

The basic equation of the MKT considered by us is valid for any particles 
that do not interact with each other and perform chaotic movements. Whether 
these are molecules invisible to the eye or significantly larger Brownian 
particles containing billions of molecules, it does not matter. From the 
molecular-kinetic point of view, a Brownian particle can be interpreted as a 
giant molecule. Therefore, the expression for the average kinetic energy of such 
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a particle should be the same as for a gas molecule. The velocities of 
brownian particles, of course, are incomparably smaller, corresponding to 
their greater mass. 

However, in the form obtained (12), the equation  is still not 

convenient for experimental confirmation. This equation can be integrated. 

Denoting 

2d x
Z

dt
  we get: 

 

2 2

m dZ b
kT Z

dt
                          

 

or 

 

2 2
.

2

dZ b b kT
kT Z Z

dt m m b

   
       

   
 

 

Next, we separate the variables and integrate: 

 

0 0
.

2
Z tdZ b

dt
kT m

Z
b

  


 

 

Applying the Newton-Leibniz formula and return to the replacement of Z. 

 

0
0

2
ln ,

Z
tkT b

Z t
b m

    

 

2 2
ln ln ,

kT kT b
Z t

b b m
     

 

2 2
,

b tkT kT mZ e
b b


   

 

2 2
1 .

b td kT mZ x e
dt b
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Under normal experimental conditions, the value of 
 b t

epx
m

 
 







 is 

significantly less than “1”, so in the final form, for finite time intervals, the 

desired value – the mean square of the displacement – can be represented as: 

 

2 2
,

d kT
x

dt b
  

 
 

 

2 2
.

kT
x t

b
                                              (13) 

 

The average value of the square of the displacement of a Brownian 

particle over a time interval Δt along the X-axis, or any other axis, is 

proportional to this time interval: 

 
2 2 .x D t                                              (14) 

 

The formula (14) allows us to calculate the average value of the square 

of displacements, and the average is taken for all the particles involved in the 

phenomenon. But this formula is also valid for the average value of the 

square of many successive displacements of a single particle over equal time 

intervals.  

From an experimental point of view, it is more convenient to observe 

the movements of a single particle. Such observations were carried out by 

J. B. Perrin in 1909. Studying the motion of a Brownian particle, J. Perrin 

confirmed the independence of the MKT, and also determined the values of 

the Boltzmann and Avogadro constants. 
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2 MAXWELL AND BOLTZMANN STATISTICAL 

DISTRIBUTIONS 
 

 

2.1 Necessary information from the theory of 

probability 

 
One of the fundamental concepts of probability theory is the concept of 

an event or chance. An event in probability theory refers to any phenomenon 

in relation to which it makes sense to raise the question whether it can 

happen or not. An example of an event can be: the loss of the obverse or 

reverse when throwing a coin, the loss of a certain number of points when 

“throwing” a dice, the choice of a playing card from the deck, or the hit of a 

gas molecule in a certain volume of dV space, i.e., the presence of coordinate 

values lying in the range from x, y, z to x +dx, y + dy, z + dz. 

An experience in which an event appears or does not appear is              

called a test. 

An event is called random if it can either occur or not occur as a result 

of the test. Two random events are called equally probable if, for a 

sufficiently large number of trials, N, each event appears equally frequently. 

When a coin is tossed, the appearance of an obverse or reverse is equally 

likely, since both events occur approximately the same number of times 

during the trials. For example, the following outcome is possible: the number 

of tests N = 100, the number of appearances of the obverse and reverse, 

respectively, is 47 and 53 (or vice versa!). Strong deviations are possible, 

however, the greater the value of N, the less often they are implemented. 

These are the so-called fluctuations (from lat. fluctuatio – deviation from  

the mean). 

Events like the coin experience are called incompatible, since the 

appearance of one precludes the appearance of the other. 

The sum of two events is an event consisting of the occurrence of one 

event or the other, or both together. The sum of the two events A and B is 

symbolically denoted as A + B. 

The product of two events is an event consisting of the simultaneous 

occurrence of both events. The product of events A and B is denoted as the 

product of the symbols of these events (AB).  

The probability of a random event is a quantitative measure equal to 

the frequency of its occurrence in an unlimited number of tests N. For 
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example, if an event with the sign A appears NA times in N tests, the 

probability of this event is determined by the ratio: 

 

  lim .A

N

N
P A

N
                                          (15) 

 

Two events are called independent if the probability of each of these 

events occurring does not depend on whether the other event occurred. For 

example, if you draw cards from two different decks. 

We give without proof two theorems from the theory of probability, 

which are necessary for understanding the further material. 

Theorem 1. The probability of the sum of two incompatible events is 

equal to the sum of their probabilities: 
 

     .P A B P A P B    

 

Theorem 2. The probability of the product of two independent events 

is equal to the product of their probabilities: 
 

     .P AB P A P B   

 

 

2.2 Continuous and discrete random variables 
 
If only incompatible events can be realized in the experiment (for 

example, only discrete numbers from 1 to 6 can fall on the dice, while the 

number of points “3” excludes all others), then the sum of the probabilities 

of all N incompatible events is equal to one: 
 

1.
1 1

N N NiPi Ni i
  

 
                                         (16) 

 

We will use the relation (16) in the future and will call it the condition 

for normalizing the probabilities of pi. 

If the value of a random variable yi takes a series of N different values, 

then, as is known, the average value <y> is determined by the formula:  
 

1
.

1

N
y yiN i
 


                                          (17) 
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If, in a series of N tests, each possible value of yi (i = 1, 2, ..., n) is 

repeated Ni times, then the expression (17), taking into account (15), is 

converted to the ratio: 
 

1 1
.

1 1 1 1

NN N n nj
y y y N y p yi i j j j jN N Ni i j j
       

   
           (18) 

 

In statistics, the ratio (18) is called the mathematical expectation of a 

random variable y. 

The relations (17) and (18) make sense if y is a discrete random 

variable. Consider the case when the value y is a continuous smooth function 

of the variable x in the range from a to b, as shown in Figure 4. 
 

 
 

Figure 4 – Calculating the average value of a continuous random variable 

 

If we divide the interval from a to b into N identical sufficiently small 

intervals x, the width of each interval will be equal to: 

 

.
b a

x
N


   

 

This means that the average value of a continuous random variable y, 

by analogy with the formula (18), can be calculated using the ratio: 
 

1 1
.

1 1

N N
y y y xi iN b ai i
   

   
 

Given x  0, we arrive at the average y as an integral of y with respect to dx: 
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1

.
b

a

y y x dx
b a

 


                                       (19) 

 

Equation (19) is true, if the variable y is uniformly distributed on the 

parameter x in the interval (a; b), i. e. 
abdx

dp




1
, however, when 

considering discrete random variable most often the condition 

    .
dp

f x dp f x dx
dx

     

The function f(x) in the expression is called the probability density 

(distribution function) of a random variable x. The probability normalization 

and mathematical expectation will be calculated using certain integrals: 
 

 
1

lim 1,
b bN

i
N i a a

P dp f x dx
 

                                  (20) 

 

   
1

lim .
bN

i i
n i a

y y p y x f x dx
 

     

 

For example, for y(x) = x and y (x) = x
2
, using the expressions (20), we 

find the average value of x and the root-mean-square value of x
2
 of the 

random variable x. 
 

  ,
b

a

x xf x dx                                            (21) 

 

 2 2 .
b

a

x x f x dx   

 

 

2.3 Barometric formula. Boltzmann distribution 
 
The chaotic motion of the molecules leads to the fact that the gas 

particles are evenly distributed over the volume of the vessel, so that each 

unit of volume contains on average the same number of particles. In the 

equilibrium state, the pressure and temperature of the gas are also the same 

throughout the entire volume.  
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The presence of external forces leads to an “ordered” state of the ideal 
gas. A classic example: a gas (air) under the influence of gravity. If there were 
no thermal motion of the molecules, then all of them would “fall” to the earth 
under the influence of gravity, and all the air would gather in the thinnest layer 
at the surface of the planet. In the absence of gravity, the molecules would have 
scattered all over the world. The atmosphere, the air envelope of the Earth, 
owes its existence in its present form to the presence of both the thermal motion 
of the molecules and the force of attraction to the Earth.  

According to this distribution of molecules, a certain law of the 

change in gas pressure with height is also established. 
The air pressure at a certain height x (see Figure 5) is equal to the 

weight of the vertical column of air acting on a unit area. Therefore, dp is 
equal to the difference in the weights of the air columns over an area equal to 
one at heights x and x + dx, i. e., it is equal to the weight of the air column 
with a height of dx with a base area of one unit: 

 

,dp gdx   

 

where p is the density of air (mass per unit volume) and g is the 
acceleration of gravity. 

 

 
 

Figure 5 – Height distribution of gas pressure in the gravity field 

 

The density p of a gas is equal to the product of the mass 0m  of the 

molecule by their concentration n: 
 

0 .m n   
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Using the ratio p = nkT, we can write:  
 

0ρ
m P

kT
   or  0 .

m g
dp pdx

kT
   

 

The resulting equation can be solved by the method of separation of 
variables: 

 

0 ,
m gdp

dx
p kT
   

 

.
dp mg

dx
p kT
    

 

If we assume that the temperature at all altitudes is the same (which, 
generally speaking, is not true), then, integrating this equation, we get: 

 

0ln ln ,
m g

p C
kT

    

 

where C is the integration constant. From here: 
 

 
0

.

m g
x

kTx Ce


                                           (22) 

 

The constant C is determined from the condition that at x = 0 the 
pressure p = p0. Substituting these values x and p into equation (22), and 
replacing x with h (height), we get: 

 

 
0

0 0 .

m g Mg
h h

kT kRp h p e p e
 

                                    (23) 

 

Equation (23), which establishes the law of decreasing pressure with 
height, is called the barometric formula. From this equation, it can be seen 
that the gas pressure decreases with height exponentially. 

Since the gas pressure, as we saw earlier, is proportional to the number 
of molecules n per unit volume (p = nkT), the formula (23) also expresses 
the law of decreasing the concentration of molecules with height: 

 

0

0 .

m gh

kTn n e


                                             (24) 
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The resulting barometric formula refers to the case when the gas is 

under the influence of gravity. The value of mgh in the formula (24) is the 

potential energy of the molecule at height h. The “behavior” of a gas will not 

change if some other potential force acts on it instead of gravity, and the 

expression for energy has a different form. If a gas is in a force field, so that 

its particles have some potential energy, then the number of particles with a 

given energy U is determined by the formula: 

 

0 .

U

kTn n e


                                                   (25) 

 

Or as a relative concentration (probability): 

 

0

.

U

kT
n

e
n



                                                   (26) 

 

From the formula (26) it can be seen that the fraction 
0

n

n
 of particles 

with a given energy U, in addition to the value of this energy itself, depends only 

on the temperature. This allows us to interpret the temperature itself as a value that 

determines how the particles are distributed in terms of energy. 

At a constant temperature, the proportion of molecules with a 

particular energy U depends on the value of U and decreases rapidly with its 

growth. This means that the fraction of molecules with very high energy is 

always very small. 

 

 

2.4 Maxwell distribution by velocity component 

 
According to the molecular-kinetic theory, no matter how the 

velocities of molecules change during chaotic collisions, the average square 

velocity of molecules of mass m0 in a gas in a state of equilibrium at a 

constant temperature remains constant and equal to: 

 

0

3
.кв

kT

m
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This is explained by the fact that in a gas in a state of equilibrium, a 
certain stationary (not changing with time) distribution of molecules in 
terms of velocities is established, which obeys a well-defined statistical law. 

Maxwell's law is described by a certain function f(v), called the 

velocity distribution function of molecules. If we divide the range of 

molecular velocities into small intervals equal tovv, then for each velocity 

interval there will be a certain number of molecules dN(v) having a velocity 

enclosed in this interval. The function f(v) determines the relative number of 

molecules 
 dN

N


 whose velocities lie in the range from v to v + dv , i. e. 

 dN

N


 = f(v) dv, from which: 

 

 
   

.
dN dn

f
Nd nd

 
  

 
                                     (27) 

 
When considering Maxwell's law of the velocity distribution of 

molecules, we assume: 
– the gas consists of a very large number of identical particles 

(molecules); 
– the molecules are in a state of disordered thermal motion at the same 

temperature; 
– force fields do not affect the gas (there is no preferential direction in 

the system). 
However, you can use the known distribution of molecules in the force 

field (24)–(26) to”sort” the molecules by velocity. 
Consider molecules with velocities in the dvz range, located in an 

infinitely thin (thickness dz) gas layer at height z. The volume of this layer 
coincides with dz (if the cross-sectional area of the gas column in the 
direction perpendicular to z is 1 m

2
), so the number of molecules under 

consideration is n(z)f(vz) dvzdz, where n(z) is the density (concentration) of 
the gas at height z. For any constant number of these molecules in two 
adjacent layers, the equation holds: 

 

        .z z zn z f d dz z f d dz                               (28) 

 
When moving in the gravity field, the horizontal components of the 

velocity (vx, vy) do not change, and the change in vz is determined by the law of 
conservation of energy: 
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2 2

.
2 2

z zm m
mgz mgz


 

                                  (29) 

 

Differentiating equality (29) for the given constant values of z and z*, we 

obtain the relation:  

 

.z z z zd d                                               (30) 

 
connecting the intervals dvz and dv*z, which contain the vertical velocities of 
the molecules under consideration at altitudes z and z*. The thicknesses of 
the layers dz and dz* from the condition of invariance of the time of motion 
of the particle are related to each other by the relation: 
 

.
dz dz

z z


  

                                             (31) 

 
Multiplying the relations (30) and (31), we get dvz dz = dv*z dz*, which 

means that: n(z) f(vz) = n(z*) f(v*z). Then, using the Boltzmann distribution 
in the gravity field (24) for n(z), we obtain:  

 

   
 0

.

m g z z

kT
z zf f e




                                   (32) 

 

Given (29) we get: 

 

   
2 2

0 0

.
z zm m

kT kTf e f ez z

 

                                  (33) 

 
So the product (33) is a constant independent of vz, i. e. the desired 

distribution function has the form: 
 

 

2
0

2 ,
zm

kT
zf Ae




                                          (34) 

 
2

0

2 .
zm

kT
z

dn
Ae d

n
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The constant A can be obtained from the normalization condition (20): 

 
2

0

2 1.
zm

kT
z

dn
A e d

n


  

 

   
 

 

Means:  

 
2

0

1

2 .
zm

kT
zA e d




 



 
  
 
 

 

 

When integrating, we use the well-known relation (Poisson integral), 

2

πxe dx






  thus:  

1

20

2π

m
A

kT

 
  
 

. Then the expression for the velocity 

projection distribution function vz takes the form : 

 

 

2
0

1

20 2
1

.
2

zm

kT
z

z

mdn
f e

n d kT


 

    
    

                        (35) 

 

The general view of the distribution function (35) is shown in Figure 6. 

 

 
 

Figure 6 – Maxwell distribution over the velocity component 
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The function of the distribution of molecules by the velocity 

components (35) was obtained by considering a gas in the field of gravity. 

This does not mean that the type of distribution of molecules in the velocity 

components is somehow related to the action of gravity, or that it is gravity 

that creates this distribution. As already mentioned, the barometric formula 

(24), which we used in the derivation, is itself a consequence of the 

distribution of molecules in terms of velocities. 
 

 

2.5 Maxwell’s distribution over the velocity modulus 

and its consequences 

 
The expression (35) obtained for the projection (component) The speed 

of the z direction is equally valid for the components x and y. Means: 
 

2
0

2 ,
zm

kT

z

dn
Ae

ndv





  

     

2
0

2 ,
xm

kT

x

dn
Ae

ndv





 

 
2

0

2 .

ym

kT

y

dn
Ae

ndv





       

(36) 

 

Now we can also find the probability that the projection of the velocity 

of the molecule is simultaneously located in three small intervals 

corresponding to each of the Cartesian directions. In view of chaotic motion, 

the values of the velocity components for each of the coordinate axes do not 

depend on the values of the components for the other axes. Therefore, the 

probability that the velocity of a molecule simultaneously satisfies the three 

specified conditions is the probability of the product of independent events 

(Theorem 2). 

Let us xyzdn  the number of molecules in the unit of the ”volume” of the 

gas velocities whose components on the coordinate axes lie within the limits 

specified above, then, given that, 2222
zyx     we can write: 

 
2

0

3 2 .

m
xyz kT

x y z

dn
A e d d d

n




                                  (37) 
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The formula (37) can be given a clear graphical interpretation, as 
shown in Figure 7. 

 

 
 

Figure 7 – Is an elementary “volume” in the “space” of velocities 
 

Using the relations (35) and (37), we can obtain the value: 
 

2
0

3

20 2 ,
2

m
xyz kT

dn m
n e

dw kT


 

  
 

                                (38) 

 

which does not depend on the direction of the velocity vector. So if we collect all 
the molecules of a unit volume of gas whose velocities are enclosed in the range 
from v to v + dv in all directions, they will be evenly distributed in a spherical 
layer with a thickness of dv and a radius of v, as shown in Figure 8. 

 

 
 

Figure 8 – Ball layer in the ”space” of velocities 
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The number of molecules in the entire layer is the number of molecules 

per unit volume of the gas, whose velocities lie in the range from v to v + dv.  

 
2

0
3

20 2 .
2

m

kT
m

dn n e d
kT


 

  
 

 

 

So the desired distribution function: 

 

 

2
0

3

2 20 2
4

.
2

m

kT
mdn

f e d
nd kT


 

     
   

                      (39) 

 

Formula (39) expresses Maxwell’s law of the velocity distribution of 

molecules. It determines the fraction of molecules of a unit volume of a gas 

whose velocities are enclosed in a velocity interval equal to dv, which 

includes this velocity. A general view of the distribution function is shown in 

Figure 9.  

 

 
 

Figure 9 – A general view of the Maxwell distribution function with respect to the 

velocity modulus 

 

It vanishes at v = 0 and at v → ∞: there are no fixed molecules in a gas 

and no molecules with infinitely high velocities (although the formal limit is 

the speed of light in a vacuum). As can be seen from Figure 9, the 
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distribution function has a maximum at a certain value of the velocity vpr. 

This means that the largest fraction of all gas molecules moves at velocities 

close to vpr. We can also say that the velocities close to vpr. Ae more common 

in gas molecules than others, and that the probability that the velocity of the 

molecule is close to vpr is the greatest. Therefore, the velocity v, which 

corresponds to the maximum of the Maxwell distribution curve, is called the 

most probable velocity. 

As the temperature increases, the velocities of the molecules increase 

on average, so that the entire curve shifts towards higher velocities. But, the 

areas bounded by the curves and the velocity axis remain unchanged, as 

follows from the normalization condition (20). As a result, the maximum of 

the curve decreases as the temperature increases. 
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