Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

М. С. БЕЛОКУРСКИЙ, Н. В. РЯБЧЕНКО, А. А. АТВИНОВСКИЙ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Тестовые задания

для студентов математических специальностей

Ma Ma Гомель ГГУ им. Ф. Скорины 2022

УДК 517.9(076) ББК 22.161.6я73 Б435

Рецензенты:

кандидат физико-математических наук В. И. Мироненко, доктор физико-математических наук А. К. Деменчук

Рекомендовано к изданию научно-методическим советом учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Белокурский, М. С.

Б435 Дифференциальные уравнения: тестовые задания / М. С. Белокурский, Н. В. Рябченко, А. А. Атвиновский; Гомельский гос. ун-т им. Ф. Скорины. – Гомель: ГГУ им. Ф. Скорины, 2022. – 47 с.

ISBN 978-985-577-891-3

Тестовые задания направлены на оказание помощи студентам в процессе усвоения основ дифференциальных уравнений, а также при подготовке к текущему и итоговому контролю знаний.

Адресовано студентам факультета математики и технологий программирования.

УДК 517.9(076) ББК 22.161.6я73

ISBN 978-985-577-891-3

© Белокурский М. С., Рябченко Н. В., Атвиновский А. А., 2022

© Учреждение образования «Гомельский государственный университет имени Франциска Скорины», 2022

ОГЛАВЛЕНИЕ

	OIJIADJIEHHE
	Предисловие
	1. Тестовые задания
	2. Ответы к тестовым заданиям
	Литература
	YØ. Cy
	WILLIA WHETHY O. CKO.
	ELIO3NIOPNIN
Ó	
X	

ПРЕДИСЛОВИЕ

Текущий контроль знаний является важным методическим приемом повышения эффективности обучения студентов. Наиболее универсальной формой контроля знаний является тестирование. К его достоинствам можно отнести объективность и удобство использования с учетом цифровизации. Конечно, компьютерное тестирование не дает возможности преподавателю проанализировать качество мышления обучаемого, его умение давать развернутый ответ. Однако тестирование является полезным инструментом в сочетании с традиционными формами как обучения, так и контроля знаний.

Разработанные тестовые задания могут быть использованы для проведения текущего и итогового контроля знаний по общему курсу «Дифференциальные уравнения». Вопросы в тестах имеют различный уровень сложности.

Текущий контроль знаний осуществляется по мере прохождения разделов курса и позволяет студентам объективно оценивать уровень своих знаний, что в свою очередь корректирует направленность самостоятельной работы в рамках изучаемого курса.

Данные материалы предназначены для подготовки студентов к компьютерному тестированию по курсу «Дифференциальные уравнения» с целью контроля и коррекции знаний. В них использованы традиционные математические обозначения и стандартная терминология.

1. ТЕСТОВЫЕ ЗАДАНИЯ

Ответьте на вопросы, выбрав вариант из предложенных.

- 1. Дифференциальное уравнение вида $F(x, y, y', y'', ..., y^{(n)}) = 0$ называется...
 - а) уравнением в частных производных n-го порядка;
 - б) линейным дифференциальным уравнением *п*-го порядка;
 - в) необыкновенным дифференциальным уравнением *п*-го порядка;
 - Γ) обыкновенным дифференциальным уравнением n-го порядка:
 - д) уравнением Коши.
- 2. Фундаментальная матрица линейной дифференциальной системы это...
- а) квадратная матрица, все столбцы которой являются решениями этой системы;
 - б) квадратная матрица, содержащая решения этой системы;
- в) квадратная матрица, определитель которой не равен нулю хотя бы в одной точке;
 - г) квадратная матрица, столбцы которой линейно независимы;
- д) квадратная матрица, все столбцы которой являются решениями этой системы и определитель которой не равен нулю хотя бы в одной точке.
- 3. Фундаментальная система решений линейного дифференциального уравнения это...
 - а) множество всех его решений;
 - б) множество его линейно независимых решений;
 - в) множество его линейно зависимых решений;
 - г) множество его решений, вронскиан которых не равен нулю;
- д) множество его линейно независимых решений, число которых совпадает с порядком этого уравнения.
- 4. Дифференциальное уравнение, удовлетворяющее теореме существования и единственности, имеет...
 - а) одно решение;
 - б) бесконечно много решений;
 - в) столько решений, совпадающих с порядком уравнения;
 - г) счетное множество решений;
 - д) n^2 решений, где n порядок уравнения.
 - 5. Решение дифференциального уравнения n-го порядка не всегда...
 - а) единственно;
 - б) задано на связном множестве;

- в) дифференцируемо n раз;
- г) обращает уравнение в тождество при подстановке его в это уравнение;
 - д) является функцией.
- 6. Для дифференциального уравнения вида $F(x, y, y', y'', ..., y^{(n)}) = 0$ верно, что F ...
 - а) переменная;
 - б) линейная функция;
 - в) известная функция;
 - г) искомая функция;
 - д) матрица.
- 7. Для дифференциального уравнения вида $F(x, y, y', y'', ..., y^{(n)}) = 0$ верно, что x ...
 - а) независимая переменная;
 - б) константа;
 - в) известная функция;
 - г) искомая функция;
 - д) параметр.
- 8. Для дифференциального уравнения вида $F(x, y, y', y'', ..., y^{(n)}) = 0$ верно, что y ...
 - а) независимая переменная;
 - б) константа;
 - в) известная функция;
 - г) искомая функция;
 - д) параметр.
- 9. Решением дифференциального уравнения y'' 4y' + 4y = 0 является функция...
 - a) $y = xe^{3x}$
 - $6) \quad y = xe^{2x}\cos x;$
 - B) $y = e^{2x} \cos x$
 - $\mathbf{r}) \quad \mathbf{y} = \mathbf{x}e^{2x};$
 - $y = x \cos x$.
 - 10. Порядок дифференциального уравнения y'' 4y' + 4y = 0 равен...
 - a) 3;
 - б) 2;
 - в) 1;
 - r) 4;
 - д) **5**.

- 11. Укажите порядок дифференциального уравнения y' + 2xy = 0.
- a) 0:
- б) 1;
- в) 2;
- г) 3;
- д) это не дифференциальное уравнение.
- KOBNHIPI 12. Соотношение... не является дифференциальным уравнением.
- a) $y^2 x^2 + \cos y = 125 \sin x$;
- $6) \quad y'' y = x;$
- B) y'' + y = x;
- $\Gamma) \quad x = \sin y' x^2;$
- π) $\cos x dx = dy + 2\sin y x$.
- 13. Соотношение... является дифференциальным уравнением.
- a) $\sin x + \tan y \ln y' = y^2 2\cot y$;
- 6) $v^3 x = 0$:
- B) $\sin x tg y^2 + \ln x = 27$;
- $\Gamma) \quad \sin^2 x = 21 \ln y^2 \cos x;$
- д) ch $y = 3 \text{sh } y + \sin y$.
- 14. Укажите задачу Коши.
- a) y' = y, y(1) = 2, y(9) = 9; b) y''' = y, y(1) = 2; c) y' = y, y(1) = 2; d) y' = y, y'(1) = 2; d) y' = y, y'(1) > 2.

- 15. Укажите порядок дифференциального уравнения y'' = y.
- a) 1;

- 16. Дифференциальное уравнение $\sin y = \int y dy...$
- а) имеет порядок 1;
- б) имеет порядок 2;
- в) имеет порядок 3;
- г) имеет порядок 4;
- д) не является дифференциальным уравнением.

- 17. Дифференциальное уравнение y'' = y + x будет содержать... переменную (-ых). a) 0; б) 1; в) 2; г) 5;
- 18. Дифференциальное уравнение y = y' + 2x будет содержать ...

 извольную(-ых) постоянную(-ых).

 а) 0;

 б) 1;

 в) 2;

 г) 5;

 д) 3. произвольную (-ых) постоянную (-ых).
- 19. Дифференциальное уравнение y''' = y' 2 будет содержать... MARKEN A произвольную(-ых) постоянную(-ых).
 - a) 0;
 - б) 1;
 - в) 2;
 - г) 5;
 - д) 3.
 - 20. Особое решение дифференциального уравнения это...
- а) решение, в каждой точке графика которого нарушается единственность решения задачи Коши;
- б) решение, состоящее из обыкновенных точек дифференциального уравнения;
- в) функция, заданная на связном множестве, дифференцируемая на нем нужное количество раз, и обращающая на этом множестве дифференциальное уравнение в тождество;
- г) решение, в каждой точке которого не нарушается единственность решения задачи Коши;
- д) секущая линия семейства интегральных кривых уравнения, определяемых его общим решением.
 - 21. Ответом в задаче Коши является...
 - а) частное решение;
 - б) общее решение;
 - в) собственные значения;
 - г) линейно независимые решения;
 - д) дифференциальное уравнение.

- 22. Задача Коши для уравнения первого порядка содержит... начальное(-ых) условие(-ий).
 - a) 0;
 - б) 1;
 - в) 2;
 - г) 3;
 - д) 4.
 - 23. Дифференциальное уравнение $y' = xy^5$ является...
 - а) линейным;
 - б) уравнением в полных дифференциалах;
 - в) уравнением с разделяющимися переменными;
 - г) уравнением Бернулли;
 - д) уравнением колебаний.
- 24. Укажите общее решение дифференциального уравнения (xy + y)dx + (xy + x)dy = 0.
 - a) $e^{x+y} = c$;
 - 6) $xy + e^{x+y} = c$;
 - B) $xye^{x+y} = c$;
 - $\Gamma) \quad (x+y)e^{x+y} = c;$
- 25. Общим решением дифференциального уравнения $(1+e^{2x})y^2y'=e^x$ является...
 - a) $y = \sqrt[3]{c + 3 \operatorname{arctg} x}$;
 - $5) \quad y = \sqrt[3]{c 3 \operatorname{arctg} e^x}$
 - $y = \sqrt[3]{c + \arctan e^x}$
 - $\Gamma) \quad y = \sqrt[3]{c + \arctan e^{3x}}$
 - д) $y = \sqrt[3]{c} + 3 \operatorname{arctg} e^x$
- 26. Общим решением дифференциального уравнения $(1+e^x)y = ye^x$ является...
 - (a) $y = c(1 e^x)$;
 - $6) y = 3c(1+e^{x});$
 - B) $y = c(1 + e^{3x});$
 - $\Gamma) \quad y = c(1 + e^x);$
 - д) $y = c(4 + e^x)$.

27. Общим решением дифференциального уравнения

$$y' + y \operatorname{tg} x = \frac{1}{\cos x}$$
 является...

- a) $y = \cos x(c \lg x)$;
- $6) \quad y = \sin x(c + \operatorname{tg} x);$
- B) $y = \cos x(c + \operatorname{tg} x)$;
- Γ) $y = \operatorname{tg} x(c + \operatorname{tg} x)$;
- $y = \cos x(c + \sin x)$.
- 28. Уравнение Бернулли имеет вид...
- a) y' = P(x)y + Q(x);
- 6) $y' = P(x)y + Q(x)y^{a}$;
- $B) \quad y' = P(x)y^a + Q(x);$
- Γ) y' = P(x) + Q(x);
- μ) y' = P(x) + Q(x)y.
- Ø. CKOBNHIPJ 29. Дифференциальное уравнение $y'\cos x'$ является...
- а) линейным;
- б) уравнением в полных дифференциалах;
- в) уравнением с разделяющимися переменными;
- г) уравнением Бернулли;
- д) уравнением Эйлера.
- 30. Дифференциальное уравнение $(1+e^{2x})y^2dy e^xdx = 0$ является...
- а) уравнением с разделяющимися переменными;
- б) линейным;
- в) уравнением в полных дифференциалах;
- г) уравнением Бернулли;
- д) уравиением Эйлера.
- 31. Дифференциальное уравнение $y' = e^{2x} ye^x$ является...
- а) уравнением с разделяющимися переменными;
- б) линейным;
- в) уравнением в полных дифференциалах;
- г) уравнением Бернулли;
- д) уравнением Эйлера.
- 32. Дифференциальное уравнение $xy' x^2y + y^2 = 0$ является...
- а) уравнением с разделяющимися переменными;
- б) линейным;
- в) уравнением в полных дифференциалах;

- г) уравнением Бернулли;
- д) уравнением Эйлера.
- 33. Дифференциальное уравнение $2x\cos^2 ydx + (2y x^2\sin 2y)dy = 0$ является...
 - а) уравнением с разделяющимися переменными;
 - б) линейным;
 - в) уравнением в полных дифференциалах;
 - г) уравнением Бернулли;
 - д) уравнением Эйлера.
- 34. Решение задачи Коши $y' + y \operatorname{tg} x = \frac{1}{\cos x}$, $y(\pi) = 5$ выглядит дующим образом... следующим образом...
 - a) $y = -5\cos x \sin x$;
 - $0) \quad y = 5\cos x + \sin x;$
 - B) $y = -5\cos x + \sin x$;
 - Γ) $y = \cos x + 5\sin x$;
 - $y = \cos x 5\sin x$.
- 35. Общим решением дифференциального уравнения $y^{IV} 16y = 0$ является...
 - a) $y = c_1 e^{4x} + c_2 e^{-4x} + c_3 \cos 2x + c_4 \sin 2x$;
 - 6) $y = c_1 e^x + c_2 e^{-x} + c_3 \cos x + c_4 \sin x$;
 - B) $y = c_1 e^{2x} + c_2 e^{-2x} + c_3 \cos x + c_4 \sin x$;
 - $y = c_1 e^x + c_2 e^{-x} + c_3 \cos 2x + c_4 \sin 2x;$
- д) $y = c_1 e^{2x} + c_2 e^{-2x} + c_3 \cos 2x + c_4 \sin 2x$. 36. Общим решением диффере дифференциального уравнения y'' - 15y' + 26y = 0 является...
- $y = c_1 e^{2x} + c_2 e^{3x};$ д) $y = c_1 e^x + c_2 e^{26x}.$ 37. Общим решением y'' + 6y' + 9y = 0 является... дифференциального уравнения
 - a) $y = e^{-3x}(c_1 + c_2);$
 - $6) \quad y = e^{-3x}(c_1 + c_2 x);$

- B) $y = e^{-3x}c_1 + c_2x$;
- Γ) $y = e^{3x}(c_1 + c_2 x)$;
- д) $y = e^x (c_1 + c_2 x)$.
- 38. Общим решением дифференциального уравнения y'' 2y' + 10y = 0 является...
 - a) $y = e^{3x}(c_1 \cos 3x + c_2 \sin 3x);$
 - 6) $y = e^{-x}(c_1 \cos 3x + c_2 \sin 3x)$;
 - B) $y = e^{x}(c_1 \cos 3x + c_2 \sin 3x);$
 - $\Gamma) \quad y = e^x (c_1 \cos x + c_2 \sin x);$
 - $y = c_1 \cos 3x + c_2 \sin 3x.$
- 39. Общим решением некоторого дифференциального уравнения является семейство линий $y^2 + x^2 2x = C$. Из этого семейства можно выбрать функцию, удовлетворяющую условию y(3) = 4, если C равно...
 - a) 11;
 - б) 19;
 - в) 21;
 - г) 15;
 - д) 13.
- 40. Частное решение линейного уравнения третьего порядка с постоянными коэффициентами можно найти методом...
 - а) Коши;
 - б) Гаусса;
 - в) Эйлера;
 - г) Лагранжа;
 - д) Фурье.
 - 41. Укажите уравнение с разделяющимися переменными.
 - a) y' = f(x)g(y);
 - 6) M(x, y)dx + N(x, y)dy = 0;
 - B) y' = f(x, y)
 - $\Gamma) \quad y = f(x) + g(y);$
 - $\mathbf{I}) \quad \mathbf{y}' + a(\mathbf{x})\mathbf{y} = b(\mathbf{x}).$
 - 42. Укажите уравнение с разделяющимися переменными.
 - (a) M(x, y)dx + N(x, y)dy = 0;
 - $6) (x + y^2) dx = xy dy;$
 - B) $(x^2-1)y'+2xy^2+y=0$;
 - $\Gamma) \quad xdx (t-1)dt = 0;$
 - д) x+4=0.

- 43. Общим решением дифференциального уравнения $y^{IV} 9y'' = 0$ является...
 - a) $y = c_1 + c_2 + c_3 e^{3x} + c_4 e^{-3x}$;
 - 6) $y = c_1 + c_2 x$;
 - B) $y = c_1 + c_2 x + c_3 e^{3x} + c_4 e^{-3x}$;
 - $y = c_1 + c_2 x + c_3 e^{3x} + c_4 e^{-3x} x;$
 - $y = c_1 + c_2 x + c_3 e^{3x} + c_4 e^x$.
- 44. Согласно методу неопределенных коэффициентов, частное ре шение дифференциального уравнения $y^{IV} - 9y'' = 9x^2$ необходимо искать в виде...
 - a) $y = Ax^2 + Bx$;
 - 6) $y = x^2 (Bx + C);$
 - B) $y = x^2 (Ax^2 + Bx)$;
 - $\Gamma) \quad y = x^2 (Ax^2 + Bx + C);$
 - $д) \quad y = Ax^2 + Bx + C.$
- дифференциального 45. Общим решением уравнения y'' - 7y' + 6y = 0 будет...
 - a) $y = c_1 e^x + c_2 e^{5x}$;
 - $6) \quad y = c_1 e^x + c_2 e^{6x};$
 - B) $y = c_1 e^x + c_2 e^{6x} x$;

 - Γ) $y = c_1 + c_2 e^{6x}$; д) $y = c_1 e^{-x} + c_2 e^{6x}$
- 46. Согласно методу неопределенных коэффициентов, частное решение дифференциального уравнения $y'' - 7y' + 6y = (x - 2)e^x$ необходимо искать в виде...

 - $y = x^2 (Ax^2 + Bx);$

 - y = $xe^{x}(Ax + B)$; д) $y = Ax^{2} + Bx + C$.
- решением дифференциального уравнения y'' - 2y' + 5y = 0 будет...
 - a) $y = e^{x} (c_1 \cos 2x + c_2 \sin 2x);$
 - 6) $y = e^{x}(c_1 \cos x + c_2 \sin x);$

- B) $y = e^{-x}(c_1 \cos 2x + c_2 \sin 2x);$
- r) $y = e^{2x}(c_1 \cos 2x + c_2 \sin 2x);$
- $д) y = e^{3x} (c_1 \cos 2x + c_2 \sin 2x).$
- 48. Общим решением дифференциального уравнения y'' - 2y' - 4y = 0 будет...
 - a) $y = c_1 e^{(1+\sqrt{5})x} + c_2 e^{(1-\sqrt{5})x}$;
 - $6) \quad y = c_1 e^{(\sqrt{5})x} + c_2 e^{(-\sqrt{5})x};$
 - B) $y = c_1 e^x + c_2 e^{-x}$;
 - $\Gamma) \quad y = c_1 e^{(1+\sqrt{5})} + c_2 e^{(1-\sqrt{5})};$
 - д) $y = c_1 e^{(-1+\sqrt{5})x} + c_2 e^{(1-\sqrt{5})x}$.
- 49. Общим решением y'' - 6y' + 18y = 0 будет...
 - a) $y = c_1 \cos 3x + c_2 \sin 3x$;
 - 6) $y = e^{3x}(c_1 \cos 3x + c_2 \sin 3x);$
 - B) $y = e^{-3x} (c_1 \cos 3x + c_2 \sin 3x);$
 - r) $y = e^{x}(c_1 \cos 3x + c_2 \sin 3x);$
 - д) $y = e^{-x}(c_1 \cos 3x + c_2 \sin 3x)$.
- решением дифференциального уравнения $y^{IV} - 8y'' + 7y = 0$ будет...
 - a) $y = c_1 e^{\sqrt{7}x} + c_2 e^{-\sqrt{7}x} + c_3 e^x + c_4 e^{-x}$;
 - 6) $y = c_1 e^{\sqrt{7}x} + c_2 e^{-\sqrt{5}x} + c_3 e^{2x} + c_4 e^{-2x};$ B) $y = c_1 e^{\sqrt{5}x} + c_2 e^{-\sqrt{5}x} + c_3 e^x + c_4 e^{-x};$

 - $\Gamma) \quad y = c_1 e^{\sqrt{7}x} + c_2 e^{-\sqrt{7}x};$
- д) $y = c_1 + c_2 e^{-\sqrt{7}x} + c_3 e^x + c_4 e^{-x}$. 51. Общим решением дифференциального уравнения 6y'' + 9y''' = 0 будет...

 - a) $y = c_1 + c_2 x + c_3 x^2 + c_4 + c_5 x e^{3x};$ 6) $y = c_1 + c_2 x + c_3 x^2 + (c_4 + c_5 x) e^{3x};$
 - B) $y = c_1 + c_2 x + c_3 x^2 + (c_4 + c_5 x)e^{-3x}$;
 - $\Gamma) \quad y = c_1 + c_2 x + c_3 x^2 + c_4 e^{3x};$
 - д) $y = c_1 + c_2 x + c_3 x^2 + c_4 x e^{3x}$.

- 52. Общим решением дифференциального уравнения y''' + 9y' = 0будет...
 - a) $y = c_1 x + c_2 \cos 3x + c_3 \sin 3x$;
 - 6) $y = c_1 + c_2 \cos x + c_3 \sin x$;
 - B) $y = c_1 + c_2 \cos 3x + c_3 \sin 3x$;
 - r) $y = c_1 + c_2 \cos 9x + c_3 \sin 9x$;
 - $д) \quad y = c_1 + c_2 \cos 3x + \sin 3x.$
- уравнения Общим решением дифференциального 53. y'' - 6y' + 13y = 0 будет...
 - a) $y = c_1 \cos 3x + c_2 \sin 3x$;
 - 6) $y = e^{3x}(c_1 \cos 2x + c_2 \sin 2x);$
 - B) $y = e^{-3x} (c_1 \cos 3x + c_2 \sin 3x);$
 - r) $y = e^{x}(c_1 \cos 3x + c_2 \sin 3x);$
 - д) $y = e^{-x}(c_1 \cos 3x + c_2 \sin 3x)$.
- решением 54. Общим дифференциального уравнения $y^{IV} - 8y'' + 16y = 0$ будет...
 - a) $y = (c_1 + c_2 x)e^{2x} + (c_3 + c_4 x)e^{-2x}$
 - 6) $y = c_1 + c_2 x e^{2x} + (c_3 + c_4 x) e^{-2x}$
 - B) $y = (c_1 + c_2 x)e^{2x} + c_3 + c_4 xe^{-2x}$; $c_1 = c_1 + c_2 xe^{2x} + c_3 + c_4 xe^{-2x}$;

 - д) $y = (c_1 + c_2)e^{2x} + (c_3 + c_4)e^{-2x}$.
- дифференциального решением уравнения y'' + 4y' + 4y = 0 будет

 - 56. Общим решением уравнения $y'' = e^x$ является функция...

 - B) $y = c_2 e^x + c_1$;
 - Γ) $y = e^x + c_1 x + c_2$;
 - д) $y = -e^x + c_1$.

- 57. Выберите правильную замену для решения однородного дифференциального уравнения первого порядка y' = f(x, y).
 - a) y = zx;
 - $6) \quad y = uv;$
 - $\mathbf{B}) \quad \mathbf{y} = \frac{u}{-};$

 - μ) y = u + v;
- 58. Однородным дифференциальным уравнением первого порядка вется... является...
 - a) $(y + \sqrt{xy})dx = xdy$;
 - 6) $(x^2-1)y'+2xy^2=0$;
 - B) xy'' 2y = 0;
 - $\Gamma) \quad (x-y)xdx + ydy = 0;$
 - $д) \quad y'-2y=e^x.$
- 59. Общим решением дифференциального уравнения y'' - 2y' + y = 0 будет...
 - a) $y = (c_1 + c_2 x)e^{2x}$;
 - $6) \quad y = c_1 + c_2 x e^{-2x};$
 - B) $y = (c_1 + c_2 x)e^x$;
 - $\Gamma) \quad y = (c_1 + c_2)e^{-2x};$
 - д) $y = c_1 + c_2 e^{-2x}$.
- 60. Линейным дифференциальным уравнением первого порядка называется уравнение вида...
 - a) y' = P(x)y + Q(x);

 - P(x)dy + Q(x)dx = 0;
 - $y \neq P(x)y + Q(x)y;$
 - y' = P(x)y + Q(x)x.
 - 61. Укажите линейные однородные уравнения первого порядка.

 - $\mathbf{B)} \quad \mathbf{y'} = \mathbf{x}\mathbf{y} \; ;$
 - $\Gamma) \quad y' + x^2 y = x;$

- 62. Выберите замену, приводящую уравнение Бернулли $y' = P(x)y + Q(x)y^m$ к линейному.
 - a) $z = y^{1+m}$;
 - 6) $z = y^{1-m}$;
 - B) z = y m;

 - ду $z = x^{-m}$. 63. Общим решением дифференциального уравнения y'' + y = 0 будет... a) $y = c_1 x \cos x + c_2 \sin x$; б) $y = c_1 \cos i x + c_2 \sin i x$; в) $y = c_1 \cos x + c_2 \sin x$; г) $y = c_1 \cos i + c_2 \sin x$;

 - $\Gamma) \quad y = c_1 \cos i + c_2 \sin i \; ;$
 - $д) \quad y = c_1 \cos 2x + c_2 \sin 2x.$
- 64. Соответствующее однородное линейное уравнение y' + P(x)y = Q(x) является...
 - а) уравнением с разделяющимися переменными;
 - б) однородным уравнением первого порядка;
 - в) уравнением в полных дифференциалах;
 - г) однородным уравнением второго порядка;
 - д) уравнением в частных производных.
- 65. Общее решение линейного дифференциального уравнения y' = P(x)y + Q(x) определяется формулой...

a)
$$y = e^{\int P(x)dx} \left(c + \int Q(x)e^{-\int P(x)dx} dx \right);$$

$$\text{6)} \quad y = e^{\int P(x)dx} \left(c - \int Q(x)e^{-\int P(x)dx} dx \right);$$

B)
$$y = e^{\int P(x)dx} \left(c + \int Q(x)e^{\int P(x)dx} dx \right)$$

$$y = e^{-\int P(x)dx} \left(c + \int Q(x)e^{-\int P(x)dx} dx \right);$$

д)
$$y = e^{-\int P(x)dx} \left(c + \int Q(x)e^{\int P(x)dx} dx \right).$$

- 66. Система дифференциальных уравнений первого порядка называется нормальной, если...
 - а) все уравнения системы разрешены относительно производной;
 - б) все уравнения системы разрешены относительно искомой функции;

- в) все уравнения системы разрешены относительно переменной;
- г) все уравнения системы являются уравнениями в полных дифференциалах;
- д) все уравнения системы являются уравнениями в частных производных.
 - 67. Корнями характеристического уравнения системы

являются числа...

- a) $1 \pm i$:
- 6) $-1\pm i$;
- B) $6\pm i$;
- Γ) $-6\pm i$;
- μ) $\pm i$.
- 68. Дифференциальное уравнение вида M(x, y)dx + N(x, y)dy = 0называется уравнением в полных дифференциалах, если существует такая функция U(x, y), полный дифференциал которой имеет вид...
 - a) dU = M(x, y)dx + N(x, y)dy;
 - $6) dU = M'_{x}dx + N'_{y}dy;$

 - $D = M_y dx + N_x' dy;$ D = M(x, y) dx + M(x, y) dy; $D = M_x' dx N_y' dy$

 - 69. Пусть функции M(x,y), N(x,y), $\frac{\partial N}{\partial x}$, $\frac{\partial M}{\partial y}$ непрерывны
- области D. Дифференциальное уравнение односвязной M(x,y)dx + N(x,y)dy = 0 будет уравнением в полных дифференциалах тогда и только тогда, когда выполняется условие... для любых (x, y) из D.

 $\begin{cases} \dot{x} = 4x - 5y, \\ \dot{y} = x - 2y \end{cases}$ 70. Корнями характеристического уравнения системы

являются числа...

- а) натуральные отрицательные;
- $\delta) \quad \lambda_1 = 1, \quad \lambda_2 = -3;$
- B) $\lambda_1 = -1$, $\lambda_2 = -3$;
- $\Gamma) \quad \lambda_1 = -1, \quad \lambda_2 = 3;$
- $\lambda_1 = 1$, $\lambda_2 = 3$.
- 71. Укажите уравнение, являющееся уравнением в полных дифф ренциалах.
 - a) $2xydx + (x^2 y^2)dy = 0$;
 - 6) $2xdx + (x^3 3y^2)dy = 0$;
 - B) (x + y + 1)dx + ydy = 0;
 - $\Gamma) \quad (x-y)dx + (x+y)dy = 0;$
 - π) $(2+9xy^2)xdx+(y-9x^2y)ydy=0.$
- 72. Общим решением дифференциального уравнения y' = (2x-1)ctg у будет...
 - a) $\ln|\sin y| = x x^2 + c$;
 - 6) $\ln|\cos y| = x x^2$;
 - B) $\ln |\cos y| = x x^2 + c;$

 - Γ) $\ln |y| = x x^2 + c$; д) $\ln |\cos y| = x 2x^2 + c$.
- Общим решением 73. дифференциального уравнения $\sin y \cos x dy = \sin x \cos y dx$ будет...

 - д) $c = \frac{\cos y}{\cos x}$.

74. Обшим решением дифференциального уравнения $y' = (2y+1) \operatorname{tg} x$ будет...

a)
$$\sqrt{2y-1} = \frac{c}{\cos x}$$
;

$$6) \quad \sqrt{2y+1} = c;$$

$$\mathbf{B}) \quad \sqrt{2y+1} = \frac{c}{\cos x};$$

$$\Gamma) \quad \sqrt{2y+1} = \frac{c}{\sin x};$$

$$(3) \quad \sqrt{2y+1} = \frac{c}{\cos 2x}.$$

OP WHID 75. Если все коэффициенты линейного дифференциального уравнения n-го порядка непрерывны на интервале (a;b), то для этого уравнения справедлива...

- а) основная теорема дифференциальных уравнений;
- б) теорема Менелая;
- в) только теорема существования решения
- г) только теорема единственности; д) теорема существования и единственности.

решением дифференциального 76. Общим уравнения $(1+e^x)$ уу' = e^x будет...

a)
$$y^2 = 2\ln(1+e^x)$$
;

6)
$$y^2 = \ln c(1 + e^x);$$

B)
$$y^2 = 2 \ln c (1 + e^x)$$

$$\Gamma) \quad y^2 = 2\ln c(1 - e^x)$$

д)
$$y = 2 \ln c (1 + e^x)$$
.

Общим решением дифференциального уравнения $\sin x \cdot \text{tg ydx} + \frac{dy}{\sin x} = 0$ будет...

a)
$$\ln|\sin y| = c + \frac{1}{2} - \frac{1}{4}\sin 2x$$
;

(5)
$$\ln |\sin y| = c + \frac{1}{2}x - \frac{1}{4}\sin x;$$

B)
$$\ln|\cos y| = c + \frac{1}{2}x - \frac{1}{4}\sin 2x$$
;

- $|\sin y| = c + \frac{1}{2}x \frac{1}{4}\sin 2x;$
- д) $\ln |\sin y| = \frac{1}{2}x \frac{1}{4}\sin 2x$.
- 78. Обшим решением дифференциального уравнения KOBNHIP $3e^x \sin y dx + (1-e^x) \cos y dy = 0$ будет...
 - a) $y = c(e^x 1)^3$;
 - 6) $ctg y = c(e^x 1)^3$;
 - B) $\operatorname{tg} y = c(e^x 1)^3$;
 - Γ) $\cos y = c(e^x 1)^3$;
 - д) $\sin y = c(e^x 1)^3$.
- 79. Если n-1 раз дифференцируемые на интервале Y функции $\phi_1(t), \phi_2(t), \dots, \phi_n(t)$ линейно зависимы, то их определитель Вронского...
 - а) равен нулю;
 - б) не равен нулю;
 - в) положителен всюду на I;
 - г) обращается в нуль в отдельных точках интервала;
 - д) удовлетворяет формуле Остроградского-Лиувилля.
- 80. Решения $\phi_1(t), \phi_1(t), ..., \phi_n(t), t \in I$ линейного дифференциального уравнения порядка n образуют фундаментальную систему решений, если их определитель Вронского.
 - а) не обращается в нуль ни в одной точке интервала I;
 - б) обращается в нуль всюду на I;
 - в) положителен всюду на I;
 - Γ) отрицателен всюду на I;
 - д) удовлетворяет формуле Остроградского-Лиувилля.
 - 81. Дифференциальное уравнение вида y' = f(ax + b) приводится...
 - а) к уравнению с разделяющимися переменными;
 - б) к линейному уравнению второго порядка;
 - в) к однородному уравнению первого порядка;
 - г) к обобщенному однородному уравнению;
 - 🕽 🖈 уравнению в полных дифференциалах.
 - 82. Укажите линейное дифференциальное уравнение.
 - (a) y''y = 1;
 - 6) y'' + 3y' = x;
 - B) $y^2y'' + 2xy' + y = 0$;
 - $\Gamma) \quad y'' = y^3;$
 - μ д) xyy'y'' = 2x + y.

83. Частным решением дифференциального уравнения y'' - 4y' + 4y = 0 является...

- a) $y = xe^{-2x}$;
- $6) \quad y = xe^x;$
- B) $y = e^{-2x}$;
- $\Gamma) \quad y = xe^{2x};$
- $y = xe^{-x}$.

84. Частным решением дифференциального уравнения y'' + 6y' + 9y = 0 является...

- a) $y = xe^{-x}$;
- 6) $y = xe^{-3x}$;
- $\mathbf{B)} \quad y = xe^{3x};$
- $\Gamma) \quad y = e^{-x};$
- $y = xe^x$.

85. Укажите функцию, которая не является решением дифференциального уравнения y''' + 9y' = 0.

- a) y = 0;
- δ) y = 1;
- $\mathbf{B}) \quad y = \cos 3x;$
- Γ) $y = \sin 3x$;
- $y = \sin 2x$.

86. Функция $y = e^{2x}$ является частным решением дифференциального уравнения...

- a) 3y'' 2y' 8y = 0;
- 6) 3y'' + 2y 8y = 0
- B) 3y'' 2y' = 0;
- $\Gamma) y'' 6y' + 13y = 0;$
- д) y'' 2y' 4y = 0.

87. Укажите общее решение линейного однородного уравнения y'+2y'+10y=0.

- a) $y = c_1 e^{-x} \cos x + c_2 e^{-x} \sin x$;
- 6) $y = c_1 e^x \cos 3x + c_2 e^x \sin 3x$;
- B) $y = c_1 e^{-x} \cos 3x + c_2 e^{-x} \sin 3x$;
- r) $y = c_1 e^{-x} \cos 3x + e^{-x} \sin 3x$;
- $д) \quad y = e^{-x} \cos 3x + c_2 e^{-x} \sin 3x.$

88. Укажите общее решение линейного однородного уравнения 2y'' - 5y' + 2y = 0.

- a) $y = c_1 e^{2x} + c_2 e^{x/2}$;
- $6) \quad y = c_1 e^{2x} + c_2 e^x;$
- B) $y = c_1 e^{2x} + c_2 e^{-x/2}$;
- $\Gamma) \quad y = c_1 e^{-2x} + c_2 e^{x/2};$
- д) $y = c_1 e^x + c_2 e^{x/2}$.

89. Выберите линейное неоднородное дифференциальное уравне ние со специальной правой частью, т. е. такое уравнение, частные решения, которого можно найти, используя метод неопределенных коэффициентов.

- a) $y'' + 5y' + y = \frac{1}{x}$;
- 6) $y'' 3y' + 2y = \frac{x}{\cos x}$;
- $B) \quad y'' + 4y = 2 \operatorname{tg} x;$
- Γ) 2y'' 5y' + 2y = 3x;
- $y'' + 4y = 2 \operatorname{ctg} x$.

90. Общим решением дифференциального уравнения $y'\sin x = y\cos x + 2\cos x$ будет.

- a) $y = c \cos x 2$;
- $6) \quad y = \sin x 2c;$
- B) $y = c \sin x 2$; $y = c \sin x + 2$;

решением дифференциального уравнения

- B) $\arctan y = c \frac{1}{2}e^{x^2};$ r) $\arctan y = c + \frac{1}{2}e^{x^2};$
- д) arctg $y = c + \frac{1}{2}e^x$.

- 92. В общем решении линейного стационарного дифференциального уравнения действительному корню λ кратности k соответствует слагаемое вида...
 - a) $x = (c_0 t + c_1 t^2 + ... + c_t t^{k+1})e^{\lambda t}$;
 - 6) $x = (c_0 + c_1 t + ... + c_k t^k)e^{\lambda t}$;
 - B) $x = (c_1 + c_2 t + ... + c_k t^{k-1})e^{\lambda t}$;
 - Γ) $x = t^k (c_1 + c_2 t + ... + c_k t^{k-1}) e^{\lambda t};$
- уравнени 93. Частное решение дифференциального $y'' + 2y' - 3y = x^2 e^x$ следует искать в виде...
 - a) $x(Ax+B)e^x$;
 - $6) x(Ax^2 + Bx + C)e^x;$
 - $B) \quad x(Ax^2 + Bx)e^x;$
 - Γ) $(Ax^2 + Bx + C)e^x$;
 - π) $x(Ax^2+Bx)e^{-x}$.
- 94. Однородное дифференциальное уравнение первого порядка приводится...
 - а) к уравнению с разделяющимися переменными;
 - б) к линейному уравнению второго порядка;
 - в) к уравнению Бернулли,
 - г) к обобщенному однородному уравнению;
 - д) к уравнению в полных дифференциалах.
 - 95. Уравнением Клеро является уравнение...
 - a) y = xy' + g(y');
 - 6) y = xf(y') + g(y');
 - B) $y = xy' + x^2g(y');$
 - $\Gamma) \quad y = xf(y') + x^2g(y');$
- 96. Найти общее решение линейного дифференциального уравнеия первого порядка можно методом...
 - а) Якоби;
 - б) Лагранжа;
 - в) Эйлера;
 - г) Гаусса;
 - д) Бернулли.

97. Общим решением дифференциального уравнения $y' \cot x + y = 2$ будет...

a)
$$y = c \cos 3x + 2$$
;

$$6) \quad y = c\cos x - 2;$$

$$\mathbf{B}) \quad \mathbf{y} = c\sin x + 2;$$

$$y = c \cos x + 2$$
;

$$y = 3\cos x + 2$$
.

решением дифференциального Общим

$$\frac{e^{x^2}dy}{x} + \frac{dx}{\cos^2 y} = 0 \text{ будет...}$$

a)
$$\frac{1}{2}y + \frac{1}{4}\sin x = c - \frac{1}{2}e^{x^2}$$
;

6)
$$\frac{1}{2}y + \frac{1}{4}\sin 2x = c - e^{x^2}$$
;

B)
$$\frac{1}{2}y + \frac{1}{4}\sin 2x = c - \frac{1}{2}e^{x^2}$$
;

$$\Gamma) \quad \frac{1}{2}y - \frac{1}{4}\sin 2x = c - \frac{1}{2}e^{x^2};$$

$$(3) \quad \frac{1}{2}y + \frac{1}{4}\sin 2x = c + \frac{1}{2}e^{x^2}.$$

уравнения 99. Общим решением $(1+e^{3y})xdx = e^{3y}dy$ будет... дифференциального уравнения

a)
$$\frac{x^2}{2} = \ln(1 + e^{3y}) + c$$
;

6)
$$\frac{x^2}{2} = \frac{1}{3} \ln(1 - e^{3y}) + c$$
;

B)
$$\frac{x^2}{2} = \frac{1}{3} \ln(1 + e^y) + c$$
;

B)
$$\frac{x^2}{2} = \frac{1}{3}\ln(1+e^y) + c;$$

f) $\frac{x^2}{2} = \frac{1}{3}\ln(1+e^{3y}) + c;$

д)
$$\frac{x^2}{2} = \frac{1}{6} \ln(1 + e^{3y}) + c$$
.

100. Укажите линейные неоднородные системы с постоянными коэффициентами.

a)
$$\begin{cases} x' = x + y, \\ y' = 2x - 3y - 1. \end{cases}$$

$$\begin{cases} x' = x + y, \\ y' = 2x - 3y. \end{cases}$$

B)
$$\begin{cases} x' = x + y, \\ y' = 2tx - 3y - 1. \end{cases}$$

$$\begin{cases} x' = tx + y, \\ y' = 2tx - 3y - 1. \end{cases}$$

д)
$$\begin{cases} x' = x + y, \\ y' = 2x - 3y - txy. \end{cases}$$

решением дифференциального $v'\sqrt{1-x^2}-\cos^2 y=0$ будет...

MO

- a) $tg y = \sin x + c$;
- $\delta) \quad y = \arcsin x + c;$
- B) tg y = arccos x + c;
- Γ) tg $y = \arcsin x + c$;
- д) $\operatorname{ctg} y = \arcsin x + c$.

y = 2xy + x 27. будет...

a)
$$\frac{1}{2} \ln |y| = \frac{x^2}{2} + c$$
;

a)
$$\frac{1}{2}\ln|y| = \frac{1}{2} + c;$$

6) $\frac{1}{2}\ln|y+1| = \frac{x^2}{2} + c;$

B)
$$\frac{1}{2}\ln|2y-1| = \frac{x^2}{2} + c$$
;

r)
$$\ln |2y+1| = \frac{x^2}{2} + c$$
;

д)
$$\frac{1}{2} \ln |2y+1| = \frac{x^2}{2} + c$$
.

103. Общим решением дифференциального уравнения $2xyy' = 1 - x^2$ удет...

a)
$$y^2 = \ln|x| - \frac{x^2}{2} + c$$
;

6)
$$y^2 = \ln|x| + \frac{x^2}{2} + c$$
;

B)
$$\frac{1}{2} \ln |2y-1| = \frac{x^2}{2} + c;$$

$$|\ln |2y+1| = \frac{x^2}{2} + c;$$

д)
$$\frac{1}{2}\ln|2y+1| = \frac{x^2}{2} + c$$
.

104. Функция является первым интегралом дифференциальной си стемы, если...

- а) ее производная в силу этой системы положительно определена:
- б) ее производная в силу этой системы отрицательно определена;
- в) ее производная в силу этой системы не равна нулю; возможно, за исключением отдельных точек;
 - г) ее производная в силу этой системы тождественно равна нулю;
 - д) ее производная в силу этой системы равна константе.
- дифференциального 105. Общим решением уравнения $(x^2-1)y'-xy=0$ будет...

a)
$$y = c\sqrt{x^2 - 1}$$
;

6)
$$y = 2\sqrt{x^2 - 1}$$
;

B)
$$y = c\sqrt{x^2 + 1}$$
;

$$\Gamma) \quad y = c\sqrt{x-1} \; ;$$

д)
$$y = c\sqrt{x^3 - 1}$$
.

106. Функция U = U(t, x) является первым интегралом дифференциальной системы $\dot{x} = f(x, x)$ тогда и только тогда, когда...

a)
$$\frac{\partial U}{\partial t} + \frac{\partial U}{\partial x} f(t, x) \neq 0$$
;

a)
$$\frac{\partial U}{\partial t} + \frac{\partial U}{\partial x} f(t, x) \neq 0;$$

6) $\frac{\partial U}{\partial t} + \frac{\partial U}{\partial x} f(t, x) = 0;$

P)
$$\frac{\partial U}{\partial t} + \frac{\partial U}{\partial x} f(t, x) = 0;$$

 Γ) $\frac{\partial U}{\partial t} - \frac{\partial U}{\partial x} f(t, x) \neq 0;$

$$\Gamma$$
) $\frac{\partial U}{\partial t} - \frac{\partial U}{\partial x} f(t, x) \neq 0$

д)
$$\frac{\partial U}{\partial t} + \frac{\partial U}{\partial x} f(t, x) = U$$
.

107. Общим решением дифференциального уравнения $(xy^2 + y^2)dy + xdx = 0$ будет...

- a) $y^3 = 3(c x + \ln|1 + x|)$;
- 6) $y^3 = 3(c-x) + \ln|1+x|$;
- B) $y^3 = 3c x + \ln|1 + x|$;
- $y^3 = 3c (x + \ln|1 + x|);$
- д) $y^3 = 3(c + x + \ln|1 + x|).$

уравнения Общим 108. дифференциального решением $\sqrt{1+y^2}dx = xydy$ будет...

- a) $\sqrt{y+1} = \ln cx$;
- 6) $\sqrt{y^2 + 1} = \ln cx$;
- B) $\sqrt{y^2 + 1} = \ln c + x$;
- $\Gamma) \quad \sqrt{y^2 + 1} = \ln(c + x);$
- д) $y^3 = 3(c + x + \ln|1 + x|).$

109. Общим решением дифференциального уравнения $y' = \frac{1+y^2}{1+x^2}$ будет...

- a) arctg y = c + arctg x;
- σ) arctg y = c arctg x;
- B) $\operatorname{tg} y = c + \operatorname{tg} x$;
- $\Gamma) \quad \text{tg } y = c + \arctan x;$
- μ д) arctg y = c + tg x.

решением дифференциального уравнения

$$\sqrt{1+y^2}\,y' = \frac{x^2}{y}$$
 будет...

a)
$$\sqrt{(1+y^2)^3} = c - x^3$$
;

$$(0+y^2)^3 = c + x^3;$$

B)
$$\sqrt{(1+y^2)^3} = c + x^2$$
;

$$\sqrt{(1+y^2)^3} = c + 2x^3;$$

д)
$$2\sqrt{(1+y^2)^3} = c + x^3$$
.

- 111. Уравнение Бернулли можно привести...
- а) к линейному уравнению первого порядка;
- б) к однородному уравнению первого порядка;

- в) к обобщенному однородному уравнению;
- г) к уравнению в полных дифференциалах;
- д) к уравнению с разделяющимися переменными.
- 112. Уравнение вида P(x, y)dx + Q(x, y)dy = 0 называется уравнением в полных дифференциалах, если его левая часть является...
 - а) полным дифференциалом некоторой функции;
 - б) дифференцируемой;
 - в) интегрируемой;
 - г) ограниченной;
 - д) непрерывно дифференцируемой.
- 113. Функция, после умножения на которую исходное уравнение становится уравнением в полных дифференциалах, называется...
 - а) вронскианом;
 - б) экспонентой;
 - в) интегрирующим множителем;
 - г) якобианом;
 - д) гамильтонианом.
- 114. Для уравнения вида P(x, y)dx + Q(x, y)dy = 0 интегрирующий множитель существует, если...
- а) функции P(x, y), Q(x, y) непрерывно дифференцируемы и $P^2 + Q^2 \neq 0$;
 - б) функции P(x, y), Q(x, y) дифференцируемы и $P^2 + Q^2 \neq 0$;
 - в) функции P(x, y), Q(x, y) непрерывны и $P^2 + Q^2 \neq 0$;
 - г) функции P(x, y), Q(x, y) ограничены и $P^2 + Q^2 \neq 0$;
- д) функции P(x,y), Q(x,y) кусочно-дифференцируемы и $P^2+Q^2\neq 0$.
- 115. Общим решением дифференциального уравнения $yy' = \frac{y}{\sqrt{1-x^2}} + xy$ будет...

a)
$$y = \sin x + \frac{x^2}{2} + c$$
;

- $\int \int y = \arcsin x + \frac{x^2}{2} + c;$
- B) $y = \arcsin x \frac{x^2}{2} + c$;

- $\Gamma) \quad y = 2\arcsin x + \frac{x^2}{2} + c;$
- $y = \arcsin x + \frac{x^2}{c} + c.$

116. Общим решением дифференциального уравнения $xyy' = \frac{1+x^2}{1-y^2}$

будет...

a)
$$2y^2 - y^4 = \ln|x| + 2x^2 + c$$
;

6)
$$2y^2 - 4y^4 = 4\ln|x| + 2x^2 + c$$
;

B)
$$2y^2 - y^4 = 4\ln|x| + 2x^2 + c$$
;

$$\Gamma$$
) $2y^2 + y^4 = 4\ln|x| + 2x^2 + c$;

д)
$$2y^2 - y^4 = 4\ln|x| - 2x^2 + c$$
.

дифференциального 117. Общим решением уравнения $\sqrt{1-y^2}dx + y\sqrt{1-x^2}dy = 0$ будет...

a)
$$\sqrt{1-y^2} = \sin x + c$$

$$\int \sqrt{1-y^2} = \arcsin x + c$$

B)
$$\sqrt{1+y^2} = \arcsin x + c$$

$$\Gamma) \quad 2\sqrt{1-y^2} = \arcsin x + cy$$

$$\sqrt{1-y^2} = 2\arcsin x + c$$

 $\arcsin x + c;$ $\int \sqrt{1 + y^2} = \arcsin x + c;$ $\int 2\sqrt{1 - y^2} = \arcsin x + c;$ $\int \sqrt{1 - y^2} = 2\arcsin x + c;$ $118. \quad \text{Частно}$ $y' = \sin x$ 118. Частное решение $y'' + y' = \sin x + \cos x$ имеет вид...
a) $y = x(A\cos x + B\sin x)$; дифференциального уравнения

a)
$$y = x(A\cos x + B\sin x)$$
;

$$6) \quad y = A\cos x + B\sin x;$$

B)
$$y = x^2 (A\cos x + B\sin x);$$

$$\Gamma) \quad y = A\cos x;$$

$$y = B \sin x$$
.

119. Решением задачи Коши $y' - y = e^x$, y(0) = 1 является функция...

a)
$$y = \cos x$$
;

$$5) \quad y = \sin x + 1;$$

B)
$$y = (x+1)e^x$$
;

$$\Gamma) \quad y = x + 1;$$

$$y = 2$$
.

- 120. Дифференциальное уравнение $(e^y x)y' = 1$ является...
- а) линейным уравнением относительно x;
- б) уравнением Эйлера;
- в) уравнением Бернулли;
- г) уравнением в полных дифференциалах;
- д) уравнением Пфаффа.
- 121. Дифференциальное уравнение $y' = y x\sqrt{y}$ является...
- а) линейным уравнением первого порядка;
- б) линейным уравнением с постоянными коэффициентами;
- в) уравнением Бернулли;
- г) уравнением в полных дифференциалах;
- д) уравнением Пфаффа.
- 122. Дифференциальное уравнение $y' = y xy^5$ является...
- а) линейным уравнением первого порядка;
- б) линейным уравнением с постоянными коэффициентами;
- в) уравнением в полных дифференциалах,
- г) уравнением Бернулли;
- д) уравнением Пфаффа.
- 123. Порядок дифференциального уравнения $y''' = y^5$ равен...
- a) 1;
- б) 4;
- в) 2;
- r) 3;
- д) 5.
- 124. Порядок дифференциального уравнения $y'' = \sin^3 y^5$ равен...
- a) 1;
- б) 4;
- в) 2;
- r) 3:
- д) 5
- 125 Метод вариации произвольных постоянных также называют методом...
 - а) Коши;
 - б) Лопиталя;
 - в) Гаусса;
 - г) Лагранжа;
 - д) Пуассона.

- 126. Уравнение Риккати...
- а) сводится к уравнению Лапласа;
- б) не является дифференциальным уравнением;
- в) всегда интегрируется в квадратурах;
- г) никогда не интегрируется в квадратурах;
- д) интегрируется в редких случаях.

- теорема единственности решения задачи Коши;
 в) теорема существования и единственности решения задачи Коши;
 г) теорема интегрального исчисления;
 д) теорема вариационного исчисления
 128. Укажите кот уравнения с разделяющимися переменными.
 - a) 0:
 - б) 1;
 - в) 2;
 - г) 3;
 - д) 4.
 - 129. Решение называется изолированным, если...
- а) в некоторой его окрестности проходят другие интегральные кривые;
- б) в некоторой его окрестности не проходят другие интегральные кривые;
 - в) в некоторой его окрестности проходит одна интегральная кривая;
 - г) оно ограничено в некоторой его окрестности;
 - д) в любой его окрестности проходят другие интегральные кривые.
- 130. Порядок дифференциального уравнения y'' = y''' можно понизить на...
 - а) 1 единицу:
 - б) 4 единицы;
 - в) 2 единицы;
 - 3 единицы;
 - **5** единиц.
- 131. Порядок дифференциального уравнения $xy'' = \sin 2x + y'$ можно понизить на...
 - а) 1 единицу;
 - б) 4 единицы;
 - в) 2 единицы;
 - г) 3 единицы;
 - д) 5 единиц.

13	2. Порядок дифференциального уравнения	$yy'' = \sin 2y + y'$	мож-
но пон	изить на		
a)	4 единицы;		
б)	1 единицу;		
в)	2 единицы;		
L)	3 единицы;		

д) 5 единиц.
133. Порядок дифференциального уравнения уу" – 2y = 4y' можно
изить на...
а) 4 единицы;
б) 2 единицы;
в) 1 единицу;
г) 3 единицы;
д) 5 единиц. понизить на...

134. Чтобы решить линейное дифференциальное уравнение n-го порядка с постоянными коэффициентами, нужно решить...

- а) стохастическое уравнение;
- б) каноническое уравнение;
- в) уравнение Бернулли;
- г) характеристическое уравнение;
- д) эвристическое уравнение.

135. Для линейного дифференциального уравнения n-го порядка с постоянными коэффициентами порядок характеристического уравнения равен...

- a) 2;
- б) 1;
- в) 0;
- Γ) n-1;
- μ д) n.

136. Характеристическое уравнение линейного дифференциального уравнения n-го порядка с постоянными коэффициентами является...

- а) интегро-дифференциальным уравнением;
- б) интегральным уравнением;
- уравнением Гаусса;
- г) алгебраическим уравнением;
- д) дифференциальным уравнением.

Общим решением дифференциального уравнения y'' + y' - 2 = 0 будет...

a)
$$y = e^x + e^{-2x}$$
;

$$6) \quad y = c_1 e^{-x} + c_2 e^{2x};$$

- B) $y = c_1 e^x + c_2 e^{-2x}$;
- $\Gamma) \quad y = c_1 e^{-x} + c_2 e^{-2x};$
- $y = c_1 e^x + c_2 e^{2x}.$

138. Общим решением дифференциального уравнения y'' - 2y' = 0будет... 26NHIP)

- a) $y = e^x + e^{-2x}$;
- $5) \quad y = c_1 e^{-x} + c_2 e^{2x};$
- B) $y = c_1 e^x + c_2 e^{-2x}$;
- $\Gamma) \quad y = c_1 + c_2 e^{-2x};$
- $y = c_1 e^x + c_2 e^{2x}.$

139. Общим решением дифференциального $y^{VI} - 5y^V + 4y^{IV} = 0$ будет...

- a) $y = c_1 e^x + c_2 e^{4x} + c_3$;
- 6) $y = c_1 e^x + c_2 e^{4x} + c_3 + c_4 x + c_5 x^5 + c_6 x^6$;
- B) $y = c_1 e^x + c_2 e^{4x} + c_3 + c_4 x$;
- $\Gamma) \quad y = c_1 e^x + c_2 e^{4x} + c_3 + c_4 x + c_5 x^2;$
- д) $y = c_1 e^x + c_2 e^{4x} + c_3 + c_4 x + c_5 x^2 + c_5 x^2$

140. Общим решением дифференциального $+4y^{IV}=0$ будет... a) $y=c_1\cos 2x+c_2\sin 2x+c_3+c_4x+c_5x^2+c_6x^3$; уравнения $y^{VI} + 4y^{IV} = 0$ будет...

- б) $y = c_1 \cos 2ix + c_2 \sin 2ix + c_3 + c_4 x + c_5 x^2 + c_6 x^3$; в) $y = c_1 \cos x + c_2 \sin x + c_3 + c_4 x + c_5 x^2 + c_6 x^3$; г) $y = c_1 e^x + c_2 e^{4x} + c_3 + c_4 x + c_5 x^2$; д) $y = c_1 e^x + c_2 e^{4x} + c_3 + c_4 x + c_5 x^2 + c_6 x^3$.

141. Общим решением дифференциального уравнения y'' - 2y' - 3y = 0 будет...

- a) $y = e^{x} + e^{-3x};$ b) $y = c_{1}e^{-x} + c_{2}e^{2x};$ B) $y = c_{1}e^{x} + c_{2}e^{-2x};$ F) $y = c_{1}e^{3x} + c_{2}e^{-x};$

- $y = c_1 e^{3x} + c_2 e^{2x}.$

142. Общим решением дифференциального уравнения y'' - y = 0 будет...

- a) $y = e^x + e^{-x}$;
- $6) \quad y = c_1 e^{-x} + c_2 e^{2x};$
- B) $y = c_1 e^x + c_2 e^{-2x}$;
- $\Gamma) \quad y = c_1 e^{3x} + c_2 e^{-x};$
- д) $y = c_1 e^x + c_2 e^{-x}$.

143. Общим решением дифференциального уравнения y'' - 3y' + 2y = 0 будет...

- a) $y = e^x + e^{-3x}$;
- $6) \quad y = c_1 e^{-x} + c_2 e^{2x};$
- B) $y = c_1 e^x + c_2 e^{-2x}$;
- $\Gamma) \quad y = c_1 e^{2x} + c_2 e^x;$
- д) $y = c_1 e^{3x} + c_2 e^{2x}$.

144. Общим решением дифференциального уравнения 2(y'' + 2y') = 0 будет...

- a) $y = e^x + e^{-2x}$;
- $6) \quad y = c_1 e^{-x} + c_2 e^{2x};$
- B) $y = c_1 e^x + c_2 e^{-2x}$;
- $\Gamma) \quad y = c_1 + c_2 e^{-2x};$
- $y = c_1 e^x + c_2 e^{2x}.$

145. Общим решением дифференциального уравнения -y'' + y = 0 будет...

- a) $y = e^x + e^{-x}$
- $6) \quad y = c_1 e^{-x} + c_2 e^{2x};$
- B) $v = c_1 e^x + c_2 e^{-2x}$:
- $(1) y = c_1 e^{3x} + c_2 e^{-x};$
- $y = c_1 e^x + c_2 e^{-x}.$

146. Общим решением дифференциального уравнения y'' + 2y' + y = 0 будет...

- a) $y = e^x + e^{-3x}$;
- $6) \quad y = c_1 e^{-x} + c_2 e^{-x};$
- B) $y = c_1 e^x + c_2 e^{-x}$;

- $y = c_1 e^{-x} + c_2 e^{-x} x;$
- д) $y = c_1 e^{3x} + c_2 e^{2x}$.
- 147. Общим решением дифференциального уравнения y'' + 100y = 0 будет...
 - a) $y = c_1 \cos 100x + c_2 \sin 100x$;
 - 6) $y = e^{x}(c_1 \cos 10x + c_2 \sin 10x);$
 - B) $y = c_1 \cos 10ix + c_2 \sin 10ix$;
 - $\Gamma) \quad y = c_1 \cos x + c_2 \sin x;$
 - $y = c_1 \cos 10x + c_2 \sin 10x.$
 - 148. Уравнение Эйлера сводится...
 - а) к интегро-дифференциальному уравнению;
 - б) к интегральному уравнению;
 - в) к уравнению в полных дифференциалах;
 - CKOBNHIP г) к линейному уравнению с постоянными коэффициентами;
 - д) к уравнению Коши.
- 149. Общее решение линейной однородной системы можно найти методом...
 - а) Кирхгофа;
 - б) Эйлера;
 - в) Пуассона;
 - г) Лапласа;
 - д) Неймана.
- 150. Одним из основных методов интегрирования нормальных систем дифференциальных уравнений первого порядка является метод...
 - а) исключения;
 - б) включения;
 - в) выключения;
 - г) заключения
 - д) сужения.
- 151. Одним из основных методов интегрирования нормальных систем дифференциальных уравнений первого порядка является метод...
 - а) подбора правильного ответа;
 - подбора интегрируемых комбинаций;
 - в) специальной правой части;
 - г) вложения;
 - д) сужения.
- 152. Метод исключения для нормальных систем дифференциальных уравнений первого порядка состоит в сведении системы...
 - а) к вронскиану;
 - б) к интегрируемой комбинации;

- в) к дифференциальному уравнению;
- г) к трансцендентному уравнению;
- д) к интегральному уравнению.
- 153. Метод исключения для нормальных систем дифференциальных уравнений первого порядка состоит в сведении системы к одному дифференциальному уравнению, порядок которого...

а) равен количеству уравнению; порядок которого...

б) на единицу больше количества уравнений системы; в) на единицу меньше количества уравнений системы; г) равен единице; д) равен двум.

154. Система
$$\frac{dx}{x} = \frac{dy}{x+z} = \frac{dz}{z+x}$$
 называется системой. а) Якоби; б) в неполных дифференциалах; в) Вронского; г) в симметрической форме; д) в кососимметрической форме.

- д) в кососимметрической форме.

155. Система
$$\frac{dx}{\sin x} = \frac{dy}{x + yz} = \frac{dz}{z}$$
 называется системой...

- а) Якоби;б) в неполных дифференциалах
- в) Вронского;
- г) в симметрической форме;
- д) в кососимметрической форме.
- Уравнение вида P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz = 0156. называется уравнением...
 - а) Якоби;
 - а) Якоби;б) в полных дифференциалах;
 - в) Вронского;
 - г) Гамильтона;
 - д) Пфаффа.

157. Уравнение
$$x \frac{\partial z}{\partial x} + z \frac{\partial z}{\partial y} = 5$$
 является уравнением...

- а) в частных производных;
- б) в полных дифференциалах;
- в) в неполных дифференциалах;
- г) обыкновенным дифференциальным;
- д) Пфаффа.

158. Уравнение $\frac{\partial z}{\partial x} + zy \frac{\partial z}{\partial y} = 0$ является уравнением...

- а) в полных дифференциалах;
- б) в неполных дифференциалах;
- в) в частных производных;
- г) обыкновенным дифференциальным;
- д, пфаффа.
 159. Чтобы решить уравнение в частных производных первого нока, обычно переходят к системе...
 а) Якоби;
 б) Штурма-Лиувилля;
 в) Вронского;
 г) в симметрической форме; рядка, обычно переходят к системе...

 - д) в кососимметрической форме.
- 160. К аналитическим приближенным методам решения дифференциальных уравнений относится метод...
 - а) исключения;
 - б) интегрируемых комбинаций;
 - в) Вронского;
 - г) Бернулли;
 - д) степенных рядов.
 - 161. В методе степенных рядов часто используется формула...
 - а) Тейлора:
 - б) Ньютона-Лейбница:
 - в) Остроградского-Лиувилля;
 - г) Бернулли;
 - д) Грина.
- 162. К аналитическим приближенным методам решения дифференциальных уравнений относится метод...
 - а) исключения;
 - б) интегрируемых комбинаций;
 - в) Дюамеля;
 - г) Бернулли;
 - т) малого параметра.
 - 163. К численным методам решения дифференциальных уравнений тносится метод...
 - а) Эйлера k-го порядка;
 - б) исключения;
 - в) степенных рядов;
 - г) Бернулли;
 - д) малого параметра.

- 164. К численным методам решения дифференциальных уравнений относится метод...
 - а) исключения;
 - б) Рунге-Кутта 4-го порядка;
 - в) степенных рядов;
 - г) Гаусса;
- д) малого параметра.

 165. К численным методам решения дифференциальных уравнений осится метод...

 а) исключения;
 б) степенных рядов;
 в) Штермера;
 г) Гаусса;
 д) малого параметра.

 166. Функция Ляпунова фигурирует...
 а) в теореме Пеано;
 б) в теореме существования и елинствения правительных уравнений осится метод... относится метод...

 - б) в теореме существования и единственности
 - в) в первой теореме Ляпунова;
 - г) во второй теореме Ляпунова;
 - д) в теореме Стокса.
 - 167. Теорема Четаева имеет отношени
 - а) к интегральным уравнениям;
 - б) к интегрированию уравнений;
 - в) к приближенным методам;
 - г) к численным методам;
 - д) к устойчивости решений.
- 168. Если какое-нибудь одно решение линейной системы дифференциальных уравнений устойчиво по Ляпунову, то...
 - а) устойчивы все решения этой системы;
 - б) устойчивых решений у этой системы больше нет;
 - в) существует еще одно устойчивое решение этой системы;
 - г) существует еще несколько устойчивых решений этой системы;
 - д) могут быть еще устойчивые решения.
- 169. Если каждое решение линейной однородной системы дифференциальных уравнений остается ограниченным при $t \to +\infty$, то...
 - а) нулевое решение неустойчиво по Ляпунову;
 - б) нулевое решение устойчиво по Ляпунову;
 - в) нулевое решение может быть устойчивым по Ляпунову;
 - г) все решения устойчивы по Ляпунову;
 - д) все решения неустойчивы по Ляпунову.

170. Для исследования устойчивости нулевого решения можно использовать критерий... а) Кирхгофа;

- б) Шлёмильха-Роша;
- в) Штурма-Лиувилля;
- г) Рауса-Гурвица;
- д, пьютона—леионица.
 171. Для исследования устойчивости нулевого решения можно исьзовать критерий...
 а) Коши—Римана;
 б) Шлёмильха—Роша;
 в) Штурма—Лиувилля; пользовать критерий...

 - г) Ньютона-Лейбница;
 - д) Льенара-Шипара.
- 172. Для исследования устойчивости нулевого решения можно использовать критерий...
 - а) Михайлова;
 - б) Крида;
 - в) Круга;
 - г) Билана;
 - д) Колдуна.
 - 173. К особым точкам дифференциальных систем относится...
 - а) подкова;
 - б) седло;
 - в) попона;
 - г) шпора;
 - д) хвост.
 - 174. К особым точкам дифференциальных систем относится:
 - а) махинация:
 - б) финт;
 - фокус
 - трюк;
 - д) иллюзия.
 - 175. К особым точкам дифференциальных систем относится...
 - а) базис:
 - б) ядро;
 - в) хаб;
 - г) центр;
 - д) база.

- 176. К особым точкам дифференциальных систем относится...
- а) клубок;
- б) пучок;
- в) блок;
- г) связка;
- д) узел.
- 177. К особым точкам дифференциальных систем типа узелотносится...
 - а) вырожденный узел;
 - б) дискриминантный узел;
 - в) квадратный узел;
 - г) тривиальный узел;
 - д) нетривиальный узел.
- 178. К особым точкам дифференциальных систем типа узелотносится...
 - а) дискриминантный узел;
 - б) дикритический узел;
 - в) морской узел;
 - г) тривиальный узел;
 - д) нетривиальный узел.
 - 179. В автономную систему явно не входит...
 - а) искомая функция;
 - б) производная первого порядка искомой функции;
 - в) переменная t;
 - г) старшая производная;
 - д) первый интеграл.
 - 180. Кривая, описываемая точкой в процессе движения, называется...
 - а) курсом;
 - б) трассой;
 - в) маршрутом;
 - г) траскторией;
 - д) интегралом.
- 181. Краевую задачу для дифференциального уравнения можно рещить с помощью...
 - а) волновой функции;
 - б) дельта-функции Дирака;
 - в) бета-функции;
 - г) гамма-функции;
 - д) функции Грина.

182. Чтобы решить систему в симметрической форме, необходимо найти...

CKOBNHIPI

- а) ее первые интегралы;
- б) ее интегралы вероятности;
- в) ее криволинейные интегралы;
- г) ее поверхностные интегралы;
- д) ее кратные интегралы.
- 183. Уравнение Клеро решается методом...
- а) интегрирующего множителя;
- б) введения параметра;
- в) Бернулли;
- г) исключения;
- д) интегрируемых комбинаций.
- EHINO. 184. Уравнение Лагранжа решается методом...
- а) интегрирующего множителя;
- б) введения параметра;
- в) Бернулли;
- г) исключения;
- д) интегрируемых комбинаций.
- 185. Теорема Осгуда это теорема.
- а) существования и единственности;
- б) существования;
- в) единственности;
- г) об устойчивости;
- д) об особых точках.
- 186. Формула Остроградского-Лиувилля справедлива для определителя...
 - а) Грама;
 - б) Вандермонда
 - в) Гамильтона:
 - г) Вронского;
 - д) Якоби.
 - 187. Теорема Пикара это теорема...
 - а) существования и единственности;
 - существования;
 - в) единственности;
 - г) об устойчивости;
 - д) о средней.
- 188. Решение дифференциального уравнения может быть... устойчивым.
 - а) дискриминантно;
 - б) асимптотически;

- в) ортогонально;
- г) полярно;
- д) кососимметрически.
- 189. Скорость космической ракеты после сгорания топлива можно найти по формуле...
 - а) Циолковского;
 - б) Колмогорова;
 - в) Остроградского-Лиувилля;
 - г) Даламбера;
 - д) Пуассона.
- 190. Процесс нахождения решений дифференциальных уравнений называют...
 - а) дифференцированием;
 - б) интегрированием;
 - в) потенцированием;
 - г) логарифмированием;
 - д) подбором.
- 191. Если для дифференциального уравнения первого порядка справедлива теорема существования и единственности, то решение задачи Коши приближенно можно найти методом...
 - а) матриц Гурвица;
 - б) кривых Бернулли;
 - в) ломаных Эйлера;
 - г) интегралов Френеля;
 - д) функций Бесселя.
- 192. Если для дифференциального уравнения первого порядка справедлива теорема существования и единственности, то решение задачи Коши приближенно можно найти методом последовательных приближений...
 - а) Владимирова;
 - б) Лиувилля;
 - в) де Фриза;
 - г) Пикара;
 - д) Лежандра.
- 193. y = 0 обязательно будет решением уравнения Бернулли $y' = p(x)y + q(x)y^a$, если...
 - a) $a \ge 0$;
 - δ) $a \leq 0$;
 - B) a = 0;

- Γ) a < 0;
- д) a > 0.

194. Если известно частное решение уравнения Риккати, то...

- а) можно понизить порядок уравнения на две единицы;
- б) можно понизить порядок уравнения на единицу;
- в) уравнение можно решить только в некоторых случаях;
- г) уравнение можно решить;
- д) уравнение нельзя решить.

195. Решение уравнения в полных дифференциалах можно свести к взятию...

- а) интеграла Дирихле;
- б) тройного интеграла;
- в) интеграла Пуассона;
- г) поверхностного интеграла;
- д) криволинейного интеграла.

196. Существует... множителей для конкретного дифференциального уравнения.

- а) бесконечно много;
- б) 0;
- в) 1;
- г) 2;
- д) 3.

197. Функция y = 0 для уравнения $y' = p(x)y + q(x)\sqrt{y}$ является...

- а) приближенным решением;
- б) решением, если q(x) = 0;
- в) решением, если p(x) = 0;
- г) общим решением;
- д) частным решением.

198. Функция x = 0 для уравнения $y' = p(x)y + q(x)\sqrt{y}$...

- а) является решением при q(x) = 0;
- б) явияется решением при p(x) = 0;
- в) является общим решением;
- г) не является решением;
- д) является частным решением.

199. Общим решением уравнения $e^{-y}dx - (2y + xe^{-y})dy = 0$ является...

a)
$$xe^{-y} + y^2 = 0$$
;

6)
$$xe^y - y^2 = c$$
;

B)
$$xe^{-y} + y^2 = c$$
;

$$r) xe^{-y} - y^2 = 0;$$

д)
$$xe^{-y} - y^2 = c$$
.

200. Уравнение $xy' = 2y^2 + xy - \sin x + x^3$ является...

- а) уравнением Риккати;
- б) уравнением Бернулли;
- в) линейным уравнением первого порядка;
- ROBAHIPI г) линейным уравнением с постоянными коэффициентами;
- д) уравнением с разделяющимися переменными.

2. ОТВЕТЫ К ТЕСТОВЫМ ЗАДАНИЯМ

В этом разделе приводятся варианты правильных ответов на все вопросы теста. Эти номера выделены жирным шрифтом и располагаются под номерами вопросов.

1	2	3	4	5	6	7	8	9	10	
г)	д)	д)	б)	a)	В)	a)	г)	г)	б)	
11	12	13	14	15	16	17	18	19	20	
б)	a)	a)	в)	<u>(5)</u>	д)	в)	б)	д)	a)	
21	22	23	24	25	26	27	28	29	30	
a)	б)	в)	в)	д)	Г)	в)	б)	в)	a)	
31	32	33	34	35	36	37	38	39	40	
б)	Г)	в)	в)	д)	a)	б)	в)	б)	L)	
41	42	43	44	45	46	47	48	49	50	
a)	Г)	В)	Г)	б)	Г)	a)	a)	б)	a)	
51	52	53	54	55	56	57	58	59	60	
б)	(B)	б)	a)	в)	Г)	a)	a)	в)	a)	
61	62	63	64	65	66	67	68	69	70	
в)	б)	в)	a)	a)	a)	Г)	a)	д)	L)	
71	72	73	74	75	76	77	78	79	80	
a)	в)	L)	в)	д)	в)	Г)	д)	a)	a)	
81	82	83	84	85	86	87	88	89	90	
a)	б)	Г)	б)	д)	a)	в)	a)	г)	в)	
91	92	93	94	95	96	97	98	99	100	
Г)	в)	б)	a)	a)	д)	г)	в)	г)	a)	

	101	102	103	104	105	106	107	108	109	110	
	Г)	д)	a)	Г)	a)	в)	a)	б)	a)	б)	
	111	112	113	114	115	116	117	118	119	120	
	a)	a)	в)	a)	б)	в)	б)	б)	в)	a)	
	121	122	123	124	125	126	127	128	129	130	
	в)	Г)	Г)	в)	Г)	д)	a)	б)	б)	в)	
_	131	132	133	134	135	136	137	138	139	140	Į,
_	a)	б)	в)	Г)	д)	Г)	в)	Г)	д)	a)	
_	141	142	143	144	145	146	147	148	149	150	
_	г)	д)	Г)	Г)	д)	Г)	д)	Г)	б)	(a)	
_	151	152	153	154	155	156	157	158	159	160	
_	б)	в)	a)	Г)	Г)	д)	a)	в)	в)	д)	=
_	161	162	163	164	165	166	167	168	169	170	=
_	a)	д)	a)	б)	в)	Г)	д)	a)	б)	Г)	=
-	171	172	173	174	175	176	177	178	179	180	
 -	д)	a)	б)	в)	Г)	д)	a)	б)	в)	Г)	
-	181	182	183	184	185	186	187	188	189	190	=
<u>-</u>	д)	a)	б)	б)	в)	Г)	a)	б)	a)	б)	=
-	191	192	193	194	195	196	197	198	199	200	
	в)	Г)	д)	Г)	д)	a)	т д)	Г)	д)	a)	
PELIO3NIOPNINILLA V											
Q											

ЛИТЕРАТУРА

- 1. Виленкин, Н. Я. Дифференциальные уравнения / Н. Я. Виленкин, М. А. Доброхотова, А. Н. Сафонов. М.: Просвещение, 1984. 176 с.
- 2. Филиппов, А. Ф. Введение в теорию дифференциальных уравнений / А. Ф. Филиппов. М.: КомКнига, 2007. 240 с.
- 3. Демидович, Б. П. Дифференциальные уравнения / Б. П. Демидович, В. П. Моденов. СПб. : Лань, 2008. 288 с.
- 4. Филиппов, А. Ф. Сборник задач по дифференциальным уравнениям / А. Ф. Филиппов. Ижевск : НИЦ «Регулярная и хаотическая динамика», 2000. 176 с.
- 5. Агафонов, С. А. Дифференциальные уравнения / С. А. Агафонов, А. Д. Герман, Т. В. Муратова. М. : Изд-во МГТУ им. Н. Э. Баумана, $2004.-352~\mathrm{c}$.
- 6. Пономарев, К. К. Составление дифференциальных уравнений / К. К. Пономарев. Минск : Вышэйшая школа, 1973. 560 с.
- 7. Соколов, В. А. Обыкновенные дифференциальные уравнения / В. А. Соколов. Пермь : Изд-во Перм. над. исслед. политехн. ун-та, 2014. 194 с.
- 8. Егоров, А. И. Обыкновенные дифференциальные уравнения с приложениями / А. И. Егоров. М.: ФИЗМАТЛИТ, 2005. 384 с.
- 9. Матвеев, Н. М. Дифференциальные уравнения / Н. М. Матеев. М. : Просвещение, 1988. 256 с.
- 10. Матвеев, Н. М. Методы интегрирования обыкновенных дифференциальных уравнений / Н. М. Матеев. М.: Высшая школа, 1967. 555 с.
- 11. Романко, В. К. Курс дифференциальных уравнений и вариационного исчисления В. К. Романко. М.: Лаборатория базовых знаний, 2001. 344 с

Белокурский Максим Сергеевич, Рябченко Наталья Валерьевна, Атвиновский Александр Алексеевич

KOBNHIP ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Тестовые задания

Редактор А. А. Банчук Корректор В. В. Калугина

Подписано в печать 11.11.2022. Формат 60х84 1/16. Бумага офсетная. Ризография. Усл. печ. л. 2,8. Уч.-изд. л. 3,1. Тираж 10 экз. Заказ 559.

Издатель и полиграфическое исполнение: учреждение образования «Гомельский государственный университет имени Франциска Скорины». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 3/1452 от 17.04.2017. Специальное разрешение (лицензия) № 02330 / 450 от 18.12.2013. Ул. Советская, 104, 246028, Гомель.