ЛЕКЦИЯ 13

Упругие волны

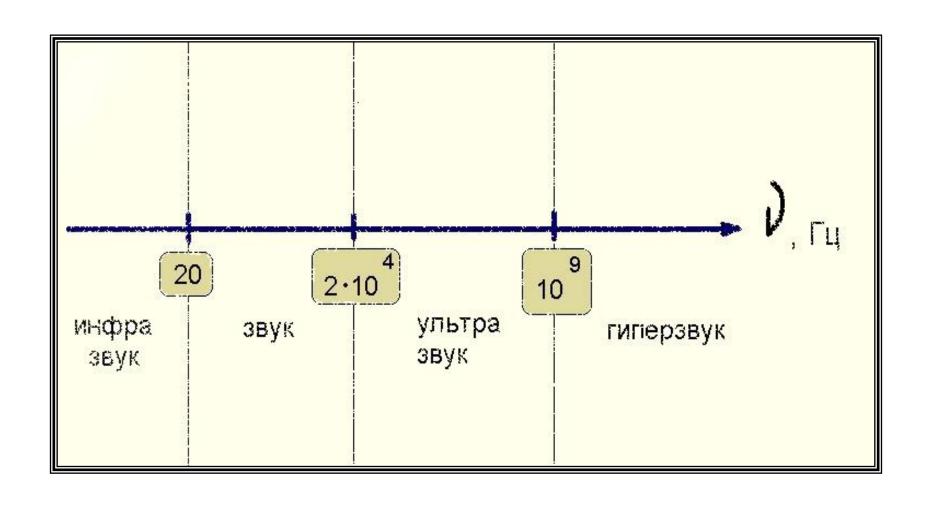
- 1 Энергия упругой волны. Вектор Умова.
- 2 Стоячие волны. Условия когерентности.
- 3 Звуковые волны.
- 4 Эффект Допплера. .

Звуковые волны

Звуковые волны переносят энергию, которая, как и другие виды энергии, может использоваться человеком. Но главное — это огромный диапазон выразительных средств, которыми обладают речь и музыка. Еще с древних времен звуки служили людям средством связи и общения друг с другом, средством познания мира и овладения тайнами природы. Звуки — наши неизменные спутники. Они по-разному действуют на человека: радуют и раздражают, умиротворяют и придают силы, ласкают слух и пугают своей неожиданностью.


Звуковые волны

Акустические волны - колебания которые могут восприниматься человеческим ухом, т.е. колебания, вызываемые источником звука.


Источник звука - любое тело, колеблющееся со звуковой частотой (от 17 до 20 000 Гц).

В вакууме звуковые волны распространятся не могут !!!

Шкала электромагнитных волн

Шкала звуковых волн.

Звук Эхо

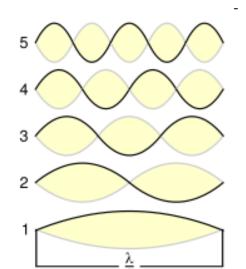
Использование эха в рыболовной отрасли.

Эффект эха

Когда звуковые волны встречают на пути твёрдую преграду, часть из них отражаются назад.

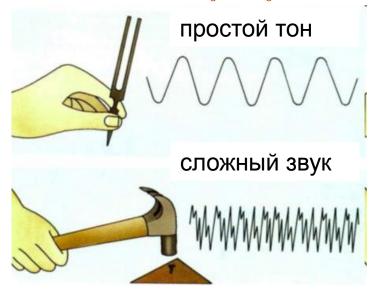
При этом звуковые волны устремляются через воздух обратно к первоначальному источнику звука.

Лучшее эхо бывает от коротких и громких звуков


Различают следующие звуки

Тон-(музыкальный звук) – звук, являющийся периодическим процессом.

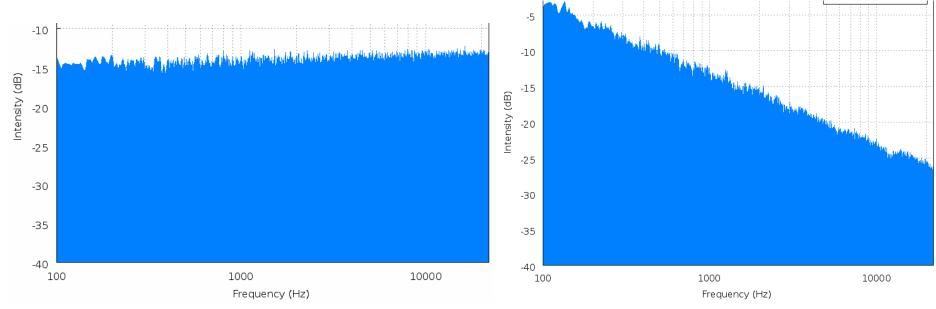
Если этот процесс гармонический, то тон называют простым или чистым


(камертон)

Ангармоническому колебанию соответствует сложный тон, который может быть разложен на простые.

Наименьшая частота такого разложения υ_0 соответствует основному тону, остальные гармоники (обертоны) имеют частоты $2\upsilon_0$, $3\upsilon_0$, и т.д.

Колебания идеальной струны. Реальные колебания составляются из указанных. 1 — основной тон, 2—5 — вторая — пятая гармоники, соответствующие первому — четвёртому обертонам

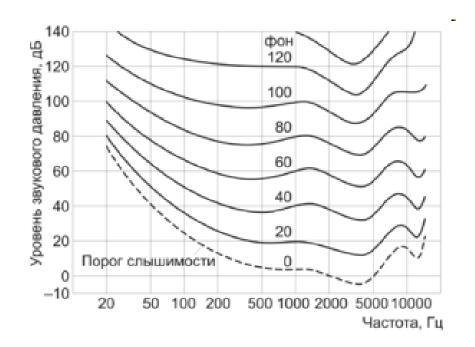

Спектр тона – линейчатый

Различают следующие звуки

Шум - беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры

Спектр шума – сплошной

Цвета шума — система терминов, приписывающая некоторым видам шумовых сигналов определённые цвета исходя из аналогии между спектром сигнала произвольной природы и спектрами различных цветов видимого света.


Белый шум — это сигнал с равномерной спектральной плотностью на всех частотах и дисперсией, равной бесконечности. Является стационарным случайным процессом. На практике сигнал может быть белым шумом только в ограниченной полосе частот.

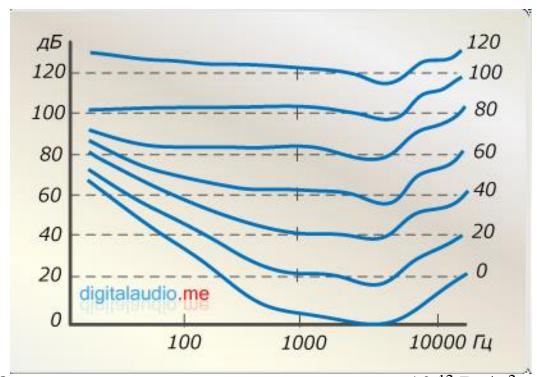
Розовый шум – сигнал, плотность которого по сравнению с белым шумом затухает на 3 децибела на каждую октаву. Пример розового шума — звук пролетающего вертолёта.

Характеристики звука

Физиологические	Физические
• Высота	•Частота
• Громкость	•Амплитуда
• Тембр	•Набор доп. частот

При переходе из одной среды в другую меняется скорость волны (меняется длина, частота волны остаётся неизменной).

Громкость звука — субъективное восприятие силы звука (абсолютная величина слухового ощущения). Громкость главным образом зависит от звукового давления, амплитуды и частоты звуковых колебаний. Также на громкость звука влияют его спектральный состав, локализация в пространстве, тембр, длительность воздействия звуковых колебаний и другие факторы


Интенсивность звука определяется избыточным звуковым давлением, возникающем при прохождении звуковых волн в среде.

$$I = \frac{(\Delta p)^2}{2\rho \cdot C}$$

р - плотность среды

С – скорость звука

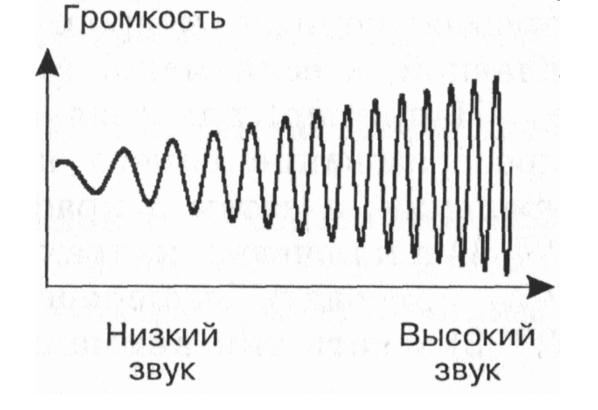
Уровень **громкости звука** — относительная величина. Она выражается в фонах и численно равна уровню звукового давления (в децибелах — дБ), создаваемого синусоидальным тоном частотой 1 кГц такой же громкости, как и измеряемый звук (равногромким данному звуку).

За I_0 принимают интенсивность звука = 10^{-12} Вт/м² – порог слышимости

 $I = 10 \text{ Bt/m}^2$ порог болевого ощущения

Звук	Громкость, дБ
Порог слышимости	0
Тиканье наручных часов	10
Шепот	20
Звук настенных часов	30
Приглушенный разговор	40
Тихая улица	50
Обычный разговор	60
Шумная улица	70
Опасный для здоровья уровень	75
Пневматический молоток	90
Кузнечный цех	100
Громкая музыка	110
Болевой порог	120
Сирена	130
Реактивный самолет	150
Смертельный уровень	180
Шумовое оружие	200

Может быть создана объективная шкала уровней громкости. В ее основе лежит психофизический закон Вебера-Фехнера


За единицу громкости звука принят **бел** (в честь А.Г. Белла, изобретателя телефона) На практике громкость измеряют в децибелах (дБ): **1** дБ = **0,1Б**.

$$E=k\lg rac{I}{I_0}$$
 интенсивности $E=\lg rac{I}{I_0}$ $E=\lg rac{I}{I_0}$ $E=10\lg rac{I}{I_0}$ $E=10\lg rac{I}{I_0}$ $E=10\lg rac{I}{I_0}$ $E=10\lg rac{I}{I_0}$ $E=10\lg rac{I}{I_0}$ $=10^{\lg rac{I}{I_0}}=10^{1/10}= 10^{1/10$

Если измеряется эффективное звуковое давление

$$E=20\lg^{\frac{\Delta p}{\Delta p_{cn}}}$$

Δр_{сл}=2*10⁻⁵ H/м² – звуковое давление нижнего порога восприятия звука

Для звукового восприятия имеет значение реверберация звука, т.е. постепенное ослабление его интенсивности вследствие поглощения при многократных отражениях от стен, потолков, предметов и т.д.

Время реверберации — время за которое интенсивность звука в помещении уменьшается в 10⁶ раз.

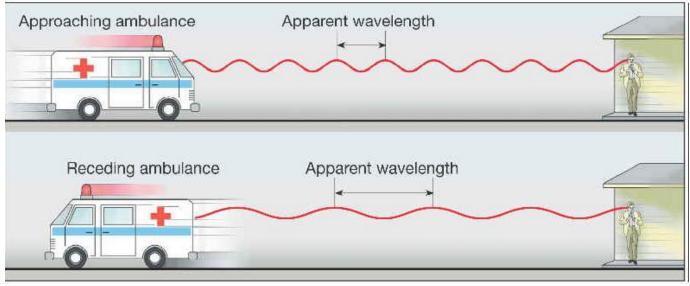
пустой зал ≈ 4с

полный зал ≈ 1с

Мы знаем, что энергия, переносимая волнами, прямо пропорциональна квадрату частоты и квадрату амплитуды:

$$W \sim \omega^2 \bullet A^2 \sim \frac{1}{S^2}$$

Следовательно, и интенсивность звука пропорциональна квадрату частоты и квадрату амплитуды колебаний в звуковой волне и обратно пропорциональна площади тела, совершающего колебания, и времени воздействия


Эффект Допплера

Если источник звука и наблюдатель движутся друг относительно друга, частота звука, воспринимаемого наблюдателем, не совпадает с частотой источника звука (1842 г).

 $\nu = \nu_0 \, \frac{V + V_{np}}{V - V_{ucm}}$

Christian Andreas
Doppler

Приближение - высокочастотный звук

Удаление - низкочастотный звук

Поглощение звука.

Наличие вязкости и теплопроводности среды приводит к потере энергии звуковой волны, и эта энергия расходуется на нагревание среды. Волна давления, а также волны смещения и скорости по мере распространения затухают. Тот факт, что резкий звук выстрела или щелчка кнута, в спектре которого присутствует широкий набор частот, по мере распространения трансформируется в более мягкий, объясняется тем, что в спектре остаются преимущественно низкие частоты. Заметим, что поглощение звука в воде существенно меньше, чем в воздухе, а в твердых телах еще меньше, чем в воде. Очень низким поглощением звука отличаются такие кристаллы, как сапфир, топаз, берилл и другие.