Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

В. Г. ШОЛОХ

OPWILLD

АТОМНАЯ СПЕКТРОСКОПИЯ

Практическое пособие

для студентов специальностей 1-31 04 01-02 «Физика (производственная деятельность)»; 1-31 04 01-03 «Физика (научно-педагогическая деятельность)»; 1-31 04 01-04 «Физика (управленческая деятельность)»; специализации «Лазерная физика и спектроскопия»

EIIO3MU

Гомель УО «ГГУ им. Ф. Скорины» 2015 УДК 535.33 : 539.18 (076) ББК 22.344я73 Ш 786

Рецензенты:

кандидат технических наук А. Н. Попов; кандидат физико-математических наук Е. А. Дей

Рекомендованы к изданию научно-методическим советом учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Шолох, В. Г.

Атомная спектроскопия: практическое пособие / В. Г. Шолох ; М-во образования РБ, Гом. гос. ун-т им. Ф. Скорины. – Гомель: ГГУ им. Ф. Скорины, 2015. – 48 с. ISBN 978-985-439-952-2

Целью практического пособия является оказание помощи студентам в закреплении теоретических знаний основ атомной спектроскопии и в развитии их творческих способностей.

Практическое пособие адресовано студентам специальностей 1-31 04 01-02 «Физика (производственная деятельность)»; 1-31 04 01-03 «Физика (научно-педагогическая деятельность)»; 1-31 04 01-04 «Физика (управленческая деятельность)» специализации«Лазерная физика и спектроскопия»

УДК 535.33 : 539.18 (076) ББК 22.344я73

ISBN 978-985-439-952-2

10311104

© Шолох В. Г., 2015 © УО «Гомельский государственный университет им. Ф. Скорины», 2015

Ш786

Содержание

Предисловие	4
Тема 1. Спектры водородоподобных атомных систем	5
Тема 2. Электронное строение многоэлектронных	
атомов. Спектры атомов щелочных металлов	10
Тема 3. Спектры атомов с двумя внешними	
s-электронами	15
Тема 4. Спектры атомов с np^k – конфигурацией	20
Тема 5. Мультиплетное расщепление термов	5
и спектральных линий	26
Литература	31
Приложение А. Характеристики состояния водородопо-	
добных атомных систем	32
Приложение Б. Атомные системы с <i>ns</i> -конфигурацией.	34
Приложение В. Характеристики атомов	
с <i>ns</i> ² -конфигурацией	38
Приложение Г. Состояния атомов с заполняющейся	
<i>p</i> - оболочкой	42
Приложение Д. Характеристики мультиплетного	
расщепления	46
HIM CRAIN	

Предисловие

PEHOSMI

Целью изучения дисциплины специализации «Атомная спектроскопия» является усвоение студентами теоретических и экспериментальных основ спектроскопии атомов, приобретение навыков проведения спектральных экспериментов, формирование умений анализировать спектральные закономерности для различных атомов.

В процессе преподавания этой дисциплины реализуются следующие задачи: изучение общих вопросов спектроскопии, являющихся теоретической базой электронного строения атомов и молекул; изучение закономерностей в спектрах атомов с различной электронной конфигурацией; изучение влияния спин-орбитального и магнитного взаимодействия на структурные особенности атомных спектров.

Закрепление теоретических знаний, выработка навыков использования основных положений атомной спектроскопии осуществляется в процессе решения задач, в ходе выполнения самостоятельных индивидуальных заданий, при проведении лабораторных работ.

Разработанное практическое пособие, в котором использованы задания различного уровня сложности, предназначено для проведения практических занятий и формирования индивидуальных заданий исследовательского характера по дисциплине специализации «Атомная спектроскопия».

Данные методические материалы адресованы студентам специализаций (1-31 04 01 02 05; 1-31 04 01 03 05; 1-31 04 01-04 05) «Лазерная физика и спектроскопия».

Тема 1. Спектры водородоподобных атомных систем

Теоретические основы

Электронные состояния атома водорода *H I* и изоэлектронных ему атомных систем *He II*, *Li III*, *Be IY* и т. д. описываются собственными функциями оператора полной энергии единственного электрона Ψ_{n, l, m_l, m_s} . То есть состояние движения электрона в атоме, называемое *спин-орбиталью*, определяется набором квантовых чисел:

1) главным квантовым числом n = 1, 2, 3, ... Совокупность состояний, соответствующая заданному значению главного квантового числа, называется электронным слоем атома;

2) орбитальным квантовым числом l=0, 1, 2, ..., (n-1). Совокупность состояний электрона, соответствующая заданным значениям квантовых чисел n и l, называется электронной оболочкой атома. Приняты следующие обозначения электронных оболочек:

l	0	1	2	3	4	•••
	S	р	d	f	g	•••

3) магнитным квантовым числом $m_l = 0, \pm 1, \pm 2, ..., \pm 1;$

4) спиновым магнитным квантовым числом $m_s = \pm \frac{1}{2}$.

В таблице А. 1 (Приложение А) приведены значения квантовых чисел для спин-орбиталей, составляющих *ns*- и *пp*-оболочки.

Закономерности в расположении энергетических уровней и разрешенные переходы в атоме водорода показаны на рисунке А. 1 (Приложение А).

При описании спектральных закономерностей пользуются понятием спектрального терма $T_n = -\frac{E_n}{hc}$. Для водородоподобных систем значение терма определяется по формуле

$$T_{n} = -\frac{E_{n}}{hc} = \frac{me^{4}}{4\pi c\hbar^{3}} Z^{2} \cdot \frac{1}{n^{2}} = \frac{RZ^{2}}{n^{2}}, \qquad (1.1)$$

где *R* – постоянная Ридберга.

Волновое число спектральной линии, образующейся при квантовом переходе между *n*-м и *k*-м термами определяется:

$$\widetilde{\nu}_{nk} = T_n - T_k. \tag{1.2}$$

Изотопический сдвиг спектральных линий атомных систем обусловлен зависимостью постоянной Ридберга от массы ядра *M* :

$$R_{M} = \frac{R_{\infty}}{1 + \frac{m_{e}}{M}},$$
(1.3)
где $R_{\infty} = \gamma^{2} \frac{m_{e} e^{4}}{4\pi c \hbar^{3}} = 109\ 737,\ 309\ \mathrm{cm}^{-1}$.

Значения постоянных Ридберга для некоторых водородоподобных систем приведены в таблице А. 2 (Приложение А).

В спектрах водородоподобной атомной системы четко выделяются спектральные серии. Формула (1.2) с учетом (1.1), называемая *обобщенной формулой Бальмера*, имеет вид:

$$\tilde{v}_{nk} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{k^2} \right),$$
 (1.4)

где *n* = 1, 2, 3,...;

 $k = n + 1, n + 2, \dots$

Значения длин волн некоторых линий в спектрах водорода и дейтерия в серии Бальмера (n = 2), а также разность соответствующих длин волн приведены в таблице А. 3 (Приложение А).

Для изоэлектронного ряда атомных систем справедлив закон Мозли, в соответствии с которым значение *n*-го терма (формула 1.1) связано с зарядовым числом атомной системы Z по формуле

$$\sqrt{\frac{T_n}{R}} = \frac{Z}{n}.$$
(1.5)

Аналогичным образом связаны волновые числа линий:

$$\sqrt{\frac{\nu_{nk}}{R}} = Z \sqrt{\frac{1}{n^2} - \frac{1}{k^2}} \,. \tag{1.6}$$

Мультиплетное расщепление спектральных линий атомных систем, обусловленное мультиплетным расщеплением комбинирующих термов, является следствием спин-орбитального взаимодействия. При этом состояние движения электрона в атоме определяется квантовыми числами: n, l, j, m_j . Энергия стационарного состояния водородоподобной системы с учетом спин-орбитального взаимодействия определяется по формуле

$$E_{n,j} = E_n + \Delta E_{n,j} = -\frac{RchZ^2}{n^2} - \frac{RchZ^4\alpha^2}{n^3} \left(\frac{1}{j+\frac{1}{2}} - \frac{3}{4n}\right), \quad (1.7)$$

где $\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \approx \frac{1}{137}$ – постоянная тонкой структуры.

Видим, что энергия $\Delta E_{n,j}$, обусловленная спин-орбитальным взаимодействием, зависит от квантового числа

$$j = |l \pm s| = |l \pm \frac{1}{2}|,$$
 (1.8)

что обусловливает снятие вырождения по квантовому числу *j*, проявляющееся в расщеплении *n*-го уровня на *n* компонентов в соответствии с $j = \frac{1}{2}, \frac{3}{2}, ..., n - \frac{1}{2}$ (рисунок А. 2 Приложения А).

Величина мультиплетного расщепления

$$\delta_{j,j+1} = \Delta E_{n,j+1} - \Delta E_{n,j} = \frac{RchZ^4\alpha^2}{n^3} \cdot \frac{1}{\left(j+\frac{1}{2}\right)\left(j+\frac{3}{2}\right)}.$$
 (1.9)

резко падает с ростом главного квантового числа и возрастает при увеличении Z (рисунок А.2 Приложения А).

Мультиплетное расщепление спектральных линий обусловливается переходами, разрешенными правилами отбора $\Delta j = 0, \pm 1.$ С учетом (1.7) частоты компонентов тонкой структуры определяются

$$\mathbf{v} = (E_{k,j_1} - E_{n,j_2})/h = (E_k - E_n)/h + (\Delta E_{k,j_1} - \Delta E_{n,j_2})/h =$$
$$= \mathbf{v}_0 - RcZ^4 \alpha^2 \left[\frac{1}{k^3} \cdot \frac{1}{j_1 + \frac{1}{2}} - \frac{1}{n^3} \cdot \frac{1}{j_2 + \frac{1}{2}} - \frac{3}{4k} + \frac{3}{4n} \right] = \mathbf{v}_0 + \Delta \mathbf{v} \cdot (1.10)$$

Величина Δv принимает 3n-1 значение (n < k). Следовательно, спектральная линия, обусловленная квантовым переходом между *k*-м и *n*-м уровнями при наличии спин-орбитального взаимодействия, расщепится на 3n-1 компонентов.

Вопросы для самоконтроля

1. Какими квантовыми числами определяется состояние электрона в изолированной водородоподобной атомной системе?

- 2. Что называется электронным слоем, электронной оболочкой?
- 3. Каков физический смысл величины, называемой термом?
- 4. Как объясняется явление изотопического сдвига?
- 5. Какая закономерность устанавливается законом Мозли?

6. В чем состоит мультиплетное расщепление энергетических уровней и спектральных линий?

7. Как определяется частота компонентов расщепления, обусловленного спин-орбитальным взаимодействием?

Задания

1. Воспользуйтесь обобщенной формулой Бальмера и определите спектральный интервал (в нм, в см⁻¹), в пределах которого наблюдается серия Пашена в спектре испускания атомарного водорода.

2. Определите, налагаются ли в спектре испускания атомарного водорода спектральные интервалы, соответствующие сериям:

а) Лаймана и Бальмера;

б) Пашена и Брэккета.

3. Можно ли используя спектральный прибор, разрешающая способность $\frac{\lambda}{\Lambda\lambda}$ которого равна 2 000, зарегистрировать восемь линий

серии Пашена в спектре однократно ионизированного атома гелия?

4. Определите, в результате комбинаций волновых чисел каких спектральных линий можно вычислить значение волнового числа головной линии серии Брэккета.

5. Определите величину изотопического сдвига в спектре смеси атомарного водорода ${}_{1}^{1}H$ и дейтерия ${}_{1}^{2}H$ для головной линии:

а) серии Лаймана;

б) серии Пашена.

6. Длина волны головной линии серии Бальмера в спектре атомарного водорода равна 656,013 нм. Определите с учетом движения атомного ядра значение постоянной Ридберга для:

а) атома водорода ${}^{1}_{1}H$;

б) двукратно ионизированного атома лития ${}_{3}^{6}Li$.

7. Определите разрешающую способность спектрального прибора, с использованием которого в видимой области спектра можно исследовать изотопный состав смеси атомарных газов водорода ${}_{1}^{1}H$, дейтерия ${}_{1}^{2}H$ и трития ${}_{1}^{3}H$.

8. Длина волны резонансной линии в спектре атомарного водорода равна 121,567 нм. В спектре ⁴/₂*HeII* наблюдается линия с длиной волны $\lambda_{He} = 121,520$ нм. Запишите формулу для вычисления λ_{He} . Определите значение постоянной Ридберга R_{He} для спектра $\frac{4}{2}HeII$.

9. Длина волны резонансной линии в спектре атомарного водорода равна 121,567 нм. С учетом движения атомного ядра определите длину волны резонансной линии в спектре ${}_{3}^{6}Li$ III.

10. Определите значения волновых чисел головных линий серии Лаймана и Пашена для изоэлектронного ряда атомных систем *HI*, *He II*, *Li III*, *Be IY*. В одной сетке координат для каждой из этих линий постройте диаграмму Мозли и проанализируйте результат.

11. Воспользуйтесь таблицей А. 2 (Приложение А) и определите при n = 2 значения терма $T_{2\infty}$ (без учета движения ядра) и T_{2M} (с учетом движения ядра) для изоэлектронного ряда атомных систем *H I*, *He II*, *Li III*, *Be IY*. В одной сетке координат постройте диаграммы Мозли $\sqrt{\frac{T_{2\infty}}{R}} = f(Z)$ и $\sqrt{\frac{T_{2M}}{R}} = f(Z)$. Проанализируйте полученный результат.

12. Проанализируйте сведения в таблице А.1 (Приложение А) и заполните аналогичную таблицу для *d*-и *f*-оболочек.

13. Для атомарного водорода определите число компонентов мультиплетного расщепления терма, для которого n = 3. Укажите для каждого из компонентов значения квантовых чисел l, j, m_j . Определите значения энергии для компонентов расщепления и изобразите схему соответствующих энергетических уровней.

14. Определите для двукратно ионизированного атома лития значения минимального и максимального расщепления между соседними компонентами мультиплета, соответствующего терму с n = 4.

15. Определите минимальную разрешающую способность спектрального прибора, с использованием которого можно зарегистрировать мультиплетную структуру головной линии серии Пашена в спектре *He II*.

16. Проанализируйте сведения о мультиплетном расщеплении, приведенные на рисунке А. 2 (Приложение А). Дополните их соответствующими значениями для атомов двукратно ионизированного лития и трёхкратно ионизированного бериллия.

17. Изобразите схему энергетических уровней и квантовых переходов, соответствующих спектральным линиям H_{α} и H_{β} в спектре атомарного водорода с учетом мультиплетного расщепления. Определите минимальную величину мультиплетного расщепления. Аналитически обобщите результат для различных линий серии Бальмера. **18.** Сравните величину изотопического сдвига произвольной спектральной линии в спектре атомарного водорода и максимальную величину расщепления между компонентами ее мультиплета. При каких условиях эти величины сравнимы?

Тема 2. Электронное строение многоэлектронных атомов. Спектры атомов щелочных металлов

Теоретические основы

При описании электронного строения многоэлектронного (сложного) атома в одноэлектронном приближении состояние каждого электрона можно описать посредством квантовых чисел n, l, m_l , m_s . В основе порядка заполнения электронами одноэлектронных квантовых состояний (*атомных спин-орбиталей*) при увеличении атомного номера Z лежат следующие принципы:

1) заполнение атомных спин-орбиталей электронами осуществляется в порядке возрастания энергии;

2) принцип Паули: В определенном квантовом состоянии (на одной атомной спин-орбитали) не может находиться более одного электрона. Иначе говоря, в сложном атоме не может быть более одного электрона с заданным набором квантовых чисел n, l, m_l, m_s .

Электронная конфигурация атома – это запись, посредством которой указывается количество электронов в электронных оболочках атома в порядке возрастания их энергии. Например, электронная конфигурацию атома магния Mg (Z = 12) в основном состоянии записывается $1s^2 2s^2 2p^6 3s^2$.

Для определения количества атомных энергетических уровней и значений соответствующих им квантовых чисел следует воспользоваться законом векторного сложения орбитальных \vec{l}_i и спиновых \vec{s}_i моментов электронов, в результате чего определяется полный момент импульса атома \vec{J} , модуль которого квантуется следующим образом:

$$\left|\vec{J}\right| = \hbar \sqrt{J(J+1)},\tag{2.1}$$

где *J* – внутреннее квантовое число атома.

В рамках (*LS*) или *нормальной связи*, при которой электронэлектронное взаимодействие является более существенным по сравнению со спин-орбитальным, последовательность суммирования моментов импульса электронов такова:

$$\vec{L} = \sum_{i} \vec{l}_{i}, \qquad \vec{S} = \sum_{i} \vec{s}_{i}, \qquad \vec{J} = \vec{L} + \vec{S}.$$
 (2.2)

Принято спектроскопическое обозначение состояний сложного атома по образцу

$$^{\kappa}L_{I},$$

где $\kappa = 2S + 1 - мультиплетность;$

S – спиновое квантовое число атома, определяющее модуль спинового момента атома $(|\vec{S}| = \hbar \sqrt{S(S+1)})$ и принимающее значения

$$S = s_1 + s_2 + ...; s_1 + s_2 + ... - 1; ..., S_{\min};$$

L – буквенное обозначение *орбитального квантового числа* атома в соответствии с его значениями:

$$S(L=0), P(L=1), D(L=2), F(L=3), ...$$

Орбитальное квантовое число атома принимает значения

$$L = l_1 + l_2 + ...; l_1 + l_2 + ... - 1; ..., L_{\min},$$

где *J* – внутреннее квантовое число, которым квантуется модуль полного момента импульса атома (2.1), принимающее значения

$$J = L + S, L + S - 1, ..., |L - S|.$$

Совокупность состояний атома с заданными значениями квантовых чисел L и S (т. е. отличающиеся только значением квантового числа Ј) образует терм. В общем случае каждой электронной конфигурации атома соответствует несколько различных термов. Расположение в шкале энергии уровней атома, соответствующих заданной электронной конфигурации, определяется эмпирическими правилами Гунда: Минимальное значение энергии соответствует состоянию атома с максимальным значением спинового квантового числа атома S; при одинаковых значениях S минимальное значение энергии соответствует состоянию с максимальным значением орбитального квантового числа L, возможным при данном значении S; при одинаковых значениях L и S минимальной энергией характеризуется состояние, которому соответствует значение J = |L - S|, если в атоме заполнено не более половины электронной оболочки (нормальные термы), и значением J = L + S, если в атоме заполнено более половины оболочки (обращенные термы).

Основному состоянию атомов щелочных металлов Li(Z = 3), Na(Z = 11), K(Z = 19), Rb(Z = 37), Cs(Z = 55), Fr(Z = 87) соответствует электронная конфигурация ns^1 [Li(n = 2), Na(n = 3), K(n = 4), Rb(n = 5), Cs(n = 6), Fr(n = 7)].

Терм атома щелочного металла определяется по формуле

$$T_{n,l} = \frac{R}{n^{*2}} = \frac{R}{(n - \Delta_{n,l})^2} = \frac{RZ^{*2}}{n^2} = \frac{R(Z - \sigma_{n,l})^2}{n^2}, \qquad (2.3)$$

где n^* – эффективное квантовое число;

 $\Delta_{n,l}$ – квантовый дефект;

 $\sigma_{n,l}$ – постоянная экранирования.

Посредством квантового дефекта $\Delta_{n,l}$ и постоянной экранирования $\sigma_{n,l}$, зависящих в общем случае от главного и орбитального квантовых чисел, в формуле (2.3) учитываются поправки к энергии соответствующих стационарных состояний водорода, обусловленные экранированием валентного электрона электронами внутренних полностью заполненных оболочек. В таблице Б. 1 (Приложение Б) приведены значения энергетических параметров для основного состояния атомов щелочных металлов. Наблюдаемое увеличение значений эффективного заряда Z^* , постоянной экранирования σ_{ns} и квантового дефекта Δ_{ns} обусловлено снижением экранирующего действия.

В соответствии с правилами отбора для дипольного излучения (Δn – любое целое число, $\Delta L = \Delta l = \pm 1$) в спектрах атомов щелочных металлов и изоэлектронных им ионах наблюдаются серии, основные из которых указаны в таблице Б. 2 (Приложение Б).

Волновое число любой спектральной линии атома щелочного металла определяется по формуле

$$\tilde{\nu} = T_{nl} - T_{kl'} = R \cdot \left[\frac{1}{(n - \Delta_{nl})^2} - \frac{1}{(k - \Delta_{kl'})^2} \right],$$
(2.4)

где n, l, k, l' – главные и орбитальные квантовые числа состояний атома, между которыми осуществляется излучательный квантовый переход, характеризующийся волновым числом \tilde{v} ;

Δ_{nl}, Δ_{kl} – квантовые дефекты соответствующих уровней. Схемы энергетических уровней атомов щелочных металлов и квантовые переходы показаны на рисунках Б.1–Б. 5 (Приложение Б).

Спектральные закономерности, аналогичные рассмотренным, наблюдаются для атомных систем, *изоэлектронных* атомам щелочных металлов. Воспользуемся принятой в спектроскопии символикой: римскими цифрами *I*, *II*, *III*, ... обозначается величина (k + 1), где k – кратность ионизации атомной системы. Например, изоэлектронными атому лития, характеризующемуся в основном состоянии

электронной конфигурацией $1s^2 2s$, являются следующие атомные системы: ⁴*Be II*, ⁵*B III*, ⁶*C IV*,....

По мере увеличения кратности ионизации k в изоэлектронных рядах, начинающихся с лития и натрия, наблюдается сближение термов с различными значениями орбитального квантового числа l при одном и том же значении n, при этом положение термов приближается к положению водородных термов. Экранирование валентного электрона для различных термов различно и их величина зависит от значения числа l (в первую очередь).

Для изоэлектронных рядов, начинающихся с элементов K, Rb, Cs и Fr, наблюдается конкуренция ns-электронов с (n-1)d - и затем – с (n-2)f -электронами. Это обстоятельство проявляется в схемах термов следующим образом: по мере увеличения кратности ионизации возрастает тенденция электронов с меньшим n находиться глубже (иметь меньшую энергию) независимо от значения l.

Для анализа прочности связи элементов в зависимости от заряда ядра, как для членов изоэлектронного ряда, так и для атомов или ионов данной кратности ионизации, наглядными являются диаграммы Мозли, на которых графически изображаются зависимости $\sqrt{T_{nl}} = f(Z)$ в соответствии с законом Мозли

$$\sqrt{\frac{T_{nl}}{R}} = \frac{Z^*}{n} = \frac{Z - \sigma_{ne}}{n}$$
 (2.6)

Вопросы для самоконтроля

1. В соответствии с какими принципами осуществляется заполнение электронами атомных спин-орбиталей в порядке возрастания зарядового номера *Z*?

2. В чем состоит правило Клечковского?

3. Сформулируйте принцип Паули.

4. При каком условии реализуется нормальный тип связи электронов в сложном атоме?

5. Каков образец записи состояния сложного атома?

6. В чем состоят правила Гунда?

7. В соответствии с какой формулой определяются термы и волновые числа спектральных линий для многоэлектронных атомов?

8. Каков физический смысл квантового дефекта $\Delta_{n,l}$ и постоянной экранирования $\sigma_{n,l}$?

9. Какая закономерность устанавливается законом Мозли?

Задания

1. Постройте принципиальную схему термов для атома лития. Определите значение квантового дефекта Δ_{2s} для лития, если известно, что его энергия ионизации составляет 5,39 эВ.

2. Граница резкой серии в спектре атомов лития равна 349,7 нм. Определите значение квантового дефекта Δ_{2p} для лития.

3. Постройте принципиальную схему термов для атома натрия. Учитывая, что прочность связи валентного электрона в состоянии $4^2S_{1/2}$ атома натрия составляет 15 710 см⁻¹, определите значение квантового дефекта Δ_{4_5} для натрия.

4. Значение терма $4^2 P$ для атома натрия составляет 11 179 см⁻¹. Определите значение квантового дефекта Δ_{4p} для натрия.

5. Энергия ионизации натрия составляет 5,14 эВ, а длина волны резонансной линии равна 588,99 нм. Определите значение квантового дефекта Δ_p для натрия.

6. Квантовый дефект нормального состояния атома рубидия равен 3,20. Определите значения термов $n^2 P$ (n = 5, 6, 7) этого атома, используя схему энергетических уровней (рисунок Б. 4 Приложения Б).

7. Определите длину волны головной линии резкой серии в спектре атомов натрия, если известно, что квантовый дефект терма 4^2S атома натрия составляет 5,14 эВ, а прочность связи валентного электрона в состоянии 3^2P атома натрия равна 24 483 см⁻¹.

8. Используя сведения, приведенные в таблицах Б. 2 и Б. 3 (Приложения Б), определите длин волн (в нм) первых трех спектральных линий главной серии в спектре атомов натрия.

9. Воспользуйтесь сведениями, приведенными в таблице Б. 2 (Приложения Б), и схемой энергетических уровней атома лития (рисунок Б. 1 Приложения Б) и определите значения постоянной экранирования валентного электрона σ_{nv} для термов $n^2 P$ (n = 2, 3, 4) атома лития.

10. Рассчитайте значения постоянной экранирования валентного электрона σ_{np} для термов $n^2 P$ (n = 4, 5, 6) атома калия, используя сведения, приведенные в таблице Б. 1 и на рисунке Б. 3 (Приложения Б).

11. Для однократно ионизированного атома бериллия (*Be II*), являющегося изоэлектронной атому лития системой, значение терма $2^{2}P$ равно 114 948 см⁻¹. В соответствии с законом Мозли определите значение постоянной экранирования для этого терма.

12. Значения постоянной экранирования σ_{6p} для изоэлектронных атомных систем равны 52,446 (Cs I), 51,588 (Ba II), 50,981 (La III), 50,516 (Ce IY). Определите значения терма 6²P для указанных атомных систем и постройте для них график Мозли.

13. Воспользуйтесь схемой энергетических уровней атома лития (рисунок Б.1 Приложения Б) и определите для этого атома значения квантового дефекта Δ_{ns} для термов n^2S при n = 2, 3, 4, 5. Проанализируйте зависимость $\Delta_{ns} = f(n)$.

14. Воспользуйтесь схемой (рисунок Б. 1 Приложения Б) и определите для атома лития значения квантовых дефектов Δ_{np} (для термов n^2P при n = 2, 3, 4, 5) и Δ_{nd} (для термов n^2D при n = 3, 4, 5). Воспользуйтесь результатами, полученными при решении задачи 13, в одной сетке координат постройте графики зависимости $\Delta_{ns} = f(n)$, $\Delta_{np} = f(n)$, $\Delta_{nd} = f(n)$ и проанализируйте полученные зависимости.

15. Воспользуйтесь схемой энергетических уровней атома натрия (рисунок Б. 2 Приложения Б) и определите для этого атома значения постоянной экранирования σ_{ns} для термов n^2S при n = 3, 4, 5, 6. Про-анализируйте зависимость $\sigma_{ns} = f(n)$.

16. Воспользуйтесь схемой энергетических уровней атома натрия (рисунок Б. 2 Приложения Б) и определите для этого атома значения постоянной экранирования σ_{np} (для термов n^2P при n = 3, 4, 5, 6) и σ_{nd} (для термов n^2D при n = 3, 4, 5). Воспользуйтесь результатами, полученными при решении задачи 15, и в одной сетке координат постройте графики зависимости $\sigma_{ns} = f(n), \sigma_{np} = f(n), \sigma_{nd} = f(n)$. Проанализируйте полученные зависимости.

Тема 3. Спектры атомов с двумя внешними s-электронами

Теоретические основы

В таблице В. 1 (Приложение В) приведены характеристики основного состояния атомов с ns^{-2} -конфигурацией. Этой электронной конфигурации соответствует один невырожденный синглетный терм ¹S. При одноэлектронном механизме возбуждения образуются возбужденные конфигурации *nsn's*, *nsn'p*, *nsn'd*, *nsn'f*. Соответствующие этим конфигурациям термы атомов приведены в таблице В. 2 Приложения В. Значения термов атома гелия (как и других сложных атомных систем) определяются по формуле

$$T_n = \frac{RZ^{*2}}{n^2} = \frac{R}{n^{*2}} , \qquad (3.1)$$

где $Z^* = Z - \sigma$ – эффективный заряд ядра;

σ – постоянная экранирования;

 $n^* = n - \Delta -$ эффективное квантовое число;

n – главное квантовое число, Δ – квантовый дефект.

Каждой конфигурации возбужденного состояния типа *nln'l'*, возникающих при одноэлектронном возбуждении, соответствует по два терма: синглетный и триплетный. В результате получается две системы термов (энергетических уровней).

Правилами отбора $\Delta L = \pm 1$ и $\Delta S = 0$, справедливыми при отсутствии спин-орбитального взаимодействия, разрешены переходы в каждой системе уровней (синглетной и триплетной) отдельно. При увеличении Z возрастает величина спин-орбитального взаимодействия, что приводит к частичному снятию запрета переходов между состояниями с различной мультиплетностью, т. е. возникают *интеркомбинационные* переходы $\kappa = 1 \leftrightarrow \kappa = 3$. При этом увеличивается интенсивность интеркомбинационных переходов, возрастает величина триплетного расщепления ${}^{3}P$, ${}^{3}D$, ${}^{3}F$ -термов и уменьшается разность энергий синглетного и триплетного термов, соответствующих данной электронной конфигурации.

Рассмотрим подробнее электронное строение и спектры атомов, характеризующихся ns^2 -конфигурацией в основном состоянии.

Основному состоянию атома гелия *He I* с внешней оболочкой $1s^2$ соответствует синглетный терм 1^IS_0 . Остальные термы, образующиеся из возможных возбужденных конфигураций при одноэлектронном возбуждении, составляют пары: синглетный и триплетный терм для каждой конфигурации (рисунок В. 1 Приложения В). Триплетный терм характеризуется в соответствии с правилом Гунда меньшей энергией, чем соответствующий синглетный. Разность энергий сингленного и соответствующего триплетного термов уменьшается по мере увеличения энергии возбуждения (таблица В. 3 Приложения В).

Спектральные линии атома гелия обусловлены квантовыми переходами, соответствующими правилам отбора $\Delta S = 0$, $\Delta L = \pm 1$. Для атома гелия, в силу малости спин-орбитального взаимодействия, особенно отчетливо проявляется разделение переходов на синглетные и триплетные. Разрешенные квантовые переходы между синглетными термами гелия проявляются в спектре в виде спектральных серий, аналогичных сериям в спектрах щелочных металлов и состоящих из узких одиночных линий. Переходами между триплетными термами обусловливаются аналогичные серии, спектральные линии в которых являются триплетами. Величина триплетного расщепления для термов гелия очень мала: наибольшее расщепление наблюдается для терма 2p ³*P* (1,07 см⁻¹). Интеркомбинационные переходы в силу малости спин-орбитального взаимодействия в гелии очень слабы и практически не наблюдаются. Поэтому спектр гелия представляет совокупность двух практически независимых систем спектральных линий – спектра парагелия, обусловленного переходами между синглетными термами (мультиплетность $\kappa = 1$) и спектра ортогелия, обусловленного переходами между триплетными термами ($\kappa = 3$).

Спектрами, аналогичными спектрам гелия, но еще более трудно возбудимыми, характеризуются гелиеподобные ионы: *Li II, Be III, B IV* и т. д. (таблица В. 4 Приложения В).

Атомы щелочноземельных металлов *Be*, *Mg*, *Ca*, *Sr*, *Ba* и *Ra* в отличие от трудно возбудимого атома гелия характеризуются сравнительно небольшими энергиями возбуждения и ионизации, хотя и превосходящими энергии возбуждения и ионизации атомов щелочных металлов. Этот факт обусловлен тем, что в атомах щелочноземельных элементов валентная оболочка ns^2 следует за трудно возбудимыми оболочками $1s^2$ (для *Be*) и $(n-1)p^6$ – для остальных атомов.

Всем указанным атомам присущи аналогичные схемы термов. На рисунке В. 2 Приложения В приведена схема термов кальция и указаны некоторые разрешенные переходы. При увеличении атомного номера Z энергия возбуждения всех энергетических уровней уменьшаются, одновременно уменьшается энергетическая разность термов соответствующих определенной электронной конфигурации синглетного и триплетного термов. При этом возрастает величина триплетного расщепления, и одновременно резко возрастает интенсивность интеркомбинационных линий. В таблице В. 5 Приложения В приведены значения длин волн резонансных линий, характеризующих расположение первых возбужденных термов 1P_1 и 3P_1 относительно основного терма, и относительная интенсивность этих линий.

Отличительной чертой электронного строения цинка Zn, кадмия Cd и ртути Hg является наличие заполненных 3d-, 4d- и 5d-оболочек, соответственно. В схеме энергетических уровней это проявляется в увеличении энергий ионизации и возбуждения соответствующих состояний

по сравнению со щелочноземельными элементами, что отражено в таблицах В. 1, В. 5 и В. 6 (Приложение В). В спектрах атомов Zn, Cd, *Hg* при увеличении Z наблюдается увеличение триплетного расщепления линий и интенсивности интеркомбинационных переходов.

Вопросы для самоконтроля

1. Какова мультиплетность термов атомов, электронная конфигурация которых в основном состоянии *ns*²?

2. Какие квантовые переходы называют интеркомбинационными?

3. Чем обусловлено уменьшение энергии ионизации атомов щелочноземельных элементов при увеличении атомного номера *Z*?

4. В результате каких квантовых переходов образуются основные спектральные серии атомов гелия?

5. Какими факторами объясняется уменьшение длины волны резонансной линии при увеличении атомного номера Z в ряду атомных систем, изоэлектронных атому *He I*?

6. Каким образом изменяются закономерности в спектрах атомов щелочноземельных атомов при увеличении атомного номера *Z*?

Задания

1. Определите спектроскопические обозначения термов, соответствующих основной и последующим (по мере возрастания энергии) восьми возбужденным электронным конфигурациям атома гелия. Изобразите схему термов (без учета масштаба) и проанализируйте ее совместно со схемой, приведенной на рисунке В.1 Приложения В.

2. Воспользуйтесь сведениями, приведенными в таблице В.1 Приложения В, и определите для атома гелия значение основного терма, а также соответствующие ему значения эффективного заряда Z^* и постоянной экранирования σ .

3. Энергия возбуждения терма 1s2s ³*S* атомарного гелия равна 19,82 эВ, а длина волны спектральной линии, обусловленной квантовыми переходами 1s2s ³*S* $\rightarrow 1s2p$ ³*P*, составляет 1 083 нм. Воспользуйтесь схемой термов атома гелия (рисунок В.1 Приложения В) и определите значение постоянной экранирования σ для терма ³*P*.

4. Пользуясь сведениями, приведенными в таблице В.1 (Приложение В), и результатами, полученными при решении предыдущей задачи, определите значение терма гелия 1s2p⁻¹P и значение

соответствующей ему постоянной экранирования σ. Проанализируйте совместно результаты, полученные в задачах 3 и 4.

5. Воспользуйтесь сведениями в таблице В. 4 (Приложение В), и определите для *Be III* значения постоянной экранирования σ и квантового дефекта Δ , соответствующие терму 1s2p⁻¹*P*.

6. Постройте диаграммы Мозли для основного терма $1s^2$ ¹*S* ряда атомных систем, изоэлектронных атому гелия, используя сведения, приведенные в таблице В. 4 (Приложение В). Графически определите значение постоянной экранирования σ этого терма и эффективный заряд Z^* для каждого члена изоэлектронного ряда.

7. Эффективный заряд Z^* основного терма $1s^2 \ ^1S$ для *Li II* равен 2,36, а длина волны резонансной линии $1s^2 \ ^1S \rightarrow 1s2p \ ^1P$ в его спектре составляет 19,93 нм. Определите значение терма $1s2p \ ^1P$.

8. Используя значения длин волн спектральных линий (рисунок В2 Приложения В), обусловленных переходами $4^{1}S \leftarrow n^{1}P$ (n = 4, 5, 6) в атомах кальция, определите значения термов $n^{1}P$ (n = 4, 5, 6) и соответствующих им квантовых дефектов Δ . Проанализируйте зависимость $\Delta = \Delta(n)$.

9. Энергия ионизации магния равна 7,64 эВ, а длины волн резонансных линий в его спектре составляют 285,213 нм $(3^1S \leftarrow 3^1P)$ и 457,115 нм $(3^1S \leftarrow 3^3P)$. Определите разность термов 3^1P и 3^3P и значения постоянных экранирования σ для этих термов.

10. Воспользуйтесь сведениями, приведенными в таблицах В. 1, В. 5 (Приложение В), и определите разности термов δ первых возбужденных состояний ${}^{1}P_{1}$ и ${}^{3}P_{1}$ для каждого из атомов щелочноземельных элементов. Проанализируйте зависимость $\delta = \delta(Z)$ в ряду этих элементов.

11. Воспользуйтесь сведениями, приведенными в таблицах В. 1, В. 5 (Приложение В), и определите значения эффективного квантового числа n^* и квантового дефекта Δ для первых возбужденных синглетных термов ¹*P* атомов щелочноземельных элементов. Постройте график зависимости $\Delta = \Delta(Z)$ и проанализируйте его.

12. Решите задачу, аналогичную задаче 11 для возбужденных состояний n^3P_1 атомов щелочноземельных элементов. Сравните и проанализируйте результаты, полученные при решении задач 11 и 12.

13. Используя сведения, приведенные в таблице В. 1 и на рисунке В. 3 (Приложение В), проанализируйте синглетные переходы в атомах

магния. Определите значения квантового дефекта Δ_s для термов n^1S_0 (n = 3, 4, 5) и Δ_D для термов n^1D_2 (n = 3, 4, 5). Проанализируйте полученные результаты. Можно ли, располагая полученными сведениями, определить значения термов n^1S_0 и n^1D_2 (n = 6, 7, 8)?

14. Используя сведения в таблице В. 6 (Приложение В), определите разность энергии первых возбужденных состояний ${}^{1}P$ и ${}^{3}P_{1}$ для атомов цинка, кадмия и ртути. Проанализируйте полученные значения.

15. Используя сведения, приведенные в таблицах В. 1 и В. 4 (Приложение В), определите для атомов цинка, кадмия и ртути значения первых возбужденных термов ¹*P* и соответствующие им значения постоянных экранирования σ . Проанализируйте зависимость $\sigma = \sigma(Z)$.

Тема 4. Спектры атомов с *пр^k*-конфигурацией

Теоретические основы

Общий вид нормальной конфигурации *p*-элементов можно представить следующим образом: ns^2np^k , где главное квантовое число *n* принимает значения от 2 до 6, а количество электронов во внешней оболочке k – от 1 до 6. В таблице Г. 1 (Приложение Г) приведены электронные конфигурации основного состояния атомов всех *p*-элементов, а также значения их энергии ионизации.

Эквивалентным *p*-электронам соответствует характерная совокупность термов. В атомах, характеризующихся взаимно дополняющими электронными конфигурациями, образуются одинаковые термы (наборы термов). Показано, что для атомов с конфигурацией np^2 и np^4 самым глубоким термом является ${}^{3}P$, а для атомов с конфигурацией $np^{3}-{}^{4}S$. При заполнении электронами не более половины оболочки энергия компонентов мультиплета увеличивается при увеличении квантового числа *J* (*нормальный терм*), а при заполнении электронами реализуется обратный порядок расположения компонентов мультиплета (*обращенный терм*).

При одноэлектронном возбуждении рассматриваемых атомов образуются электронные конфигурации $np^{k-1}n'l'$, которым соответствует совокупность возбужденных термов (таблица Г. 2 Приложения Г). Например, для атома углерода электронной конфигурации основного состояния $2p^2$ соответствуют термы ${}^{1}S$, ${}^{1}D$, ${}^{3}P$, расположенные по мере возрастания энергии в следующем порядке: ${}^{3}P$, ${}^{1}D$, ${}^{1}S$. При возбуждении одного электрона в оболочку n's, образуется конфигурация 2pn's, которой соответствуют термы ${}^{1}P$, ${}^{3}P$. При возбуждении электрона в оболочку n'p образуется конфигурация 2pn'p и соответствующие ей термы ${}^{1}SPD$, ${}^{3}SPD$ и т. д.

В первом столбце таблицы Г. 1 (Приложение Г) расположены химические элементы B, Al, Ga, In, Tl, особенностью электронного строения атомов этих элементов в основном состоянии является наличие одного валентного *р*-электрона, движущегося в поле остова. Наиболее вероятным для этих атомов является одноэлектронный механизм возбуждения, при котором формируются конфигурации $ns^2n'l'$ соответствующие возбужденные И ИМ термы $n'^{2}S$, $n'^{2}P$, $n'^{2}D$ и т. д. В результате квантовых переходов между этими термами образуется одноэлектронный спектр с характерной мультиплетной структурой, подобной сериальной структуре спектров атомов щелочных металлов. Основным термом атомов пр-элементов является ²*P*-терм. На рисунке Г. 1 (Приложение Г) показана схема термов атома алюминия, электронная конфигурация которого в основном состоянии имеет вид $3s^2 3p$. В экспериментальном спектре алюминия в соответствии с правилами отбора $\Delta L = \pm 1$, $\Delta J = 0, \pm 1$ четко выделяется сериальная структура:

- $3^2 P_{1/2,3/2} \leftrightarrow n^2 S_{1/2}$, (n = 4, 5,...) – резкая серия; - $3^2 P_{1/2,3/2} \leftrightarrow n^2 D_{3/2,5/2}$, (n = 3, 4,...) – диффузная серия; - $4^2 S_{1/2} \leftrightarrow n^2 P_{1/2,3/2}$, (n = 4, 5,...) – главная серия; - $3^2 D_{3/2,5/2} \leftrightarrow n^2 F_{5/2,7/2}$, (n = 4, 5,...) – фундаментальная серия

и другие.

Схемы энергетических уровней и спектры атомов всех *пр*-элементов очень схожи как по общей структуре, так и по масштабу шкалы энергии.

При возбуждении атомов np-элементов наряду с рассмотренными $ns^2n'l'$ -конфигурациями образуются (со значительно меньшей вероятностью) возбужденные конфигурации nsnpn'l', обусловленные возбуждением одного из электронов, находящихся в ns-оболочке атома, и формируются как дублетные, так и квартетные термы. Для рассматриваемых атомов наблюдаются термы 4P , соответствующие конфигурации $nsnp^2$. Вероятность образования таких электронных конфигураций существенно повышается у ионов, являющихся изоэлектронными системами для рассматриваемых атомов, например в ряду атомных систем *B I, C II, N III, O IY* и т. д.

Атомы галоидов в основном состоянии характеризуются электронной конфигурацией np^5 (таблица Г. 1 Приложения Г), где n = 2, 3, 4, 5, 6 для *F*, *Cl*, *Br*, *J* и искусственного элемента *At*. Конфигурации np^5 соответствует *обращенный* дублетный терм ²*P* (таблица Г. 2 Приложения Г). При возбуждении одного из *p*-электронов образуются конфигурации $np^4n'l'$ и соответствующие им термы, которыми и определяются спектральные закономерности галоидов.

Атомам с нормальной электронной конфигурацией np^2 соответствуют термы ¹S, ¹D, ³P (таблица Г. 2 Приложения Г). При увеличении энергии эти термы располагаются в следующем порядке: ³P, ¹D, ¹S. В таблице Г. 3 (Приложение Г) приведена информация о расположении этих термов и компонентов триплета ³P в шкале энергии.

В результате одноэлектронного возбуждения рассматриваемых атомов образуются электронные конфигурации *npn'l*, которым соответствуют совокупности синглетных и триплетных термов (таблица Г. 2 Приложения Г). Для атома углерода схема энергетических уровней показана на рисунке Г. 2 (Приложение Г). Схема уровней сходится к границе ионизации $2p \ ^2P_{1/2,3/2}$. При переходах, соответствующих правилам отбора $\Delta l = \pm 1$, $\Delta s = 0$, $\Delta J = 0, \pm 1$ наблюдаются спектральные линии, расположенные в далекой УФ, видимой и ИК областях.

Для более тяжелых атомов с нормальной конфигурацией np^2 спектры аналогичны спектрам углерода *С I*, но смещены в сторону бо́льших длин волн. Одновременно при увеличении *n* существенно возрастает мультиплетное расщепление и интенсивность интеркомбинационных переходов.

В группу атомов с электронной конфигурацией np^3 в основном состоянии входят азот N (n = 2), фосфор P (n = 3), мышьяк As (n = 4), сурьма Sb (n = 5), висмут Bi (n = 6). Как видно из таблицы Г. 2 (Приложение Г), электронной конфигурации основного состояния np^3 соответствует совокупность термов 4S , 2D , 2P . Информация о расположении этих термов и компонентов их расщепления приведена в таблице Г. 4 (Приложение Г). При одноэлектронном возбуждении этих атомов образуются электронные конфигурации $2s^22p^2n'l'$, а также $2s2p^3n'l'$. Соответствующие им термы приведены в таблице Г. 2 (Приложение Г). Атомам с электронной конфигурацией np^4 в основном состоянии (таблица Г. 1 Приложения Г) соответствует совокупность термов ¹S, ¹D, ³P (таблица Г. 2 Приложения Г). При увеличении энергии эти термы располагаются в следующем порядке: ³P, ¹D, ¹S. В таблице Г. 5 (Приложение Г) приведена информация о расположении указанных термов и компонентов триплета ³P в шкале энергии. В результате одноэлектронного возбуждения рассматриваемых атомов образуются электронные конфигурации $ns^2np^3n'l'$, которым соответствуют термы, приведенные в таблице Г. 2 (Приложение Г). Мультиплетные термы рассматриваемых атомов, как правило, обращены. На рисунке Г. 3 (Приложение Г) показана схема энергетических уровней кислорода.

Вопросы для самоконтроля

1. Как изменяется (увеличивается или уменьшается) масштаб энергетических уровней и спектров атомов при данном значении главного квантового числа *n* и при увеличении числа *p*-электронов *k*?

2. Чем отличаются термы (наборы термов) для атомов *пр*-элементов, характеризующихся взаимно дополняющими элек-тронными конфигурациями?

3. Какими квантовыми переходами обусловлены спектральные серии атомов с *пр*-конфигурацией основного состояния?

4. Какие термы соответствуют электронной конфигурации np^2 и каков порядок их расположения в шкале энергии?

5. Какие термы называются нормальными и обращенными?

6. В какую область длин волн (коротковолновую или длинноволновую) смещаются спектры атомов с ns^2np^k -конфигурацией основного состояния при увеличении главного квантового числа n внешнего электронного слоя?

Задания

1. Используя сведения, приведенные для атома алюминия на рисунке Г. 1 и в таблице Г. 1 (Приложение Г), определите значения энергии (в см⁻¹) состояний 4s ${}^{2}S_{\frac{1}{2}}u$ 4d ${}^{2}D_{\frac{5}{2}}u$ постоянной экранирования

о для рассматриваемых состояний. Объясните полученный результат с точки зрения электронного строения атома.

2. Длины волн спектральных линий атома таллия, обусловленные переходами $6s^26p \ {}^2P_{\frac{1}{2}} \xrightarrow{0} + 6s^27s \ {}^2S_{\frac{1}{2}} \xrightarrow{1} 6s^27s \ {}^2S_{\frac{1}{2}} \xrightarrow{0} + 6s^27p \ {}^2P_{\frac{3}{2}} \xrightarrow{0}$, составляют

5 350,46 нм и 11 513,2 нм соответственно. Используя аналогию электронного строения атомов алюминия и таллия (таблица Г. 1, рисунок Г. 1 Приложения Г), изобразите схему энергетических уровней для рассматриваемых состояний таллия и рассчитайте значения энергии (в см⁻¹ и Дж) состояний 6s²7s ${}^{2}S_{\frac{1}{2}}$ и 6s²7p ${}^{2}P_{\frac{3}{2}}^{0}$ атома таллия.

3. Используя комбинационный принцип и сведения, приведенные на рисунке Г. 1 (Приложение Г), определите значения постоянной экранирования σ для состояний $ns^2S_{\frac{1}{2}}$ (n = 4, 5, 6, 7) атома алюминия.

Постройте и проанализируйте график зависимости $\sigma = \sigma(n)$.

4. Воспользуйтесь сведениями, приведенными на рисунке Г. 1 (Приложение Г), и определите значения квантового дефекта Δ для состояний $4s \, {}^{2}S_{\frac{1}{2}}, 4p \, {}^{2}P_{\frac{1}{2}}$ и $4p \, {}^{2}D_{\frac{3}{2}}$ атома алюминия. Постройте график зависимости $\Delta = \Delta(l)$ и проанализируйте эту зависимость.

5. Длина волны спектральной линии атома таллия, соответствующая переходу $6s^26p\ ^2P \rightarrow 6s^26d\ ^2D$, равна 2 767,9 нм. Воспользуйтесь значением энергии ионизации данного атома (таблица Г. 1 Приложения Г) и определите квантовый дефект Δ для терма $6d\ ^2D$.

6. Длины волн спектральных линий диффузной серии атомарного таллия, обусловленные переходами $6^2 P_{\frac{3}{2}} \leftarrow n^2 D_{\frac{5}{2}}$, равны 351,95 нм (n = 6), 291,83 нм (n = 7), 270,92 (n = 8), 260,90 (n = 9). Воспользуйтесь сведениями, приведенными в таблице Г. 1 (Приложение Г) и определите значения постоянной экранирования σ для каждого из рассматриваемых состояний $n^2 D_5$. Проанализируйте зависимость $\sigma = \sigma(n)$.

7. Изучите закономерности построения изображенной на рисунке Г. 2 (Приложение Г) схемы энергетических уровней атома углерода. Определите разность термов ${}^{1}S_{0}$ и ${}^{1}D_{2}$, соответствующих невозбужденной электронной конфигурации атома углерода, если известно, что длина волны перехода $2s^{2}2p^{2} {}^{1}S_{0} \leftrightarrow 2s^{2}2p3d {}^{1}P$ составляет 175,1 нм, а длина волны перехода $2s^{2}2p^{2} {}^{1}D_{2} \leftrightarrow 2s^{2}2p3d {}^{1}P$ равна 145,9 нм.

8. Воспользуйтесь схемой энергетических уровней атома углерода (рисунок Г. 2 Приложения Г) и эмпирическими сведениями, приведенными в таблице Г. 3 (Приложение Г), определите значения величины $\frac{E({}^{1}S) - E({}^{1}D)}{E({}^{1}D) - E({}^{3}P)}$ для атомов углерода, кремния и германия. **9.** Воспользуйтесь изображенной на рисунке Г. 2 (Приложение Г) схемой энергетических уровней атома углерода и сведениями, приведенными в таблице Г. 1(Приложение Г), определите значения квантового дефекта для термов $2p^2 \ ^3P$ и $2p \ ^3d \ ^3D$. Проанализируйте полученные результаты с точки зрения электронного строения атома углерода.

10. Используя сведения, приведенные в таблице Г. 2 (Приложение Г), определите термы атома азота для конфигураций основного $2p^3$ и возбужденных $2p^2ns$, $2p^2nd$ (n = 3, 4) состояний этого атома. Зная, что длина волны излучения, обусловленного переходами $2p^3 \ ^4S \leftrightarrow 2p^2 3d \ ^4P$ в атомах азота, равна 95,2 нм, а их энергия ионизации из основного состояния равна 14,53 эВ, определите значения квантового дефекта, соответствующие термам $2p^3 \ ^4S, 2p^2 3d \ ^4P$.

11. Воспользуйтесь результатами, полученными при решении задачи 10. Зная, что длина волны излучения, обусловленного переходами $2p^3 {}^4S \leftrightarrow 2p^2 3s {}^4P$ в атомах азота, равна 120 нм, определите значение квантового дефекта, соответствующее терму $2p^2 3s {}^4P$. Проанализируйте результаты, полученные при решении задач 10 и 11.

12. Используя сведения, приведенные в таблице Г. 4 (Приложение Г), определите (в см⁻¹) разность энергий термов ²D и ⁴S для всех атомов с нормальной конфигурацией np^3 . Проанализируйте зависимость величины $E(^2D) - E(^4S)$ от главного квантового числа n.

13. Вычислите значения величины $\frac{E^{\binom{2}{D}} - E^{\binom{4}{S}}}{E^{\binom{2}{D}} - E^{\binom{2}{P}}}$ для

 np^3 -элементов, используя сведения, приведенные в таблице Г. 4 (Приложение Г). Проанализируйте зависимость указанного соотношения от главного квантового числа n и сравните полученный результат с результатами задачи 8.

14. На примере схемы энергетических уровней кислорода (рисунок Г. 3 Приложения Г) изучите закономерность расположения термов атомов с np^4 -конфигурацией основного состояния. Определите значение постоянной экранирования σ для возбужденного терма $2p^3 3s^{-1}P$ атома кислорода.

15. Воспользуйтесь сведениями, приведенными на рисунке Г. 3 и в таблице Г. 5 (Приложение Г), и определите значения постоянной экранирования, соответствующие терму $np^{4} D$ для атомов кислорода

(n = 2), серы (n = 3), селена (n = 4), теллура (n = 5) и полония (n = 6). Проанализируйте зависимость $\sigma = \sigma(n)$.

16. Вычислите значения величины

 $\frac{E(^{1}D) - E(^{3}P)}{E(^{1}S) - E(^{1}D)}$ для

 np^4 -элементов, используя сведения, приведенные в таблице Г. 5 (Приложение Г). Проанализируйте зависимость указанного соотношения от главного квантового числа n. Сравните полученный результат с результатами задач 8 и 13 и проанализируйте влияние числа электронов во внешней p-оболочке на взаимное расположение термов, соответствующих нормальной конфигурации атомов.

Тема 5. Мультиплетное расщепление термов и спектральных линий

Расщепление термов по квантовому числу *J*, обусловленное спинорбитальным взаимодействием, называется *мультиплетным расщеплением*. Величина мультиплетного ращепления термов для легких атомов составляет несколько см⁻¹, а для тяжелых атомов достигает сотни и тысячи см⁻¹. Энергия спин-орбитального взаимодействия (в см⁻¹) в случае нормальной связи определяется по формуле

$$E_{LSJ} = \zeta(L,S) \frac{J(J+1) - L(L+1) - S(S+1)}{2}, \qquad (5.1)$$

где $\zeta(L,S) - \phi$ актор мультиплетного расщепления, величина которого определяется значениями квантовых чисел *L* и *S*.

Разность энергий соседних *J*-го и (*J*+1)-го компонентов мультиплета в соответствии с (5.1) определяется по формуле

$$\Delta E_{J,J+1} = \zeta(L,S)(J+1), \qquad (5.2)$$

из которой получается соотношение

$$\frac{\Delta E_{J,J+1}}{\Delta E_{J',J'+1}} = \frac{J+1}{J'+1},$$
(5.3)

называемое правилом интервалов.

Выполнение правила интервалов является одним из критериев близости типа связи электронов в атоме к нормальной.

Общая ширина мультиплетного терма равна

$$\Delta E_{L+S,|L-S|} = \zeta(L, S)(2L+S)S \qquad \text{при } L \ge S;$$

$$\Delta E_{L+S,|L-S|} = \zeta(L, S)(2S+L)L \qquad \text{при } L \le S.$$

Факторы мультиплетного расщепления $\zeta(L,S)$ терма, образующегося из электронной конфигурации атома $n_1l_1, n_2l_2, \dots n_il_i, \dots n_rl_r$, могут быть выражены через факторы дублетного расщепления $\zeta_{n_il_i}$, относящиеся к отдельным электронам

$$\zeta_{n,l_i} = \frac{R\alpha^2 Z^{*4}}{n_i^{3} l_i \left(l_i + \frac{1}{2} \right) (l_i + 1)}.$$
(5.4)

Таким образом, определив из экспериментальных значений величину фактора мультиплетного расщепления терма $\zeta(L,S)$, можно рассчитать значения ζ_{n,l_i} . Особенно простое соотношение между $\zeta(L,S)$ и ζ_{n,l_i} имеется для всех термов *максимальной* мультиплетности для конфигураций, состоящих из эквивалентных электронов nl^k , где k < 2l + 1, то есть, заполнено менее половины оболочки:

$$\zeta(L, S_{\max}) = \frac{1}{2S_{\max}} \zeta_{nl}.$$
(5.5)

В этом случае энергетические уровни, соответствующие компонентам мультиплета, расположены по мере возрастания квантового числа *J*. Такие мультиплетные термы называют *нормальными*.

Для атомов щелочных металлов, термы которых полностью определяются квантовыми числами *n* и *l* валентного электрона, то есть L = l, $S = s = \frac{1}{2}$, $J = j = \left| l \pm \frac{1}{2} \right|$, каждый терм с заданными значениями *n* и *l* (кроме *S*-термов, для которых $j = \frac{1}{2}$) по причине спинорбитального взаимодействия расщепляется на два компонента, которым соответствуют $j_1 = l + \frac{1}{2}$ и $j_2 = l - \frac{1}{2}$. Энергия атома в этом случае определяется формулой

$$E_{nlj} = E_{nl} + \Delta E_{nlj} = -\frac{RZ^{*2}}{n^2} - \frac{R\alpha^2 Z^{*4}}{n^3} \left(\frac{1}{j + \frac{1}{2}} - \frac{3}{4n}\right).$$
 (5.6)

Величина дублетного расщепления терма с заданными значениями *n* и *l* определяется

$$\delta E_{nl} = \frac{1}{h} \left(E_{nlj_1} - E_{nlj_2} \right) = \frac{R\alpha^2 Z^{*4}}{n^3} \cdot \frac{1}{l(l+1)} = \zeta_{nl} \left(l + \frac{1}{2} \right).$$
(5.7)

Из формулы (5.5) следует, что для атомов щелочных металлов $\zeta(L, S) = \zeta_{nl}$.

Для конфигураций, состоящих из эквивалентных электронов $nl^{k'}$, где k' > 2l + 1, то есть при заполнении электронной оболочки более чем наполовину, получается:

$$\zeta(L, S_{\max}) = -\frac{1}{2S_{\max}} \zeta_{nl}.$$
(5.8)

Из формул (5.5) и (5.8) видим, что для *дополнительных* друг к другу электронных конфигураций, то есть для конфигураций nl^k и $nl^{k'}$, для которых выполняется соотношение k + k' = 2(2l + 1), соотношения, связывающие факторы мультиплетного расщепления $\zeta(L, S)$ и ζ_{n,l_i} , отличаются только знаком.

Для оболочки nl^k , где k = 2l + 1, то есть, заполнено половина оболочки выполняется равенство

$$\zeta(L, S) = -\zeta(L, S) = 0,$$

откуда следует, что термы не должны расщепляться.

В результате разрешенных переходов между энергетическими уровнями двух мультиплетных термов в спектре наблюдается совокупность линий, образующих *мультиплет*. Характеристики мультиплетов определяются прежде всего значениями квантовых чисел L и S комбинирующих термов и правилами отбора $\Delta S = 0$, $\Delta L = 0$, ± 1 $\Delta J = 0$, ± 1 (в дипольном приближении).

Вопросы для самоконтроля

1. Каким явлением обусловлено мультиплетное расщепление энергетических уровней и спектральных линий атомных систем?

2. Снятием вырождения по какому квантовому числу описывается явление мультиплетного расщепления?

3. В соответствии с какой формулой определяется величина энергии, обусловленной спин-орбитальным взаимодействием?

4. Что называется фактором мультиплетного расщепления?

5. В чем состоит правило интервалов?

6. В соответствии с какой формулой определяется общая ширина мультиплетного расщепления терма?

7. Какое соотношение установлено между факторами мультиплетного расщепления $\zeta(L, S)$ и $\zeta_{n_i l_i}$ для термов с максимальной мультиплетностью? 8. Какие мультиплетные термы называются обращенными?

Задания

1. Величина дублетного расщепления δE терма 2 ²*P* для атома лития равна 0,34 см⁻¹. Определите значение фактора мультиплетного расщепления $\zeta(L,S)$ для этого терма и соответствующее ему значение эффективного заряда Z^* .

2. Постоянная экранирования σ для терма 3 ²*P* атома натрия равна 7,45. Вычислите дублетное расщепление этого терма

3. Длина волны одного из компонентов дублетного расщепления резонансной линии в спектре калия равна 769,898 нм, а эффективный заряд Z^* , соответствующий терму 4^2P этого атома, равен 5,98. Определите длину волны второго компонента этого дублета.

4. Воспользуйтесь схемой энергетических уровней атома натрия, изображенной на рисунке Б. 2 (Приложение Б), и вычислите дублетное расщепление, а также значения эффективного заряда Z^* и постоянной экранирования σ , соответствующие термам n^2P (n = 3, 4, 5, 6, 7). Постройте график зависимости $\sigma = \sigma(n)$ и проанализируйте его.

5. Воспользуйтесь сведениями, приведенными в таблице Д. 2 Приложение Д, и определите значения длин волн (в нм) компонентов резонансного триплета в спектре атомов магния. Изобразите фрагмент схемы энергетических уровней (в см⁻¹) и соответствующие переходы.

6. Проверьте выполнимость правила интервалов для триплетного терма $4^{3}P$ атома кальция, используя сведения, приведенные на рисунке В. 2 (Приложение В).

7. Воспользуйтесь схемой энергетических уровней магния (рисунок В. 3 Приложения В), определите общую ширину мультиплетного расщепления терма $4^{3}P$ и значения факторов мультиплетности $\zeta(L, S)$ и $\zeta_{n,l_{i}}$.

8. Воспользуйтесь сведениями, приведенными в таблице Д. 2 (Приложение Д), и определите для терма $6^{3}P$ атома бария значения факторов мультиплетности $\zeta(L, S)$ и ζ_{n,l_i} и эффективного заряда Z^* .

9. Воспользуйтесь сведениями, приведенными в таблице Д. 2 (Приложение Д), и определите для терма $5^{3}P$ атома стронция значения эффективного заряда Z^{*} и постоянной экранирования σ .

10. Воспользуйтесь схемой энергетических уровней бария

(рисунок Д. 1 Приложения Д) и определите значения эффективного заряда Z^* и постоянной экранирования σ для термов 5^3D и 6^3D . Сравните и проанализируйте результаты, полученные в задачах 9 и 10.

11. Для атома индия (электронная конфигурация $5s^25p$), величина расщепления основного терма 5^2P равна 2 212,56 см⁻¹. Определите значение постоянной экранирования σ для этого терма.

12. Воспользуйтесь сведениями, приведенными в таблице Д. 3 (Приложение Д) и определите значения постоянной экранирования σ для термов n^2P каждого из *пр*-атомов. Изобразите соответствующий сведениям таблицы фрагмент схемы энергетических уровней. Постройте график зависимости $\sigma = \sigma(n)$ и проанализируйте ее.

13. Воспользуйтесь таблицей Д. 3 (Приложение Д) и определите значения постоянной экранирования σ для термов n^2D каждого из *пр*-атомов. Изобразите соответствующий сведениям таблицы фрагмент схемы энергетических уровней. Постройте графики $\sigma = \sigma(n)$ и проанализируйте полученные результаты совместно с результатами задачи 12.

14. Известно, что величина расщепления $\Delta v(3p^2/{}^3P_1-{}^3P_0/)$ для атома кремния равна 77 см⁻¹. Определите величину $\Delta v(3p^2/{}^3P_2-{}^3P_1/)$, Изобразить схему мультиплетного расщепления уровней.

15. В соответствии с правилом интервалов для терма $s^2 p^4 P_J$ атомов кислорода *O I*, серы *S I* и селена *Se I* определите теоретические значения $(\Delta v_{21} / \Delta v_{10})_T$. Сравните полученные результаты со сведениями, приведенными в таблице Д. 4 (Приложение Д), и сформулируйте выводы относительно изменения характера связи электронов в рассматриваемых атомах при увеличении зарядового числа Z.

16. Прокомментируйте закономерности мультиплетного расщепления в ряду изоэлектронных атомных систем, используя информацию, приведенную в таблице Д. 5 (Приложение Д). Проверьте выполнимость правила интервалов и проанализируйте тип связи электронов в изоэлектронном ряду при увеличении зарядового числа Z.

17. Изобразите с учетом мультиплетного расщепления схему триплетных термов иона фтора *FII* $2s^22p^{4} {}^{3}P$ и $2s2p^{5} {}^{3}P$ и разрешенные правилами отбора переходы. Учитывая, что длина волны спектральной линии, соответствующей переходу $2s2p^{5} {}^{3}P_{2} \leftrightarrow 2s^{2}2p^{4} {}^{3}P_{2}$, составляет 16 479,6 нм, а длина волны спектральной линии, соответствующей переходу $2s2p^{5} {}^{3}P_{1} \leftrightarrow 2s^{2}2p^{4} {}^{3}P_{2}$, равна 16 510,6 нм, определите с использованием правила интервалов величину (в см⁻¹) расщепления $\Delta v (2s2p^{5}/{}^{3}P_{1}-{}^{3}P_{0}/)$.

Литература

1. Ельяшевич, М. А. Атомная и молекулярная спектроскопия / М. А. Ельяшевич – М.: Эдиториал УРСС, 2001. – 896 с.

2. Фриш, С. Э. Оптические спектры атомов / С. Э. Фриш – М.: Физматгиз, 1963. – 640 с.

3. Кондиленко, И. И. Введение в атомную спектроскопию /
И. И. Кондиленко, П. А. Коротков – Киев: Вища школа, 1976. – 304 с.
4. Шпольский, Э. В. Атомная физика : в 2 т. Т. 1 /

4. Шпольский, Э. В. Атомная физика : в 2 т. т. т. Э. В. Шпольский. – М.: Наука, 1974. – 576 с.

5. Шпольский, Э. В. Атомная физика : в 2 т. Т. 2 / Э. В. Шпольский. – М.: Наука, 1974. – 447 с.

6. Соколов, А. А. Квантовая механика и атомная физика: учеб. пособие для физ.-мат. фак-тов пединститутов / А. А. Соколов, И. М. Тернов – М. : Просвещение, 1970. – 423 с.

7. Нерсесов, Э. А. Основные законы атомной и ядерной физики: учеб. пособие для вузов / Э. А. Нерсесов. – М.: Высшая школа, 1988. – 288 с.

8. Сивухин, Д. В. Атомная и ядерная физика / Д. В. Сивухин, – М.: Физматлит, 2006. – 784 с.

9. Красовицкая, Т. И. Электронные структуры атомов и химическая связь: пособие для учителей / Т. И. Красовицкая. – 2-е изд., перераб. – М. : Просвещение, 1980. – 224 с.

10. Зайдель, А. Н. Техника и практика спектроскопии: учеб. пособие для вузов / А. Н. Зайдель, Г. В. Островская, Ю. И. Островский. – М.: Наука, 1976. – 284 с.

11. Практикум по спектроскопии : учеб. пособие для студ. физ. фак. вузов / А. И. Акимов [и др.]. – М.: Изд-во МГУ, 1994. – 354 с.

12. Малышев, В. И. Введение в экспериментальную спектроскопию / В. И. Малышев – М. : Наука, 1979. – 480 с.

13. Орешенкова, Е. Г. Спектральный анализ: учебник для техникумов / Е. Г. Орешенкова – М. : Высшая школа, 1982. – 357 с.

14. Лебедева, В. В. Техника оптической спектроскопии / В. В. Лебедева. – 2-е изд., перераб. и доп. – М. : Изд-во МГУ, 1986. – 352 с.

15. Нагибина, И. М. Фотографические и фотоэлектрические спектральные приборы и техника эмиссионной спектроскопии / И. М. Нагибина, Ю. К. Михайловский – Л. : Машиностроение, 1981. – 247 с.

Приложение А

(обязательное)

Характеристики состояния водородоподобных атомных систем

Таблица А. 1 – Спин-орбитали, образующие s- и p-оболочки атома

R_{∞}	109 737,309 см ⁻¹
R_H	109 677,576 см ⁻¹
R_D	109 707,419 см ⁻¹
R _{He II}	109 722,267 см ⁻¹
$R_{Li III}$	109 728,600 см ⁻¹
$R_{Be IY}$	109 730,500 см ⁻¹

Таблица А. 2 – Значения постоянных Ридберга

Таблица А. 3 – Длины волн λ спектральных линий серии Бальмера в спектрах водорода ${}^{l}_{l}H$ и дейтерия ${}^{2}_{1}H$ и значения их сдвигов $\Delta\lambda$

Обозначение	λ, нм		Δλ, нм		
линий	$^{l}_{l}H$	2_1H	теория	эксперимент	
α	656,284 6	656,106 3	0,178 3	0,178 3	
β	486,132 2	485,999 2	0,133 0	0,132 6	
γ	434,045 8	433,927 7	0,118 1	0,118 5	
δ	410,173 1	410,062 1	0,111 0	0,111 9	

	п	l	j	уровень	(δ _j	_{,j+1}), см ⁻¹
					Н	He^+
		3 {	7/2 5/2]	0,007 5	0,120 0
	4	2 {	5/2 3/2	{	0,015 0	0,240 0
		1 {	3/2 1/2	$\left\{ \begin{array}{c} 1 \\ 1 \end{array} \right\}$	0,046 0	0,730 0
		0	1/2	}		
·	2	2 {	5/2 3/2	}	0,036 0	0,570 0
	5	1 {	3/2 1/2	}	0,108 0	1,720 0
Q		0	1/2	}		
	2	$\begin{array}{c}1\\0\end{array}$	3/2 1/2 1/2	}	0,366 0	5,860 0
	1	0	1/2			

Приложение Б

(обязательное)

Атомные системы с ns-конфигурацией

Таблица Б. 1 – Энергетические характеристики нормального состояния атомов щелочных металлов

Символ	Ζ	$E_{i,}$ эВ	Z^*	σ_{ns}	п	n [*]	Δ
Li	3	5,39	1,26	1,74	2	1,59	0,41
Na	11	5,14	1,84	9,18	3	163	1,37
K	19	4,34	2,25	16,75	4	1,77	2,23
Rb	37	4,18	2,77	34,23	5	1,80	3,20
Cs	55	3,89	3,12	51,88	6	1,87	4,13

Рисунок Б. 1 – Схема энергетических уровней и длины волн (λ, Å) спектральных линий для атома лития

Главная серия	$ks \leftarrow np, \ n = k, k+1, \dots$
Резкая серия	$kp \leftarrow ns, n = k+1, \ k+2, \ldots$
Диффузная	$kp \leftarrow nd$, $n = k$ (кроме Li), $k + 1, k + 2$, ;
серия	здесь k = 2 для Li, 3 – для Na, 4 – для K и т.д.
Фундаментальная	$kd \Leftarrow nf$, $k=3$ для Li , Na , K , $k=4$ – для
серия	Rb, 5 – для Cs , 6 – для Fr ; $n = 4, 5,$ для Li ,
	Na, K, Rb, n=5,6,для Fr

Таблица Б. 2 – Спектральные серии атомов щелочных металлов

Рисунок Б. 2 – Схема энергетических уровней и длины волн (λ, Å) спектральных линий для атома натрия

Таблица Б. 3 – Значения прочности связи внешнего электрона в атоме натрия (см⁻¹)

Квантовые числа	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6	<i>n</i> = 7	<i>n</i> = 8	<i>n</i> = 9
l = 0	41 450	15 710	8 249	5 077	3 4 3 7	2 481	1 875
l = 1	24 483	11 179	6 408	4 1 5 2	2 909	2 151	1 655
l = 2	12 277	6 901	4 413	3 062	2 2 4 9	1 721	1 359
l = 3		6 861	4 392	3 0 5 0	2 240	1 716	1 358
Атом водорода	12 186	6 855	4 387	3 0 4 7	2 2 3 8	1 714	1 354

Рисунок Б. 3 – Схема энергетических уровней и длины волн (λ, Å) спектральных линий для атома калия

Таблица Б. 4 — Значения эффективных квантовых чисел n^* и квантовых дефектов Δ_{ns} для лития и натрия

Эломонт	Пара-	Главное квантовое число <i>n</i>					
Элемент	метры	2	3	4	5	6	7
Питий	<i>n</i> *	1,589	2,596	3,598	4,599	5,599	6,599
ЛИТИИ	Δ_{ns}	0,411	0,404	0,402	0,401	0,401	0,401
Потрий	n^*	_	1,627	2,643	3,648	4,651	5,652
патрии	Δ_{ns}	_	1,373	1,357	1,352	1,349	1,348

Рисунок Б. 4 – Схема энергетических уровней и длины волн (λ, Å) спектральных линий для атома рубидия

Приложение В

(обязательное) Характеристики атомов с ns²-конфигурацией

Таблица В. 1 – Электронная конфигурация и энергия ионизации основного состояния *ns*² атомов

Ζ	Элемент	Электронная конфигурация	п	Энергия ионизации, эВ
2	He	$1s^2$	1	24,58
4	Be	$(1s^2)2s^2$	2	9,32
12	Mg	$(2p^6)3s^2$	3	7,64
20	Ca	$(3p^{6})4s^{2}$	4	6,11
38	Sr	$(4p^6)5s^2$	5	5,69
56	Ba	$(5p^{6})6s^{2}$	6	5,21
88	Ra	$(6p^6)7s^2$	7	5,28
30	Zn	$(3d^{10})4s^2$	4	9,39
48	Cd	$(4d^{10})5s^2$	5	8,99
80	Hg	$(5d^{10})6s^2$	6	10,43

Таблица В. 2 – Термы двухэлектронных конфигураций *nsn'l'* при (*LS*) – связи

l	l'	Конфигурация	Термы	Число термов	Число уровней
0	0	SS	^{1}S ^{3}S	2	2
0	1	sp	^{I}P ^{3}P	2	4
0	2	sd	^{1}D ^{3}D	2	4
0	3	sf	^{I}F ^{3}F	2	4

Таблица В. 3 – Разности энергий синглетного и триплетного термов гелия (см⁻¹)

п	${}^{1}S - {}^{3}S$	$^{1}P - ^{3}P$	$^{1}D - ^{3}D$	${}^{1}F - {}^{3}F$
2	6 421,38	2 047,89	_	_
3	1 627,98	644,60	3,32	_
4	642,04	275,53	1,88	0,63
5	316,45	141,68	1,06	1,48
6	178,71	81,96	0,65	0,12
7	110,56	51,69	0,31	0,11
8	73,24	34,48	0,31	0,12
9	50,76	24,27	0,14	0,06

Рисунок В. 1 – Схема энергетических уровней и длины волн (λ, Å) спектральных линий для атома гелия

Таблица В. 4 – Характеристики энергетических состояний атомных систем, изоэлектронных атому гелия

Характеристики	He I	Li II	Be III	B IV	C V	N VI	O VII
<i>Is^{2 1}S</i> ₀ - <i>Is</i> 2 <i>p</i> ¹ <i>P</i> ₁ (λ, нм)	58,43	19,93	10,03	6,03	4,03	2,88	2,16
Энергия ионизации (эВ)	24,58	75,62	153,85	259,30	391,99	551,93	739,11
Терм $Is^{2} {}^{1}S_{0}$,(см ⁻¹)	198 305	610 079	1 241 225	2 091 960	3 162 450	4 452 800	5 963 000
Z	2	3	4	5	6	7	8
	1,35	2,36	3,36	4,37	5,37	6,37	7,38
σ	0,65	0,64	0,64	0,63	0,63	0,63	0,62

Таблица В. 5 – Характеристики резонансных линий в спектрах атомов щелочноземельных элементов

λ, нм, (I, отн ед)										
Переходы	Be	Mg	Ca	Sr	Ba	Ra				
${}^{1}S_{0} - {}^{1}P_{1}$	234,861	285,213	422,673	460,433	553,548	482,591				
	(2000)	(300)	(500)	(1 000)	(1 000)	(800)				
$^{1}S_{0} - ^{3}P_{1}$	_	457,115	657,278	689,259	791,134	714,121				
		(20)	(50)	(100)	(200)	(2 000)				

Рисунок В. 2 – Схема энергетических уровней и длины волн (λ, Å) спектральных линий для атома кальция

Таблица В. 6 – Характеристики резонансных линий в спектрах атомов цинка, кадмия и ртути

λ, нм, (I, отн ед)								
Переходы	Zn	Cd	Hg					
${}^{1}S_{0} - {}^{1}P_{1}$	213,856	228,802	184,950					
	(800)	(1500)	(100)					
$^{1}S_{0} - ^{3}P_{1}$	307,590	326,105	253,652					
	(150)	(300)	(2 000)					

Рисунок В. 3 – Схема энергетических уровней длины волн (λ, Å) спектральных линий для атома магния

Приложение Г (обязательное)

Состояния атомов с заполняющейся *р*-оболочкой

п	Характеристики	<i>k</i> = 1	<i>k</i> = 2	<i>k</i> = 3	k = 4	<i>k</i> = 5	<i>k</i> = 6
	Ζ	5	6	7	8	9	10
2	Элемент	В	С	N	0	F	Ne
Ζ	Норм. конф.	$2s^22p$	$2s^22p^2$	$2s^2 2p^3$	$2s^2 2p^4$	$2s^22p^5$	$2s^22p^6$
	Е _і , эВ	8,30	11,26	14,53	13,61	17,42	21,56
							,7
	Z	13	14	15	16	17	18
3	Элемент	Al	Si	Р	S	Cl	Ar
	Норм. конф.	$3s^23p$	$3s^23p^2$	$3s^2 3p^3$	$3s^23p^4$	$3s^2 3p^5$	$3s^2 3p^6$
	<i>Е</i> _i , эВ	5,98	8,15	10,48	10,36	13,01	15,76
					\mathbf{N}		
	Z	31	32	33	34	35	36
4	Элемент	Ga	Ge	As	Sc	Br	Kr
	Норм. конф.	$4s^24p$	$4s^24p^2$	$4s^24p^3$	$4s^24p^4$	$4s^24p^5$	$4s^24p^6$
	<i>Е</i> _i , эВ	6,00	7,88	9,81	9,75	11,84	14,00
	<u> </u>						
	Z	49	50	51	52	53	54
5	Элемент	In	Sn	Sb	Te	J	Xe
	Норм. конф.	$5s^25p$	$5s^25p^2$	$5s^25p^3$	$5s^25p^4$	$5s^25p^5$	$5s^25p^6$
	<i>Е</i> _i , э <i>В</i>	5,78	7,34	8,64	9,01	10,45	12,13
	1	24					
	Z	81	82	83	84	85	86
6	Элемент	Tl	Pb	Bi	Po	At	Rn
	Норм. конф.	$6s^26p$	$6s^26p^2$	$6s^26p^3$	$6s^26p^4$	$6s^26p^5$	$6s^26p^6$
	Е _і , эВ	6,11	7,42	7,29	8,44	_	10,75
		2	2	1	2	2	1
Oci	новное состояние	$^{2}P_{1/2}$	$^{3}P_{0}$	$S_{3/2}$	$^{3}P_{2}$	$^{2}P_{3/2}$	$^{1}S_{0}$

Таблица Г. 1 – Нормальные конфигурации	р-элементов
--	-------------

	▲ 1/Z	10	D 3/2	12	- 3/2	
Таблица Г. 2 –	Термы, со	оответств	ующие ко	нфигурац	ции пр ^{k-1} и	n'l'

Конфи-	Исходный	Термы возбужденного атома						
гурация пр ^к	терм пр ^к	$np^{k-1}n's$	$np^{k-1}n'p$	$np^{k-1}n'd$	$np^{k-1}n'f$			
np и np^5	^{2}P	${}^{1}P {}^{3}P$	^{1}SPD ^{3}SPD	^{1}PDF ^{3}PDF	^{1}DFG ^{3}DFG			
	^{1}S	^{2}S	^{2}S ^{2}P		^{2}F			
np^2 и np^4	^{1}D	^{2}D	^{2}PDF	² SPDFG	² PDFGH			
	^{3}P	${}^{2}P {}^{4}P$	^{2}SPD ^{4}SPD	^{2}PDF ^{4}PDF	^{2}DFG ^{4}DFG			
	^{2}P	${}^{1}P {}^{3}P$	^{1}SPD ^{3}SPD	^{1}PDF ^{3}PDF	^{1}DFG ^{3}DFG			
np^3	^{2}D	${}^{1}D {}^{3}D$	^{1}PDF ^{3}PDF	¹ SPDFG ³ SPDI	¹ PDFGH ³ PDF			
	^{4}S	${}^{3}S$ ${}^{5}S$	${}^{3}P$ ${}^{5}P$	${}^{3}D {}^{5}D$	${}^{3}F$ ${}^{5}F$			

Рисунок Г. 1 – Схема энергетических уровней и длины волн (λ, Å) спектральных линий для атома алюминия

Таблица Г. 3 – Энергия (в см⁻¹) уровней и термов для атомов с нормальной конфигурацией np^2

Э	лемент	С	Si	Ge	Sn	Pb
Оболочка		$2p^2$	$3p^2$	$4p^2$	$5p^2$	$6p^2$
,	Уровень ${}^{3}P_{0}$	0	0	0	0	0
Терм ³ Р	Уровень ³ <i>P</i> ₁	16	77	557	1 692	7 819
	Уровень ${}^{3}P_{2}$	44	223	1 410	3 428	10 650
Терм ¹ D	Уровень $^{1}D_{2}$	10 194	6 299	7 125	8 613	21 458
Терм ¹ S	Уровень ${}^{1}S_{0}$	21 648	15 394	16 367	17 163	29 467

Рисунок Г. 2 – Схема энергетических уровней и длины волн (λ, Å) спектральных линий для атома углерода

Таблица Г. 4 – Энергия (в см⁻¹) уровней и термов для атомов с нормальной конфигурацией *пр*³

	Элемент	N	Р	As	Sb	Bi
Оболочка		$2p^3$	$3p^3$	$4p^{3}$	$5p^3$	$6p^3$
Терм ⁴ S	Уровень ⁴ S _{3/2}	0	0	0	0	0
2	Уровень ² <i>D</i> _{3/2}	19 223	11 362	10 592	8 512	11 419
Терм 2D	Уровень ² <i>D</i> _{5/2}	19 231	11 376	10 915	9 854	15 438
2	Уровень ² <i>P</i> _{1/2}	28.840	18 722	18 186	16 396	21 661
Терм ² Р	Уровень ² <i>P</i> _{3/2}	20 040	18 784	18 648	18 464	33 165

Рисунок Г. 3 – Схема энергетических уровней и длины волн (λ, Å) спектральных линий для атома кислорода

Таблица Г. 5 – Энергия (в см⁻¹) уровней и термов для атомов с нормальной конфигурацией np^4

	Элемент		S	Se	Te	Po
Оболочка		$2p^4$	$3p^4$	$4p^4$	$5p^4$	$6p^4$
	Уровень ${}^{3}P_{2}$	0	0	0	0	0
Терм ³ <i>P</i>	Уровень ³ <i>P</i> ₁	158	397	1 989	4 751	16 831
	Уровень ${}^{3}P_{0}$	226	574	2 534	4 707	7 514
Терм ¹ <i>D</i>	Уровень ¹ D ₂	15 868	9 239	9 576	10 559	21 679
Терм ¹ S	Уровень ¹ S ₀	33 792	22 181	22 446	23 199	42 718

Приложение Д

(обязательное)

Характеристики мультиплетного расщепления

Таблица Д. 1 – Величина дублетного расщепления	Δv для резонансных
линий атомов щелочных металлов	

IT			Составляющи	ие дублета, см ⁻¹	Расщепле-		Постоянная
мен	Ζ	п	$ns^{2}S_{1/2}$ -	$ns^{2}S_{1/2}$ –	ние, см ⁻¹	Z^*	экранирова-
леп			$np^{2}P_{1/2}^{0}$	$np^{2}P_{3/2}^{0}$	$n^{2}P_{3/2}^{0}$ -		ния, σ
E					$n^2 P_{1/2}^{0}$		
Li	3	2	14 903,66	14 904,00	0,34	0,98	2,02
Na	11	3	16 956,18	16 973,38	17,20	3.55	7,45
K	19	4	12 985,17	13 042,89	57,72	5,97	13,03
Rb	37	5	12 578,96	12 816,56	237,60	10,05	26,95
Cs	55	6	11 178,2	1 1732,3	554,1	14,2	40,80

Таблица Д. 2 – Значения энергии (см⁻¹) основного и первых возбужденных уровней для атомов щелочноземельных элементов

Элемент	Be	Mg	Ca	Sr	Ba	Ra
Z	4	12	20	38	56	88
n	2	3	4	5	6	7
$E(n^{-1}S_{0}), cM^{-1}$	75 175,12	61 624,24	49 283,26	45 968,13	42 023,86	42 588,48
$E(n^{1}P_{1}), cM^{-1}$	32 609,82	26 572,88	25 630,94	24 289,65	23 963,60	21 872,77
$E(n^{3}P_{0}), cM^{-1}$	53 195,69	39 773,87	34 125,35	31 650,61	29 757,84	29 510,04
$E(n^{3}P_{1}), c M^{-1}$	53 195,01	39 753,81	34 073,19	31 463,78	29 387,24	28 689,10
$E(n^{3}P_{2}), cM^{-1}$	53 192,66	39 723,10	33 967,31	31 069,57	28 509,12	25 899,94

Таблица Д. 3 – Частоты (см⁻¹) компонентов мультиплетного расщепления резонансных линий в спектрах атомов с *пр*-конфигурацией

Элемент	Z	n	${}^{2}P_{\frac{1}{2}}-{}^{2}S_{\frac{1}{2}}$	${}^{2}P_{\frac{3}{2}}-{}^{2}S_{\frac{1}{2}}$	${}^{2}P_{\frac{1}{2}}-{}^{2}D_{\frac{3}{2}}$	${}^{2}P_{\frac{3}{2}}-{}^{2}D_{\frac{3}{2}}$	${}^{2}P_{\frac{3}{2}}-{}^{2}D_{\frac{5}{2}}$
Al	13	3	25 347,69	25 235,65	32 435,45	32 324,75	32 323,41
Ga	31	4	24 788,58	23 962,34	34 781,67	33 961,68	33 955,43
In	49	5	24 372,87	22 160,31	32 892,12	30 702,86	30 679,56
Tl	81	6	26 477,50	18 684,80	36 117,90	28 407,20	28 325,20

Таблица Д. 4 – Мультиплетное расщепление терма $s^2 p^{4-3} P_J$ (см⁻¹)

Элемент	Δv_{21}	Δv_{10}	$\Delta v_{21} / \Delta v_{10}$
0 I	157,5	68,9	2,29/1
S I	396,8	176,8	2,25/1
Se I	1998,5	544,0	3,60/1

Таблица Д. 5 — Мультиплетное расщепление терма $2s \ 2p \ 3p^{-4}D_J$ (см⁻¹) для ионов, изоэлектронных атому бора

Элемент	Δv_1	Δv_2	Δv_3
C II	14,7	25,0	36,3
N III	37,3	62,2	96,2
O IY	78,8	135,5	209,7
F Y	146,0	256,0	401,0

Рисунок Д. 1 – Схема энергетических уровней и длины волн (λ, Å) спектральных линий для атома бария

Производственно-практическое издание

Шолох Валентина Григорьевна

АТОМНАЯ СПЕКТРОСКОПИЯ

Практическое пособие

для студентов специальностей 1-31 04 01-02 «Физика (производственная деятельность)»; 1-31 04 01-03 «Физика (научно-педагогическая деятельность)»; 1-31 04 01-04 «Физика (управленческая деятельность)»; специализации «Лазерная физика и спектроскопия»

> Редактор В. И. Шкредова Корректор В. В. Калугина

Подписано в печать 20.01.2015. Формат 60×84 1/16. Бумага офсетная. Ризография. Усл. печ. л. 3,1. Уч.-изд. л. 2,8. Тираж 25 экз. Заказ 40.

Издатель и полиграфическое исполнение: учреждение образования «Гомельский государственный университет имени Франциска Скорины». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/87 от 18.11.2013. Специальное разрешение (лицензия) № 02330 / 450 от 18.12.2013. Ул. Советская, 104, 246019, Гомель.