можно определить степень вредоносности Android-приложений и наличие различных рекламных библиотек, что уже экономит достаточно много времени. Также планируется добавление сигнатур всех популярных android-фреймворков для отображения полного состава приложения на уровне дополнительных библиотек.

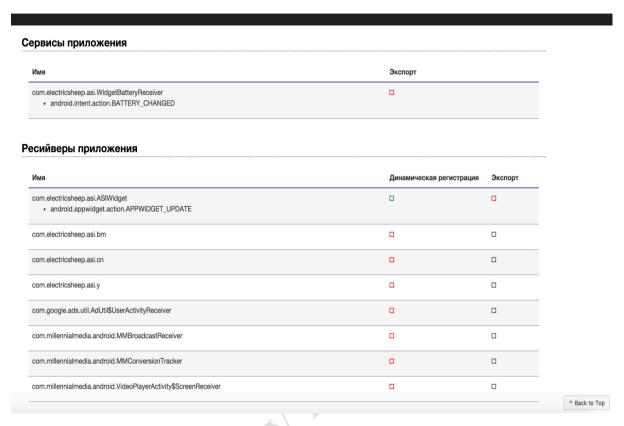


Рисунок 5 – Широковещательные слушатели и сервисы приложения

Литература

- 1 AndroidInsider [Electronic resource]. Mode of access: http://www.androidinsider.ru/. Data of access: 4.10.2015.
- 2 4pda.ru [Electronic resource]. Mode of access: http://www.4pda.ru/. Data of access: 1.09.2015.

УДК 517.444

И. С. Ковалева

ОПЕРАТОР МАРКОВА-СТИЛТЬЕСА В ПРОСТРАНСТВЕ $L^2(0,1)$

Общее определение абстрактного преобразования Стилтьеса над полугруппой S было дано A. P. Миротиным в монографии [1]. B случае аддитивной полугруппы целых неотрицательных чисел Z_+ получаем сингулярный интегральный оператор, который называется оператором Маркова—Стилтьеса. B данной статье доказана унитарная эквивалентность оператора Маркова—Стилтьеса в пространствах $H^2(D)$ и $L^2(0,1)$. Как следствие, получены спектр и норма данного оператора в пространстве $L^2(0,1)$.

Определение 1. Оператор Маркова—Стилтьеса над полугруппой Z_+ функции f(t), определенной и измеримой на [0,1], задается следующим соотношением

$$Sf(z) := \int_{0}^{1} \frac{f(t)}{1 - tz} dt.$$

При этом предполагается, что интеграл существует как интеграл Лебега или в смысле главного значения.

Ранее в [2] исследовались свойства оператора Маркова–Стилтьеса в пространстве Харди $H^2(D)$, которые сформулированы в следующей теореме.

Теорема 1. Преобразование Маркова—Стилтьеса S в $H^2(D)$ есть ограниченный ганкелев оператор, имеющий в стандартном базисе (χ_n) пространства $H^2(D)$ матрицу Гильберта. Причем его норма равна π , а спектр чисто непрерывный, совпадает с существенным и равен $[0,\pi]$.

Далее нам понадобится следующее определение.

Определение 2. Линейные ограниченные операторы $A: H_1 \to H_1$ и $B: H_2 \to H_2$ называются *унитарно эквивалентными*, если существует унитарный оператор $U: H_1 \to H_2$ такой, что $UAU^1 = B$.

В [3] доказана ограниченность оператора Маркова–Стилтьеса в пространствах $L^p(0,1)$ (1 < $p \le 2$). В следующей теореме вычислены спектр и норма оператора S в пространстве $L^2(0,1)$.

Теорема 2. Оператор Маркова-Стилтьеса в пространстве $L^2(0,1)$ унитарно эквивалентен оператору S в пространстве $H^2(D)$. B частности, $\|S\|_{L^2 \to L^2} = \pi$, а спектр чисто непрерывный, совпадает с существенным и равен $[0,\pi]$.

Доказательство. Пусть $f \in H^2(D)$. Тогда $f | (0,1) \in L^2(0,1)$ (см., например [2]). Рассмотрим оператор

$$j_2: H^2(D) \to L^2(0,1), \ f \mapsto f | (0,1).$$

Он ограничен. Действительно, согласно неравенству Фейера – Рисса (см., например [4, теорема 3.13])

$$\int_{0}^{1} |f(t)|^{2} dt \le \int_{-1}^{1} |f(t)|^{2} dt \le \frac{1}{2} \int_{0}^{2\pi} |f(e^{i\theta})|^{2} d\theta.$$

Отсюда

$$||f|(0,1)||_{L^2(0,1)} \le \pi^{1/2} ||f||_{H^2(D)}.$$

Таким образом,

$$||j_2||_{L^2(0,1)} \le \pi^{1/2}.$$

В силу теоремы единственности для аналитических функций оператор j_2 инъективен. Введем обозначения S_L — оператор Маркова—Стилтьеса в пространстве $L^2(0,1)$,

 S_H — оператор Маркова—Стилтьеса в пространстве $H^2(D)$.

Заметим, что $j_2S_H = S_L j_2$, т. е. j_2 – сплетающий оператор.

Таким образом, согласно теореме Дугласа — Путнама [5, теорема IX.6.10 (c)] оператор S_L унитарно эквивалентен оператору S_H .

Отсюда и из теоремы 1 следует, что норма оператора Маркова–Стилтьеса в пространстве $L^2(0,1)$ равна π , спектр чисто непрерывный, совпадает с существенным и равен $[0,\pi]$.

Что и требовалось доказать.

Следствие 1. Оператор Маркова—Стилтьеса S ограниченно действует из $H^2(D)$ в $L^2(0,1)$ u

$$||S||_{H^2 \to I_c^2} \le \pi^{3/2}$$
.

Доказательство. Пусть $f \in H^2(D)$. Как показано выше, норма оператора сужения j_2 не превосходит $\pi^{1/2}$.

Обозначим, как и ранее, S_L – оператор Маркова–Стилтьеса в пространстве $L^2(0,1)$. Заметим, что

$$j_2: H^2(D) \to L^2(0,1), \ S_L: L^2(0,1) \to L^2(0,1).$$

- Следовательно, $S = S_L j_2 : H^2(D) \to L^2(0,1)$. Таким образом,

$$||S||_{H^2 \to L^2} = ||S_L j_2||_{H^2 \to L^2} \le ||S_L||_{L^2 \to L^2} ||j_2||_{H^2 \to L^2} \le \pi^{3/2}.$$

Что и требовалось доказать.

Литература

- 1 Миротин, А. Р. Гармонический анализ на абелевых полугруппах / А. Р. Миротин. Гомель: ГГУ им. Ф. Скорины, 2008. 207 с.
- 2 Ковалева, И.С. Ганкелевость оператора Маркова Стилтьеса в пространстве Харди H^2 / И. С. Ковалева // Творчество молодых 2014: сборник научных работ студентов и аспирантов УО «ГГУ им. Ф. Скорины» : в 3 ч. / ГГУ им. Ф. Скорины; отв. ред. О. М. Демиденко. Гомель, 2014. Ч. 1. С. 75—77.
- 3 Ковалева, И. С. Преобразование Стилтьеса над полугруппой Z_+ / И. С. Ковалева // Творчество молодых 2012: сборник научных работ студентов и аспирантов УО «ГГУ им. Ф. Скорины»: в 2 ч. / Гомельский гос. ун-т им. Ф.Скорины; отв. ред. О. М. Демиденко. Гомель, 2012. Ч. 1. С. 146–148.
- 4 Duren, P. L. Theory of H^p spaces / P. L. Duren // Pure and Applied Mathematics. 1970. Vol. 38. 277 p.
- 5 Conway, J. B. A Course in Functional Analysis / J. B. Conway. 2nd ed. Springer, 1997. 414 p.
- 6 Иосида, К. Функциональный анализ / К. Иосида; пер. с англ. ; под ред. В. М. Волосова. М.: Мир, 1967. 624 с.
- 7 Пеллер, В. В. Операторы Ганкеля и их приложения / В. В. Пеллер // Москва-Ижевск : НИЦ «Регулярная и хаотическая динамика». 2005. 1028 с.