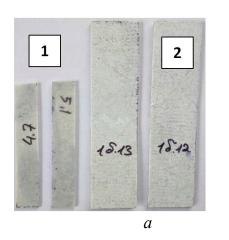
- Н. В. Селивончик, Ю. Л. Бобарикин // Материалы, технологии, инструменты. – 2002. – Т.7, № 3. – С. 33–37.
- 2. Кочергин, К. А. Сварка давлением / К. А. Кочергин. Л.: Машиностроение, 1972. – 216 с.
- 3. Каракозов, Э. С. Диффузионная сварка титана 3RNHIP Э. С. Каракозов, Л. М. Орлова, В. В. Пешков. – М.: Металлургия, 1977. - 272c.

А. П. Сазанков

(ИММС НАН Беларуси, Гомель) Науч. рук. С. В. Шилько, канд. техн. наук, доцент

ВЛИЯНИЕ ВЛАГИ НА МЕХАНИЧЕСКИЕ СВОЙСТВА СТЕКЛОПЛАСТИКОВ НА ПРИМЕРЕ ДВУХ- И ТРЕХКОМПОНЕНТНЫХ ЛАМИНАТОВ


Введение. Полимерные композиты, включая стеклопластики, в большей или меньшей степени гигроскопичны. В результате диффузии воды, инициированной гидрофильными компонентами, на поверхности раздела «наполнитель - связующее» возникает высокое осмотическое давление, что приводит к образованию трещин вблизи волокон и снижению прочности.

Разупрочнение стеклопластиков во влажном состоянии связано также с пористостью композита, обусловленной неравномерным распределением армирующего материала в связующем, попаданием воздуха при формовании ламината, низкой адгезией компонентов и пластификацией материала [1, 2].

Целью исследования являлась оценка степени разупрочнения стеклопластиков под действием влаги.

Методика эксперимента. В работе исследовались прочностные характеристики двухкомпонентных ламинатов (полиэфирное связующее + армирующий наполнитель в виде стекломата), представленные материалами различного состава №№ 7-14, и трехкомпонентных ламинатов (микросферотекстолитов), в состав которых вводились стеклянные микросферы [3, 4] для уменьшения плотности (материалы №№ 1а-6, 15). Испытуемые образцы вырезались из листовых заготовок ламинатов, изготовленных на технологической базе ОАО «Полоцк-Стекловолокно».

Определение влагопоглощения производилось взвешиванием образцов до и после нахождения в водной среде при комнатной температуре. Механические характеристики (предел прочности и ударная вязкость) определялись путем статических механических испытаний образцов в виде пластин размерами 1,6×49×210 мм (рисунок 1а, 2) в условиях трёхточечного изгиба по ГОСТ Р 56810-2015 на машине Инстрон 5567 (рисунок 2а), а также методом Шарпи на образцах в виде пластин размерами 2,6×24×147 мм (рисунок 1а, 1) с помощью копра VWL 1972 (рисунок 2б).

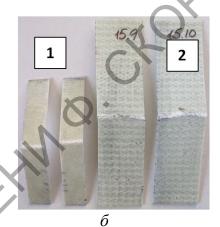


Рисунок 1 – Образцы стеклопластиков до (а) и после (б) испытаний

Рисунок 2 – Приспособление для статических испытания на трехточечный изгиб (а), копер для ударных испытаний VWL 1972 (б)

Результаты испытаний. Полученные данные о механических свойствах исследуемых материалов (предел прочности при изгибе, ударная вязкость) представлены на рисунке 3.

В таблицах 1, 2 представлены значения физико-механических характеристик стеклопластиков до и после воздействия влаги.

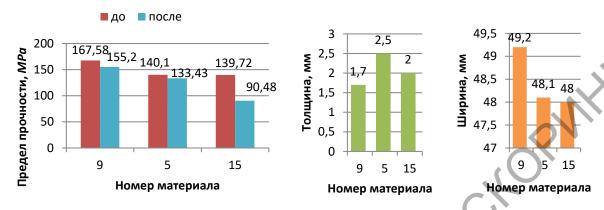


Рисунок 3 — Значения предела прочности стеклопластиков до и после воздействия влаги

Таблица 1 — Влагопоглощение и предел изгибной прочности испытанных

материалов

№	Водопоглощение, % масс.	Предел прочности при изгибе, МПа		
		до выдержки в водной среде	после выдержки в водной среде	Δ , %
9	3,4	167,6	155,2	7,4
5	4,8	140,1	133,4	4,8
15	7,9	139,7	90,5	35,2

Таблица 2 – Влагопоглощение и ударная вязкость испытанных материалов

таолица 2 — влагопоглощение и ударная вязкость испытанных материалов							
№	Водопоглощение,	Ударная вязкость, Дж/мм ²					
	% масс.	до выдержки	после выдержки	Δ , %			
		в водной среде	в водной среде	Δ, 70			
1a	11,8	52,8	38,3	27,5			
16	33,6	48,5	37,1	23,5			
2	6,6	62,2	58,0	6,8			
3	13,2	66,0	62,4	5,5			
4	6,2	66,6	61,1	8,3			
5	15,2	62,6	59,8	4,5			
7	4,2	73,7	61,9	16,0			
8	1,0	81,6	67,2	17,6			
10	1,6	81,5	71,1	12,8			
11	5,8	71,6	55,9	21,9			
12	7,9	89,5	82,6	7,7			
13	5,2	81,1	63,4	21,8			
14	3,0	68,9	44,4	35,6			
15	5,2	67,6	50,2	25,7			

Длительность нахождения в воде образцов материалов для испытания на трехточечный изгиб составила 3336 часов, а для испытаний на ударную вязкость — 2976 часов соответственно.

Проведенные исследования показали, что предел прочности при изгибе двухкомпонентного стеклопластика (материал № 9) без добавления микросфер имеет наибольшее значение в сравнении с остальными материалами, испытанными до и после водопоглощения. Из-за высокой пористости материала микросферотекстолиты № 5 и № 15 значительно уступают по прочности стеклопластикам без добавления микросфер. В результате диффузии воды имеет место разупрочнение стеклопластиков. Так, для материала № 15 потеря прочности на изгиб составила 35,2 %, а для материала № 5 — 4,8% соответственно. Значительное ухудшение прочностных свойств материала № 15, по-видимому, вызвано повышенным содержанием стекломата в сравнении с материалом № 5 при практически равной массе жидкой смолы с микросферами для обоих материалов.

Водопоглощение приводит к снижению показателя ударной вязкости, в особенности, материалов № 1а, № 16 и № 15, что также обусловлено различным массовым соотношением полиэфирной смолы, микросфер и стекломата.

Заключение. Описаны методики исследования механических свойств стеклопластика до и после влагопоглощения в водной среде. Дана количественная оценка степени деградации прочностных свойств на основании полученных значений механических характеристик (предел прочности при изгибе, ударная вязкость).

Благодарности: Работа выполнена при поддержке БРФФИ по проекту Т21ЭТ-016 «Структурная оптимизация гибридных волоконно-армированных композиционных материалов для безопасного и надёжного электротранспорта».

Литература

- 1. Мешалкин, А. В. Исследование влияния водопоглощения на механические характеристики стеклопластика, используемого для изготовления корпуса лодки «север 420» / А. В. Мешалкин, Е. А. Головина // Технологии и оборудование химической, биотехнологической и пищевой промышленности. 2021. С. 165—169.
- 2. Влияние воды на свойства стеклопластиков : [Электронный ресурс]. URL: http://www.catalog.rosplast.su/dokumentatsiya/aktualnye-

stati/2-uncategorised/49-vliyanievody-na-svojstva-stekloplastikov. — Дата доступа: 12.03.2022.

- 3. Микросферотекстолиты, перспективы применения / И. И. Плетинь [и др.] // Известия Самарского научного центра Российской академии наук. 2012. Т. 14, № 4–2. С. 507–508.
- 4. Awai, H. Mechanical properties of hollow glass microspheres filled jute woven comingled composites / H. Awais [et al.] // Key Engineering Materials. Trans Tech Publications Ltd, 2020. Vol. 858. C. 41–46.

Я. А. Самосюк

(БрГТУ, Брест)

Науч. рук. О. Ф. Савчук, ст. преподаватель

ФОТОПРОВОДИМОСТЬ КВАНТОВО-РАЗМЕРНЫХ СТРУКТУР CdSe

В последнее время в области физики твердого тела возрос интерес к исследованию квантово-размерных структур, что обусловлено значительным изменением свойств полупроводников при уменьшении размеров их кристаллитов. Эти эффекты наблюдаются, когда средний размер кристаллических зерен не превышает 100 нм, и усиливаются при размере зерен менее 10 нм [1].

В настоящее время уменьшение размера зерен рассматривается как эффективный метод изменения свойств твердого тела. Проводятся исследования о влиянии наносостояния на магнитные свойства ферромагнетиков, о существенном изменении теплоемкости и твердости металлов, об изменении оптических и люминесцентных характеристик полупроводников, среди которых далеко не последнее место занимает фотопроводимость [2].

Основной целью работы являлось исследование фотопроводимости квантово-размерных структур CdSe, сформированных методом термолиза, при температуре $t=20\,^{\circ}\text{C}$.

Исследуемые образцы представляют собой органическую пленку, содержащую нанокристаллы CdSe с размером ≈ 2 нм. Ее наносили на предметное стекло между напыленными металлизированными параллельными контактами (всего 40 штук). Контакты длиной 11,1 мм и шириной 0,08 мм каждый, входили друг в друга на 10,1 мм. Расстояние между контактами составило 0,04 мм.