Лекция 6.

Структура и устройство биполярных транзисторов. Принцип действия биполярного транзистора и его основные параметры

Транзистор, или полупроводниковый триод, являясь управляемым элементом, нашел широкое применение в схемах усиления, а также в импульсных схемах. Отсутствие накала, малые габариты и стоимость, высокая надежность — таковы преимущества, благодаря которым транзистор вытеснил из большинства областей техники электронные лампы.

Биполярный транзистор представляет собой трехслойную полупроводниковую структуру с чередующимся типом электропроводности слоев и содержит два p-n-перехода. В зависимости от чередования слоев существуют транзисторы типов p-n-p и n-p-n (рис. 4.1, a, δ). Их условное обозначение на электронных схемах показано на рис. 4.1, ϵ , ϵ . В качестве исходного материала для получения трехслойной структуры используют германий и кремний (германиевые и кремниевые транзисторы).

Трехслойная транзисторная структура создается по сплавной или диффузионной технологии, по которой выполняется и двухслойная p-n-структура полупроводниковых диодов. Трехслойная транзисторная структура типа p-n-p, выполненная по сплавной технологии, показана на рис. 4.1, d. Пластина полупроводника «типа является основанием, базой (отсюда и название слоя) конструкции. Два наружных p-слоя создаются в результате диффузии в них акцепторной примеси при сплавлении с соответствующим материалом. Один из слоев называется эмиттерным, а другой — коллекторным. Так же называются и p-n-переходы, создаваемые этими слоями со слоем базы, а также внешние выводы от этих слоев.

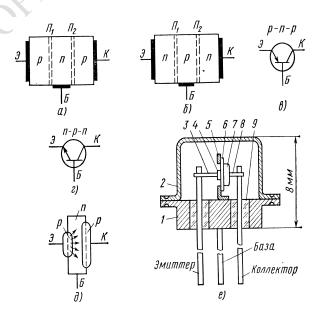


Рис. 4.1. Полупроводниковая структура транзисторов типов p-n-p (a) и n-p-n (δ);

их условные обозначения в электронных схемах (e, z); сплавная транзисторная структура типа p-n-p (∂) ; пример конструктивного исполнения маломощного транзистора (e):

- 1 донце корпуса; 2 колба; 3 внутренний вывод эмиттера; 4 таблетка индия;
- 5 кристаллодержатель; 6 пластина германия n-типа; 7 таблетка индия;
 - 8 внутренний вывод коллектора; 9 стеклянный изолятор

Функция эмиттерного перехода — инжектирование (эмиттирование) носителей заряда в базу, функция коллекторного перехода — сбор носителей заряда, прошедших через базовый слой. Чтобы носители заряда, инжектируемые эмиттером и проходящие через базу, полнее собирались коллектором, площадь коллекторного перехода делают больше площади эмиттерного перехода. Пример конструктивного исполнения маломощного транзистора показан на рис. 4.1, е. В транзисторах типа *п-р-п* функции всех трех слоев и их названия аналогичны, изменяется лишь тип носителей заряда, проходящих через базу: в приборах типа *p-п-р* — это дырки, в приборах типа *п-р-п* — электроны.

Принцип действия биполярного транзистора рассмотрим на примере структуры типа p-n-p (рис. 4.2, a). Сначала покажем распределение концентрации носителей заряда в слоях транзисторной структуры и разности потенциалов, создаваемой объемными зарядами p-n-переходов, в отсутствие внешних напряжений (рис. 4.2, δ , δ).

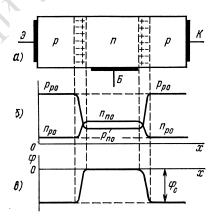


Рис. 4.2. Транзисторная структура типа p-n-p (a), распределение концентраций носителей заряда (δ) и внутренней разности потенциалов (a) в отсутствие внешних напряжений

Обозначение концентраций основных и неосновных носителей заряда здесь то же, что и для диода. Индекс «0» в обозначениях указывает на распределение концентраций в слоях в отсутствие внешних напряжений.

Соотношение концентраций основных носителей заряда в эмиттерном и коллекторном слоях транзистора несущественно, и на рис. 4.2, δ они приняты одинаковыми. Отличие же в концентрациях основных носителей заряда эмиттерного и базового слоев весьма важно, так как оно влияет (что будет показано в дальнейшем) на параметры транзистора, в частности на коэффициент передачи тока α . Концентрация основных носителей заряда в базе должна быть много меньше концентрации основных носителей заряда в эмиттере, т.е. $p_{po} \gg n_{no}$. Таким образом, для транзистора базовый слой должен быть более высокоомным, чем эмиттерный. Это достигается за счет использования высокоомного исходного полупроводника n-типа. С учетом того, что для определенной температуры произведение p_n — величина постоянная, полная картина распределения концентраций в слоях транзистора будет иметь вид, показанный на рис. 4.2, δ .

В отсутствие внешних напряжений на границах раздела трех слоев образуются объемные заряды, создается внутреннее электрическое поле и между слоями действует внутренняя разность потенциалов. Потенциальный барьер в каждом из переходов устанавливается такой величины, чтобы обеспечивалось равновесие диффузионного и дрейфового потоков носителей заряда, движущихся через переходы в противоположных направлениях, т.е. равенство нулю протекающего через них тока. Поскольку концентрации основных (и неосновных) носителей заряда в эмиттерном и коллекторном слоях приняты одинаковыми, потенциальные барьеры в обоих *р-п*-переходах будут равны. Если за нулевой уровень отсчета принять потенциал базы, то распределение разности потенциалов в транзисторе в отсутствие внешних напряжений будет иметь вид, показанный на рис. 4.2, *в*.

Внешние напряжения подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода в прямом направлении, а коллекторного перехода — в обратном направлении. Это достигается с помощью двух источников напряжения U_3 и $U_{\rm K}$ (рис. 4.3, a). Напряжение U_3 подключается положительным полюсом к эмиттеру относительно базы, напряжение $U_{\rm K}$ — отрицательным полюсом к коллектору относительно базы (схема с общей базой).

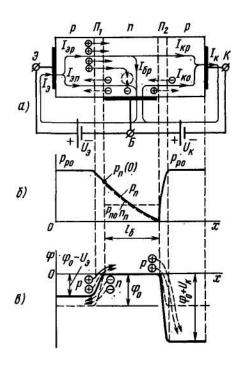


Рис. 4.3. Транзисторная структура типа p-n-p (a), распределение концентраций носителей заряда (δ), и внутренней разности потенциалов (ϵ) при наличии внешних напряжений

Изучим процессы, протекающие в эмиттерном переходе, базовом слое и коллекторном переходе транзистора.

Поскольку в эмиттерном переходе внешнее напряжение $U_{\scriptscriptstyle 3}$ действует в прямом направлении, потенциальный барьер для дырок — основных носителей зарядов эмиттерного слоя — уменьшается и дырки из эмиттера под диффузии будут большем количестве В переходить (инжектировать) в область базы (рис. 4.3, a, θ). Аналогичным образом увеличится диффузионный поток электронов (основных носителей заряда области базы) в эмиттер. С учетом достаточно малой для смещенного в момкип направлении p-n-перехода составляющей дрейфового создаваемой неосновными носителями заряда областей, ток эмиттерного перехода и цепи эмиттера можно записать в виде

$$I_{3} = I_{3p} + I_{3n}. (4.1)$$

Дырочная составляющая тока I_{3p} создается потоком дырок, переходящих из эмиттера в базу. Большинство дырок в последующем достигает коллектора и вызывает коллекторный ток транзистора. Электронная составляющая тока I_{3n} обусловлена движением электронов из базы в эмиттер. Она замыкается по входной цепи через источник U_3 и не используется полезно (для создания тока в коллекторной цепи). Таким образом, функция эмиттерного перехода и процессы в эмиттерном переходе сводятся к инжекции носителей заряда (дырок) в базу.

Одним из важнейших показателей эмиттерного перехода является так называемый коэффициент инжекции у, показывающий, какую часть от полного эмиттерного тока составляет его дырочная составляющая:

$$\gamma = I_{2p} / I_{3}. \tag{4.2}$$

С точки зрения качества эмиттерного перехода необходимо, чтобы электронная составляющая эмиттерного тока I_{2n} была существенно меньше его дырочной составляющей I_{2p} . Это достигается значительным (на два-три порядка) превышением концентрации основных носителей заряда (дырок) в эмиттере над концентрацией основных носителей заряда (электронов) в базе $(p_{p0} \gg n_{n0})$. Как указывалось, задача решается применением высокоомного исходного полупроводника для создания базового слоя и введением большой концентрации акцепторной примеси для получения эмиттерного слоя. Для выпускаемых промышленностью транзисторов коэффициент инжекции $\gamma = 0.97 \div 0.995$.

Процессы в базовом слое определяются в основном поведением дырок, перешедших в базу через эмиттерный переход. Инжектируемые дырки, попадая в базовый слой, повышают концентрацию дырок в базе вблизи эмиттера по сравнению с равновесной концентрацией p_{n0} (рис. 4.3, δ). На границе с эмиттерным переходом создается концентрация дырок $p_n(0)$. Величину этой концентрации, зависящей от подведенного напряжения U_3 , находят из соотношения, аналогичного для диода:

$$p_n(0) = p_{n0}e^{U_3/\phi_T} \,. \tag{4.3}$$

Под действием концентрации $p_n(0)$ развивается диффузионное движение дырок в базе в сторону коллектора, т.е. в направлении меньшей концентрации. Концентрация дырок в базе на границе с коллекторным переходом устанавливается близкой к нулю, так как дошедшие до коллекторного перехода под действием диффузии дырки ускоряются полем перехода и перебрасываются в коллектор. Установившееся при определенном напряжении U_3 (определенном токе эмиттера и соответствующей величине $p_n(0)$) распределение концентрации дырок в базе показано на рис. 4.3, δ .

Ввиду относительно малой толщины базового слоя $l_{\rm 5}$ (соизмеримой с диффузионной длиной дырок L_p) закон распределения концентрации дырок в базе при диффузии $p_n(x)$ близок к линейному. Градиент концентрации дырок в базе определяет диффузионный ток дырок в ней в направлении коллекторного перехода.

Описанный характер движения дырок в базе возможен только тогда, когда количество находящихся в объеме базы дырок равно количеству электронов, а распределения их концентраций близки (объемный заряд

дырок скомпенсирован объемным зарядом электронов), т.е. при условии электрической нейтральности базы.

Электроны, компенсирующие объемный заряд дырок, поступают по цепи базы одновременно с дырками, входящими в слой базы сразу же после подключения напряжений U_3 и U_k . В установившемся режиме концентрации дырок p_n и электронов n_n близки. Распределение концентрации электронов на рис. 4.3, δ показано пунктирной кривой.

Наличие дырок и электронов в базе приводит к тому, что в процессе диффузии некоторая часть дырок рекомбинирует с электронами (рис. 4.3, a). В результате актов рекомбинации количество дырок, дошедших до коллектора, не будет равно количеству дырок, поступивших из эмиттера, и, следовательно, дырочная составляющая коллекторного тока $I_{\kappa p}$ будет меньше дырочной составляющей эмиттерного тока I_{3p} . Вследствие рекомбинации некоторого числа дырок с электронами в процессе их движения через базу концентрация дырок уменьшается, что приводит к уменьшению их градиента концентрации по оси x и некоторому отличию кривой $p_n(x)$ от линейного закона (рис. 4.3, δ).

Вместе с тем акты рекомбинации дырок с электронами создают недостаток электронов, требующихся для компенсации дырок, постоянно входящих в базу из эмиттера. Необходимые электроны поступают по цепи базы, создавая базовый ток транзистора I_{5p} (рис. 4.3, a). Следовательно, разность между дырочными составляющими эмиттерного и коллекторного токов представляет собой ток базы, обусловленный рекомбинацией в ней дырок. В соответствии с этим запишем соотношение для дырочных составляющих токов транзистора:

$$I_{9p} = I_{Kp} + I_{6p}. (4.4)$$

Для определения части дырок, прошедшей из эмиттера в коллектор, вводят коэффициент переноса дырок в базе б, который равен отношению дырочной составляющей коллекторного тока к дырочной составляющей эмиттерного тока:

$$\delta = I_{\kappa p} / I_{\ni p}. \tag{4.5}$$

Желательно, чтобы величина коэффициента δ как можно меньше отличалась от единицы. Способы приближения к единице коэффициента δ направлены на сокращение потерь дырок в базе за счет актов рекомбинации. Это достигается увеличением времени жизни дырок в базе и сокращением времени их нахождения в базе. Сокращение времени нахождения дырок в базе связано с уменьшением толщины базового слоя l_{δ} и увеличением скорости их прохождения через базу. Последнее используется в так называемых дрейфовых транзисторах путем создания в слое базы ускоряющего поля. Типовые значения коэффициента δ для транзисторов лежат в пределах 0.96—0.996.

Изложенное позволяет уяснить и роль коллекторного p-n-перехода, предназначенного для перевода дырок, достигших этого перехода, в коллекторную область (рис. 4.3, ϵ).

Коллекторный ток транзистора I_{κ} , обусловленный дырочной составляющей $I_{\kappa p}$ (рис. 4.3, a), связан с током эмиттера $I_{\mathfrak{P}}$ коэффициентом передачи тока \mathfrak{a} :

$$\alpha = I_{\kappa p} / I_{9}. \tag{4.6}$$

Умножив числитель и знаменатель равенства (4.6) на I_{3p} , получим

$$\alpha = (I_{9p} / I_9)(I_{Kp} / I_{9p}) = \gamma \delta \tag{4.7}$$

Следовательно, коэффициент α тем ближе к 1, чем меньше отличаются от 1 коэффициенты γ и δ . Способы приближения к 1 коэффициента α связаны со способами увеличения коэффициентов γ и δ (увеличение разности концентраций основных носителей заряда в слоях эмиттера и базы, увеличение времени жизни дырок в базе, уменьшение ширины базового слоя, создание ускоряющего поля в слое базы).

Наличие коллекторного перехода, включенного в обратном направлении, приводит к появлению дополнительной неуправляемой составляющей тока коллектора, обусловленной протеканием обратного тока коллекторного перехода $I_{\kappa 0}$ (рис. 4.3, a). Как известно, обратный ток создается дрейфом неосновных носителей заряда из близлежащих областей обратно включенного p-n-перехода, в данном случае концентрациями дырок p_{n0} в базе и электронов n_{p0} в коллекторе (см. рис. 4.2, δ).

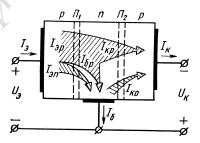


Рис. 4.4. Диаграмма составляющих токов в транзисторе

Поскольку концентрации неосновных носителей заряда зависят от температуры, величина обратного тока также зависит от нее, поэтому этот ток часто называют тепловым. От величины тока эмиттера ток $I_{\kappa 0}$ не зависит. На рис. 4.4 дана наглядная картина протекания токов через транзистор в рассматриваемой схеме.

В соответствии с изложенным ток эмиттера I_9 равен сумме дырочной I_{9p} и электронной I_{9n} составляющих: $I_9 = I_{9p} + I_{9n}$. Ток коллектора I_{κ} состоит из дырочной составляющей $I_{\kappa p}$ и теплового тока $I_{\kappa 0}$ ($I_{\kappa} = I_{\kappa p} + I_{\kappa 0}$). Ток базы I_6 равен

алгебраической сумме электронной составляющей тока эмиттера I_{3n} , рекомбинационной дырочной составляющей I_{6p} и теплового тока $I_{\kappa 0}$ ($I_6 = I_{3n} + I_{6p} - I_{\kappa 0}$).

Управляющее свойство транзистора, характеризующее изменение выходного (коллекторного) тока I_{κ} под действием подводимого входного тока I_{ϑ} (или напряжения U_{ϑ}), обусловливается изменением дырочной составляющей коллекторного тока $I_{\kappa p}$ за счет изменения дырочной составляющей эмиттерного тока $I_{\vartheta p}$ (рис. 4.4). Таким образом, принцип действия биполярного транзистора основан на создании транзитного (проходящего) потока носителей заряда из эмиттера в коллектор через базу и управлении коллекторным (выходным) током за счет изменения эмиттерного (входного) тока. Следовательно, биполярный транзистор управляется током.

Основное соотношение для токов транзистора составляется по первому закону Кирхгофа:

$$I_{3} = I_{K} + I_{6}.$$
 (4.8)

С учетом теплового тока $I_{\kappa 0}$ и соотношения (1.21) токи I_{κ} и I_{δ} можно выразить через I_{3} :

$$I_{K} = \alpha I_{9} + I_{K0}.$$
 (4.9)
 $I_{6} = (1 - \alpha) I_{9} - I_{K0}$ (4.10)