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Abstract
In this paper, the structure of finite groups in whichmaximal subgroups of some Sylow
subgroups have a σ -soluble or σ -nilpotent supplement, where σ is a partition of the set
of all prime numbers, is investigated. Some solubility, σ -solubility and σ -nilpotency
criteria leading to some significant improvements of earlier results are given.
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1 Introduction

A subgroup B of a groupG is supplemented inG if there exists a subgroup A ofG such
thatG = AB; in this case, we say that A is a supplement of B inG. For every subgroup
of G there is always the trivial supplement A = G. Non-trivial supplements of some
distinguished families of subgroups of G may be useful in determining the structure
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of G. For instance, if B is normal in G, the existence of a non-trivial supplement of
B in G could be important for the extension property, i.e., for the description of G
by means of B and the factor group G/B. Generally, a supplement A is the more
useful the smaller the intersection A ∩ B. If we have even that A ∩ B = 1, then A is
called a complement of B in G. While groups which satisfy certain complementation
properties have been extensively studied, less has been done to investigate groups
which satisfy certain supplementation properties.

The topic of this paper is an investigation of supplementation in finite groups.
Therefore, all groups considered in the paper will be finite. To make our results more
precise, we introduce the following notions according to the notation of Skiba in [8].

Let σ = {σi : i ∈ I } be a partition of the set of all primes P, i.e., P = ⋃
i∈I σi and

σi ∩ σ j = ∅ for all i �= j .

Definition 1.1 A group G is said to be σ -primary if G is a σi -group for some i ∈ I .
We say that G is σ -soluble if every chief factor of G is σ -primary. G is said to be
σ -nilpotent if it is a direct product of σ -primary groups.

Note that a group G is soluble (respectively, nilpotent) if and only if, it is σ -soluble
(respectively, σ -nilpotent) for the partition σ = {{2}, {3}, {5}, . . .}. If π is a set of
primes and σ = {π, π ′}, then a group G is σ -soluble if and only if, G is π -separable.
In this case,G is σ -nilpotent if and only if,G isπ -decomposable. Ifπ = {p1, . . . , pn},
and σ = {{p1}, . . . , {pn}, π ′}, then G is σ -soluble if and only if, G is π -soluble, and
furthermore, G is σ -nilpotent if and only if, G has a normal Hall π ′-subgroup and a
normal Sylow pi -subgroup, for all i = 1, . . . , n.

In the sequel, σ will be a partition of the set of all prime numbers.
Guo et al. proved in [3] that a group G is nilpotent (respectively, supersoluble) if

every maximal subgroup of every Sylow subgroup of G has a nilpotent (respectively,
supersoluble) supplement in G. This result motivated the following question which
appears as Problem 19.87 in Kourovka Notebook [7]:

Suppose that every maximal subgroup of every Sylow subgroup of a group G
have a σ -soluble supplement in G. Is G σ -soluble?

This question was answered affirmatively in [5, 6].

Theorem 1.2 Suppose that every maximal subgroup of every Sylow subgroup of a
group G have a σ -soluble supplement in G. Then G is σ -soluble.

The goal of this paper is to take these studies further. In particular, a significant
improvement of Theorem 1.2 (Theorem 1.6) is showed. Our first main result is a
solubility criteria in terms of supplements.

Theorem 1.3 Let p be a prime dividing the order of a group G, and P ∈ Sylp(G).
Assume that p /∈ {7, 13}. If every maximal subgroup of P has a soluble supplement
in G, then G is soluble.

The hypothesis p /∈ {7, 13} in Theorem 1.3 cannot be removed (see Lemma 2.2
below).
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Our secondmain result provides sufficient conditions for the σ -solubility of a group
G in which every maximal subgroup of a Sylow p-subgroup of G, for a fixed prime
p, has a σ -soluble supplement.

Theorem 1.4 Assume that p is a prime number dividing the order of a group G, and
P ∈ Sylp(G). Suppose that G has no composition factors isomorphic to Ln(q),where
n is a prime and (qn−1)/(q−1) is a prime-power number. If every maximal subgroup
of P has a σ -soluble supplement in G, then G is σ -soluble.

Corollary 1.5 Let π be a set of primes. Assume that p is a prime dividing the order of
a group G, and P ∈ Sylp(G). Suppose that G has no composition factors isomorphic
to Ln(q), where n is a prime and (qn − 1)/(q − 1) is a prime-power number. If every
maximal subgroup of P has a π -soluble supplement in G, then G is π -soluble.

Our third main result shows that it is enough to assume the existence of σ -soluble
supplements of the maximal subgroups of the Sylow subgroups corresponding to two
primes in Theorem 1.2 to guarantee σ -solubility.

Theorem 1.6 Assume that p and q are two different primes dividing the order of a
group G, and P ∈ Sylp(G), Q ∈ Sylq(G). If every maximal subgroup of P and Q
has a σ -soluble supplement in G, then G is σ -soluble.

Corollary 1.7 Let π be a set of primes. Assume that p and q are two different primes
dividing the order of a group G, and P ∈ Sylp(G), Q ∈ Sylq(G). If every maximal
subgroup of P and Q has a π -soluble supplement in G, then G is π -soluble.

We end the paper with a σ -nilpotent version of Theorem 1.6.

Theorem 1.8 Assume that p and q are two different primes dividing the order of a
group G, and P ∈ Sylp(G), Q ∈ Sylq(G). If every maximal subgroup of P and Q
has a σ -nilpotent supplement in G, then G is σ -nilpotent.

2 Preliminaries

Ourfirst lemmacollects somebasic propertieswhich are useful in induction arguments.
Recall that a formation is a class of groups F which is closed under taking homo-

morphic images and subdirect products. We say that F is subgroup-closed if every
subgroup of every group in F is also in F; F is saturated if it is closed under taking
Frattini extensions.

A subgroup T of a group G is said to be an F-supplement of a subgroup V of G if
T is a supplement of V in G and T ∈ F.

Lemma 2.1 Let F be a subgroup-closed formation. Let N be a normal subgroup of a
group G and p ∈ π(G). Suppose that every maximal subgroup of a Sylow p-subgroup
P of G has an F-supplement in G. Then:

1. If p /∈ π(G/N ), then G/N is an F-group.
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2. If p ∈ π(G/N ), then every maximal subgroup of PN/N has an F-supplement in
G/N.

3. If H is a subgroup of G containing P , then every maximal subgroup of P has an
F-supplement in H.

Proof (1) If p /∈ π(G/N ), then P is contained in N . Let V be a maximal subgroup
of P . By hypothesis, there exists an F-subgroup T of G such that G = VT . Then,
G = NT and so G/N = T N/N ∼= T /T ∩ N ∈ F.

(2) Let W/N be a maximal subgroup of PN/N . Then, W = W ∩ PN = (W ∩ P)N
andW ∩ P is a maximal subgroup of P . By hypothesis, there exists an F-subgroup
T of G such that G = (W ∩ P)T . Hence, G/N = (W ∩ P)T /N = ((W ∩
P)N/N )(T N/N ) = (W/N )(T N/N ) and T N/N ∼= T /T ∩ N ∈ F. Therefore,
T N/N is an F-supplement of W/N in G/N .

(3) Let V be a maximal subgroup of P and let T be an F-supplement of V in G. Then,
H = V (H ∩ T ) and H ∩ T ∈ F because F is subgroup-closed. Therefore, every
maximal subgroup of P has an F-supplement in H . �	
The following consequence of Guralnick’s classification of non-abelian simple

groups with a subgroup of prime-power index [4, Theorem 1] turns out to be crucial.

Lemma 2.2 Suppose that G is a non-abelian simple group and H is a soluble subgroup
of G of prime-power index pk , k ≥ 1. Then, one of the following holds:

1. G = A5, H ∼= A4 and pk = 5.
2. G = L2(8), H is a Borel subgroup of G and pk = 9.
3. G = L2(q) with some prime q ≥ 5, H is a Borel subgroup of G and pk = q + 1

is a 2-power.
4. G = L2(22

m
) with some m ≥ 2, H is a Borel subgroup of G, k = 1 and p is a

Fermat prime.
5. G = L3(2), and either H ∼= S4 and pk = 7 or H ∼= 7 : 3 and pk = 8.
6. G = L3(3), H is a parabolic subgroup of G and pk = 13.

It is not difficult to see that in the above lemma, H is a Hall p′-subgroup of G
and a maximal subgroup of G. Moreover, G has a single conjugacy class of Hall p′-
subgroups in cases (1)–(4) and case (5) and p = 2, and two conjugacy classes of Hall
p′-subgroups in case (5) and p = 7 and case (6) (see [1]).

Lemma 2.3 Assume that a group N is a direct product of subgroups that are isomorphic
to a non-abelian simple group. Suppose that N is not σ -soluble and has a σ -soluble
subgroup X such that |N : X | is a power of a prime p. Then, X is a Hall p′-subgroup
of N.

Proof Assume that N = N1 × N2 × · · · × Nt , where t ≥ 1 and N1, N2, …, Nt are
isomorphic copies of a non-abelian simple group.

Let fi : N → Ni be the projection of N onto Ni , and write Xi = fi (X), i =
1, 2, . . . , t . Since the subgroup X is σ -soluble, we have that Xi is a proper subgroup
of Ni for every 1 ≤ i ≤ t , by [8, Lemma 2.1]. Obviously, X ⊆ X1X2 . . . Xt . Since
|N : X | = pl , for some l ≥ 1, it follows that |N : X1X2 . . . Xt | is a power of p.
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Now |N : X1X2 . . . Xt | = (|N1||N2| . . . |Nt |)/(|X1||X2| . . . |Xt |) = |N1 : X1||N2 :
X2| . . . |Nt : Xt |. Hence, |Ni : Xi | is a power of p, for every i = 1, 2, . . . , t . By [4,
Theorem 1], for every 1 ≤ i ≤ t , it follows that either Xi is a Hall p′-subgroup of Ni

or Ni and Xi satisfy one of the following cases:

1. Ni = An and Xi ∼= An−1 with n = pa , for certain p prime and a > 1.
2. Ni = PSU4(2) and Xi is a parabolic subgroup of index 27.

Assume, arguing by contradiction, that one of both cases holds for some 1 ≤ i ≤ t .
If Case 1 holds, then Xi is σ -primary as it is simple. Since π(Ni ) = π(Xi ), we also
have that Ni is σ -primary and therefore N is σ -soluble, contrary to our assumption.
On the other hand, if case 2 holds, then Xi is isomorphic to 24 : A5 by [1]. Then, we
have that A5 is σ -primary as Xi is σ -soluble. Since π(Ni ) = π(A5), we also get that
Ni is σ -primary which implies that N is σ -soluble, contrary to our assumption.

Hence, for every 1 ≤ i ≤ t , Xi is a Hall p′-subgroup of Ni . Therefore X =
X1X2 . . . Xt is a Hall p′-subgroup of N . �	

3 The Proof of Theorem 1.3 and Some Consequences

Proof of Theorem 1.3 Assume that the result is not true and let G be a counterexample
of minimal order. Then G �= 1. Let p be a prime dividing |G| and let P be a Sylow
p-subgroup of G. Let V be a maximal subgroup of P . By hypothesis, there exists a
soluble subgroup T of G such that G = VT . Then |G : T | = pk for some k ≥ 1, and
so every Hall p′-subgroup of T is a Hall p′-subgroup of G.

Assume that G is a simple group. Then, G is non-abelian. By Lemma 2.2, T is a
Hall p′-subgroup of G. Then, P = V (T ∩ P) = V , contrary to our supposition.

Consequently, G is not simple. Let N be a minimal normal subgroup of G. Then,
N is a proper subgroup of G. Assume that p does not divide |G/N |. Then, G/N is
soluble by Statement (1) of Lemma 2.1. Furthermore, N contains P and so N satisfies
the hypotheses of the theorem by Statement (3) of Lemma 2.1. By minimality of G, N
is soluble. Hence, G is soluble, which is a contradiction. Therefore, p divides |G/N |.
By Statement (2) of Lemma 2.1, G/N satisfies the hypotheses of the theorem. The
minimal choice of G implies that G/N is soluble. Since G is not soluble, it follows
that N is non-abelian.

Since the class of all soluble groups is a formation, N = Soc(G) is a minimal
normal subgroup of G. By Statement (3) of Lemma 2.1, PN satisfies the hypotheses
of the theorem. Since PN cannot be soluble because N is non-abelian, it follows that
G = PN . Note that T ∩ N is a soluble subgroup of N such that |N : T ∩ N | = pl

for some l ≥ 1. By Lemma 2.3, X = T ∩ N is a Hall p′-subgroup of N . Assume
that N = N1 × N2 × · · · × Nt , where t ≥ 1 and N1, N2, …, Nt are isomorphic
copies of a non-abelian simple group. Then, Xi = X ∩ Ni is a Hall p′-subgroup of
Ni for all i = 1, 2, . . . , t . Since p /∈ {7, 13}, we can apply Lemma 2.2 to conclude
that Ni ∼= A5 or Ni ∼= L2(8) or Ni ∼= L2(q), with q > 3 or Ni ∼= L2(22

m
) for some

m ≥ 2 or Ni ∼= L3(2) with p = 2. Hence, Ni has a single conjugacy class of Hall
p′-subgroups. Consequently, N has a single conjugacy class of Hall p′-subgroups.
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Since G = PN , every Hall p′-subgroup of N is a Hall p′-subgroup of G and G has
also a single conjugacy class of Hall p′-subgroups.

LetW be any maximal subgroup of P . Then, by hypothesis, G has a proper soluble
subgroup S such that G = WS. Then, as before, we have that S ∩ N is a soluble
subgroup of N such that |N : S ∩ N | is a power of p. By Lemma 2.3, S ∩ N is a
Hall p′-subgroup of N and a Hall p′-subgroup of G. Thus, T ∩ N = (S ∩ N )g for
some element g ∈ G. Because G = (T ∩ N )P , we can assume that g ∈ P . Since
S ⊆ NG(S ∩ N ) and W is normal in P , we have that

G = Gg = (WS)g = (WNG(S ∩ N ))g = Wg(NG(S ∩ N ))g

= Wg(NG((S ∩ N )g) = WNG(T ∩ N ).

Since G = VT , G = V NG(T ∩ N ) and

|G| = (|NG(T ∩ N )| · |P|)/|NG(T ∩ N ) ∩ P|),

we have that NG(T ∩ N ) ∩ P is a Sylow subgroup of NG(T ∩ N ). Assume that
NG(T ∩ N ) ∩ P is a proper subgroup of P . Let U be a maximal subgroup of P
containing NG(T ∩ N ) ∩ P . Then, G = UNG(T ∩ N ) = U (T ∩ N ). This shows
P = U , which is a contradiction. Hence, NG(T ∩ N ) ∩ P = P and so T ∩ N is a
normal subgroup of G. Hence, N ⊆ T and N is soluble. This contradiction completes
the proof of the theorem. �	
Corollary 3.1 Let p and q be two different primes dividing the order of a group G.
Let P ∈ Sylp(G) and Q ∈ Sylq(G). If every maximal subgroup of P and Q has a
soluble supplement in G, then G is soluble.

Proof We adhere closely to the pattern of the proof of Theorem 1.3.
Assume that the result is not true and let G be a counterexample of minimal order.

By Theorem 1.3, {p, q} = {7, 13}. Let N be a minimal normal subgroup of G.
ApplyingLemma2.1 andminimality ofG, we have thatG/N is soluble.Consequently,
N = Soc(G) is a non-abelian minimal normal subgroup of G.

Let V and W be maximal subgroups of P and Q, respectively. Then, there exists
soluble subgroups S and T ofG such thatG = V S = WT . By Lemma 2.3, X = S∩N
is a Hall p′-subgroup of N and Y = T ∩ N is a Hall q ′-subgroup of N . Therefore,
if A is a non-abelian simple group which is a direct factor of N , it follows that A
has a subgroup of p-power index and a subgroup of q-power index. This contradicts
Lemma 2.2. �	

Theorem 1.3 and the methods used in the proof of Corollary 3.1 enable us to prove
the following results.

Recall that a group X is S4-free if the symmetric group of degree 4 does not appear
as a quotient of any subgroup of X .

Corollary 3.2 Let F be a soluble subgroup-closed formation. Assume that F is com-
posed of either S4-free groups or 3-closed groups. Let p be a prime dividing the order
of a group G, and P ∈ Sylp(G). If any maximal subgroup of P has an F-supplement
in G, then G is soluble.
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Corollary 3.3 Let p be a prime dividing the order of a group G, and P ∈ Sylp(G). If
every maximal subgroup of P has a supersoluble supplement in G, then G is soluble.

The groupG inCorollary 3.3 is not supersoluble in general as the following example
shows.

Example 3.4 Let Q be the quaternion group of order 8 and let V be a faithful and
irreducible Q-module over the field of 5 elements. LetG = [V ]Q be the corresponding
semidirect product. Let W be a maximal subgroup of Q and let T be a maximal
subgroup of G containing V such that G = WT . It is clear that T is supersoluble.
Therefore, G satisfies the hypotheses of Corollary 3.3 for the prime p = 2. However,
G is not supersoluble because V is a minimal normal subgroup of G of order 25.

However, for the subgroup-closed formation of all nilpotent groups, we have the
following result.

Corollary 3.5 Let p be a prime number dividing the order of a group G, and P ∈
Sylp(G). If every maximal subgroup of P has a nilpotent supplement in G, then G is
nilpotent.

Proof Assume that the result is false and let G be a counterexample of minimal
order. By Corollary 3.3, G is soluble. Let N be a minimal normal subgroup of G.
By Lemma 2.1 and the minimal choice of G, it follows that G/N is nilpotent. There-
fore, N = Soc(G) is an abelian minimal normal subgroup of G and CG(N ) = N . Let
q be a prime dividing |N | and let M be a maximal subgroup of G such that G = NM
and N ∩ M = 1. Assume that p = q. Since N is a faithful and irreducible M-module
and M is nilpotent, it follows that M is a p′-group by [2, Lemma A. 13.6]. Hence,
N = P . Let A be a maximal subgroup of N and let B be a nilpotent supplement of A
in G. Then, G = N B and so B is a maximal subgroup of G. Moreover, B ∩ N = 1.
Hence, N = A(B ∩ N ) = A, which is a contradiction. Therefore, p �= q. Let V be a
maximal subgroup of P . Then, by hypothesis, G = VT for some nilpotent subgroup
of G. Note that N is contained in T and so the Hall q ′-subgroup of T is contained
in CT (N ) = N . Hence, T is a q-group. Then, P = V (P ∩ T ) = V . This final
contradiction completes the proof. �	

4 The Proof of Theorem 1.4

Proof of Theorem 1.4 Suppose that the result is false. Let G be a counterexample of
the smallest possible order.

Let V be a maximal subgroup of P and let T be a σ -soluble supplement of V in
G. Then, |G : T | = pk for some k ≥ 1.

Assume that G is a non-abelian simple group. Then, by [4, Theorem 1] and [1], it
follows that either T is a Hall p′-subgroup of G or T /S(T ) is a non-abelian simple
group, with π(G) = π(T /S(T )) (here, S(T ) is the soluble radical of T ). If T were
a Hall p′-subgroup of G, we would have P = V (P ∩ T ) = T and if T /S(T ) were
non-abelian simple and π(G) = π(T /S(T )), G would be σ -soluble. In both cases,
we get a contradiction. Therefore, G is not simple.
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Note that the class of all σ -soluble groups is an extensible subgroup-closed for-
mation by [8, Lemma 2.1]. Let N be a minimal normal subgroup of G. Applying
Lemma 2.1 and minimality of G, we have that G/N is σ -soluble. Consequently,
N = Soc(G) is a non-abelian and non-σ -soluble minimal normal subgroup of G.
Furthermore, G = PN by Statement (3) of Lemma 2.1. Since |N : N ∩ T | is a power
of p and N is not contained in T , it follows that p ∈ π(N ).

Suppose that N = N1 × N2 × · · · × Nt , where t ≥ 1 and N1, N2, …, Nt are
isomorphic copies of a non-abelian simple group. Following the proof of Lemma 2.3,
we get that T1 = T ∩ N1 is a σ -soluble subgroup of N1 of p-power index. Applying
[4, Theorem 1], we have that N1 is one of the following groups.

1. N1 = An and T1 ∼= An−1, where n = pk ;
2. N1 = L2(11) and T1 ∼= A5;
3. N1 = M23 and T1 ∼= M22 or N1 = M11 and T1 ∼= M10;
4. N1 = PSU4(2) ∼= PSp4(3) and T1 is the parabolic subgroup of index 27.

Assume that N1 ∼= An and T1 ∼= An−1, where n = pk > p. Then, T1 is a σ -soluble
simple group. Therefore, T1 is aσi -group,whereσi is themember ofσ such that 2 ∈ σi .
Since π(N ) = π(N1) = π(T1), it follows that N is σ -soluble. This is not possible.

Assume that N1 is a group of type (4). By [1], T1 ∼= 24 : A5. Since T1 is σ -
soluble, it follows that A5 is a σi -group. But π(N ) = π(N1) = π(A5). Therefore, N
is σ -soluble. This is a contradiction.

Assume that either N1 = An , where n is a prime, or N1 = L2(11), or N1 = M23, or
N1 = M11. Then, T1 is aHall p′-subgroupof N1 and, by [4, Theorem1], N1 has a single
conjugacy class of Hall p′-subgroups. By Lemma 2.3, T ∩ N is a Hall p′-subgroup of
N and all of them are conjugate in N . We can now argue as in Theorem 1.3 to show
that T ∩ N is a normal subgroup of G. This final contradiction completes the proof. �	

5 The Proof of Theorems 1.6 and 1.8

Proof of Theorem 1.6 We argue by induction on |G|. Let N be a minimal normal sub-
group of G. By Lemma 2.1, G/N is σ -soluble. Assume that N is non-abelian and
non-σ -soluble. The hypotheses on G imply that N has σ -soluble subgroups X and
Y of p-power index and q-power index, respectively. Let N1 be a non-abelian direct
factor of N . Then, following the proof of Lemma 2.3, we have that N1 has subgroups
T1 and T2 of p-power index and q-power index, respectively. By [4, Theorem 1],
N1 ∼= L3(2), T1 ∼= S4 and T2 ∼= 7 : 3, and p = 7 and q = 2.

Let Q be a Sylow 2-subgroup of G, and consider the subgroup QN . Let V be
a maximal subgroup of Q. By hypothesis and Lemma 2.1, there exists a σ -soluble
subgroup S such that V S = QN . By Lemma 2.3, S ∩ N is a soluble Hall 2′-subgroup
of QN which is a direct product of subgroups isomorphic to 7 : 3. Therefore, S is
soluble. By Theorem 1.3, QN is soluble. This contradiction shows that N is σ -soluble.
Applying [8, Lemma 2.1], we have that G is σ -soluble, as desired. �	
Proof of Theorem 1.8 Assume the theorem is false and let a counterexample G of
smallest order be chosen. According to [8, Corollary 2.4 and Lemma 2.5], the class
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of all σ -nilpotent groups is a subgroup-closed saturated formation. Therefore, by
Lemma 2.1,G is a primitive group. Let N = Soc(G) be the minimal normal subgroup
ofG. By Theorem 1.6,G is σ -soluble. Consequently, N is a σi -group for some σi ∈ σ .

Since N has σ -nilpotent subgroups of p-power index and q-power index, we can
argue as in Theorem 1.6 to conclude that N is soluble. Then, N is r -elementary abelian
for some prime r ∈ σi , and CG(N ) = N .

Assume that p /∈ σi . Let V a maximal subgroup of P and let T be a σ -nilpotent
supplement of V in G. Then, T contains N . Following the proof of Corollary 3.5,
since CG(N ) = N , the Hall σ ′

i -subgroup of T is trivial and so T is a σi -group. Then,
T ∩ P = 1 and P = V , which is a contradiction. Hence, p ∈ σi . Analogously, q ∈ σi .

Note that either r �= p or r �= q. Suppose the latter case holds and let W be
a maximal subgroup of Q. There exists a σ -nilpotent subgroup S of G such that
G = WS. Since N is contained in S and CG(N ) = N , as before, it follows that S is a
σi -subgroup of G. Therefore, G is a σi -group. But this leads to the contradiction that
G is σ -nilpotent. �	
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