фирмы-производители используют более яркие светодиоды: если для помещений яркость каждого светодиода до 1–2 Кд, то для уличного варианта этот показатель выше.

«Бегущая строка» зачастую используется в рекламных целях или для привлечения внимания рекламными агентствами, сетями магазинов, банками, спортивными сооружениями и многими другими, кто хоть как-то взаимодействует с массами людей. Также табло «Бегущая строка» может использоваться и в некоммерческих целях, например, для визуального оповещения населения, сообщения новостей и оперативной информации, объявления остановок в общественном транспорте, отображения текущего времени, даты, температуры окружающего воздуха и т. п.

Литература

- 1. Ефимчик, М.К. Технические средства электронных систем : учеб. пособие / М.К. Ефимчик. Мн.: Тесей, 2006. 304 с.
- 2. Огарева, Н.П. Общая электротехника и электроника : учеб. пособие / Н.П. Огарева. М.: Мордовский университет, 2002. 290 с.

Д.В. Мигун (УО «ГГУ им. Ф. Скорины», Гомель) Науч. рук. **П.Л. Чечет**, канд. техн. наук, доцент

МЕХАНИЧЕСКАЯ РАЗВЁРТКА ДЛЯ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ

Работы по применению механической развёртки при отображении информации активно велись около ста лет назад, когда уровень развития техники и электроники не позволял использовать другие способы отображения информации. В настоящее время применение механической развёртки позволяет создавать интересные запоминающиеся конструкции, выделяющиеся из общей массы имеющихся устройств отображения наличием двигающихся частей. Современный уровень развития элементной базы во многом позволяет с минимальными затратами разрабатывать и создавать устройства с механической развёрткой для отображения информации.

Наиболее известное применение механической развёртки любителями — это часы, которые известны как «часы—пропеллер» или «виртуальные часы». Их особенность состоит в том, что изображение часов создается быстро вращающейся линейкой светодиодов. При взгляде на эти часы создается иллюзия, будто они проецируются в воздухе!

Часы с механической разверткой, Propeller clock, часы Боба Блика – это устройство имеет много названий, но в основу его работы положена разработка 80-х гг. позапрошлого столетия (1884 г.) предложенная немецким техником и изобретателем Паулем Нипковым. Это устройство получило название в честь своего изобретателя – диск Нипкова и послужило основой механического телевидения, которое просуществовало вплоть до 1939 г. и было широко распространено в Германии. Диск Нипкова имеет ряд отверстий расположенных по спирали, за диском располагается источник освещения, яркость которого модулируется видеосигналом.

Предлагаемое табло с помощью небольшого числа светодиодов создает относительно сложные графические изображения, для которых при обычном способе формирования потребовались бы сотни светодиодов. Как в кино или на телевидении, здесь используется инерционность человеческого зрения. Светодиоды, расположенные на вращающейся линейке, вспыхивают в определенном порядке. При частоте вращения около 25 Гц создается иллюзия, что «картинка» висит в воздухе.

Прототипами устройства послужили неоднократно описанные в Интернет публикациях «пропеллерные часы». Создаваемое подобным табло изображение может быть как статичным, так и несложной анимацией (медленно вращающаяся фигура, изменение числа ее элементов). Если использовать светодиоды повышенной яркости, изображение будет хорошо различимо не только в сумерках, но и днем в отсутствие, конечно, прямого солнечного света. Объем памяти примененного в устройстве МК позволяет одновременно хранить в нем информацию, достаточную для формирования пяти-шести разных фигур.

Главный недостаток табло — наличие в нем вращающегося узла — заставляет позаботиться о защите зрителей от случайных травм. Табло необходимо устанавливать за прозрачным экраном, в витрине, или подвешивать его на недоступной зрителям высоте.

Табло изготовлено из компьютерного вентилятора, на роторе которого закреплен вращающийся узел с блоком управления и двумя линейками светодиодов — красных и зеленых. Напряжение питания на этот узел поступает через высокочастотный трансформатор, вторичная обмотка которого размещена на роторе и вращается относительно первичной, укрепленной на неподвижном статоре. Генератор подаваемых на первичную обмотку высоко частотных импульсов и стабилизатор частоты вращения двигателя собраны на отдельной плате.

Бегущая строка — электронное устройство, предназначенное для отображения текстовой и графической информации. В самом простом

варианте текст просто «бежит», двигаясь, справа налево. Отображающая матрица обычно состоит из светодиодов. Очень часто помимо простого текста, бегущие строки могут генерировать простейшую графику и накладывать различные эффекты на отображаемый текст.

Светодиодные табло «бегущая строка» могут использоваться не только в помещениях, но и на улице. Агрессивная атмосфера и суровый климат вынуждают производителей использовать пылевлагозашищённые корпуса, проклеивать печатные платы специальным пластиком, утеплять конструкцию и предусматривать вентиляцию. Варианты в северном исполнении имеют автоматический подогрев. Но помимо тяжёлых условий имеет место ещё один фактор — солнечные лучи, которые засвечивают символы и снижают контрастность изображения. Для того, чтобы противостоять влиянию засветки, фирмы-производители используют более яркие светодиоды: если для помещений яркость каждого светодиода до 1–2 Кд, то для уличного варианта этот показатель гораздо больше.

«Бегущая строка» зачастую используется в рекламных целях или для привлечения внимания рекламными агентствами, сетями магазинов, банками, спортивными сооружениями и многими другими, кто хоть как-то взаимодействует с массами людей. Также табло «Бегущая строка» может использоваться и в некоммерческих целях, например, для визуального оповещения населения об опасности органами ГО и ЧС, сообщения новостей и оперативной информации, объявления остановок в общественном транспорте, отображения текущего времени, даты, температуры окружающего воздуха и т. п.

Монохромные и полноцветные бегущие строки. Светодиодный экран – это устройство, позволяющее отображать текстовую и графическую информацию. Главным его преимуществом является динамичность – возможность демонстрировать большое количество информации на сравнительно небольшой рекламной площади табло, используя для этого множество визуальных эффектов.

Предприятия все чаще отдают предпочтение LED вывескам для повышения продаж по ряду причин:

- светодиодная бегущая строка выделяет фирму среди конкурентов;
- светящееся анимационное табло может быть установлено в различных местах: в окне магазина, под козырьком, внутри здания;
- благодаря способностям светодиодов вывеска заметна днем и ночью на больших расстояниях. Таким образом, оборудование выполняет свою работу круглосуточно;
- светящееся LED табло даже минимальных размеров способно уместить обширный объем актуальной и полезной информации;

- электронная бегущая строка универсальна для организаций любого рода занятий. Светодиодная наружная реклама устанавливается в зданиях больших торговых центров, банках, административных учреждениях, развлекательных заведениях, открытых спортивных площадках;
- светодиодные строки вобрали в себя все передовые технологии, позволяющие воспроизводить любые световые эффекты, любую анимацию и видео;
- на таких светодиодных вывесках возможно отобразить рисунки, символы, изображения, в том числе, полноцветные корпоративные логотипы и видео.

Светодиодная бегущая строка — лучшее решение для повышения интереса покупателей. Минимальное время, за которое конструкция окупает себя, составляет менее месяца.

К.О. Мисоченко (УО «ГГУ им. Ф. Скорины», Гомель) Науч. рук. В.Д. Левчук, канд. техн. наук, доцент

РАЗРАБОТКА ПРИЛОЖЕНИЯ ДЛЯ ОБРАБОТКИ ДАННЫХ ПО РЕГРЕССИОННОМУ ТЕСТИРОВАНИЮ

Большинство компаний, которые занимаются разработкой и тестированием программного обеспечения, используют регрессионное тестирование как одно и главных для обеспечения контроля качества.

Регрессионное тестирование проводится в различных случаях: после изменения существующего функционала, после добавления нового, после изменений в связанных системах. В любом случае, основное назначение регрессионного тестирования — убедиться, что разработанный ранее функционал по-прежнему работает корректно. Тесты, включаемые в регрессионный набор, могут быть как функциональными, так и не функциональными. Как правило, целесообразной с точки зрения трудозатрат и сроков бывает автоматизация регрессионного набора.

Для того чтобы обрабатывать, сравнивать и получать результаты о всех итерация тестирования было создано приложение, которое автоматически собирает все необходимые данные.

Для разработки использовался MEAN стек, который включает в себя:

- документно-ориентированную базу данных MongoDB,
- фреймворк Express для эффективной и наглядной работы с серверной частью приложения,