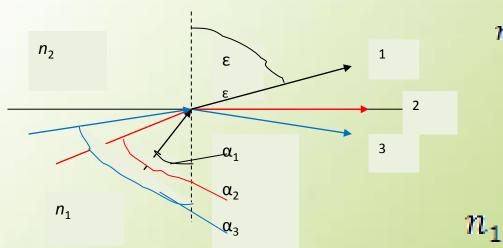


Тема 3 Рефрактометрия и интерферометрия

- 1.Коэффициент преломления.
- 2. Физические принципы действия рефракторов и интерферометров.
- 3. Технические рефрактометры. Применение рефрактометрии.
- 4.Интерферометрия как метод локального сравнения амплитудно-

фазовых распределений оптических полей.

- 5. Локализация интерференционной картины.
- 6. Многолучевая интерферометрия.
- 7. Интерференция частично когерентного света, Фурье-спектроскопия.
- 8. Резонансные фильтры пространственных частот.
- 9. Доплеровские измерения в оптике



Тема 3 Рефрактометрия и интерферометрия

Рефрактометрия (от лат. refractus — преломленный и др.-греч. μετρέω «измеряю») – метод исследования веществ, основанный на определении показателя (коэффициента) преломления (рефракции) и некоторых его функций

$$n = \frac{c}{v}; \quad n_{\text{oth}} = \frac{v_1}{v_2} = \frac{n_2}{n_1};$$
$$\frac{\sin\alpha}{\sin\varepsilon} = \frac{n_2}{n_1};$$

$$n_1 > n_2$$

$$\alpha_2 = \arcsin \frac{n_2}{n_1}$$

Тема 3 Рефрактометрия и интерферометрия

Зависимость показателя преломления жидкости:

- от состава

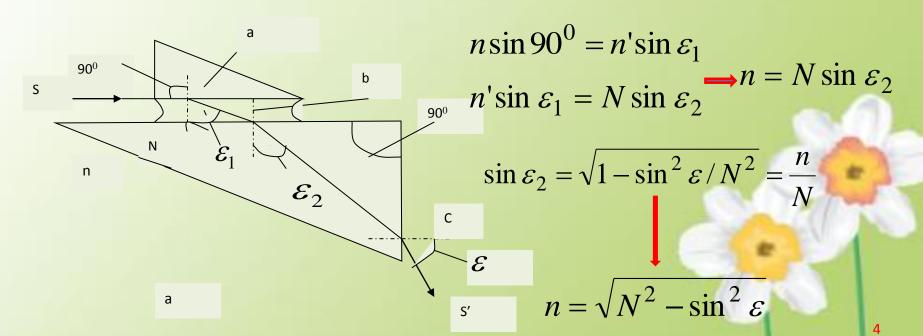
$n = n_1 V_1 + n_2 V_2 ;$		
n, n_1, n_2 — соответственно показатели преломления смеси и компонентов;		
V_1 и V_2 – объемные доли компонентов		
$(V_1 + V_2 = 1)$		

- от давления

dn/dP, ·10 ⁻⁵ атм ⁻¹		
Вода	1,48	
Спирт	3,95	
Бензол	4,80	

- от температуры

dn/dt, °C⁻¹		
Большинство жидкостей	-(0,0004 ÷ 0,0006)	
Вода	-0,0001	
Глицерин	-0,0002	
Гликоль	-0,00026	


$$n_{t} = n_{0} + at + bt^{2} + \dots$$

При
$$\Delta t$$
 не более (10 20) °C

$$n_{\rm t} = n_{\rm 0} + at$$

Тема 3 Рефрактометрия и интерферометрия

Рефрактометрические методы основаны на использовании явления полного внутреннего отражения, возникающего, если свет распространяется из среды оптически более плотной в среду оптически менее плотную, при этом углы падения должны быть равными или большими угла полного внутреннего отражения.

Тема 3 Рефрактометрия и интерферометрия

Формулы для вычисления показателя преломления

Преломляющий угол	Формула для расчета п
призмы	
$\Theta = 90^{\circ} \pm 3^{\prime\prime}$	$n = \sqrt{N^2 - \sin^2 \varepsilon}$
$\Theta > 90^{\circ}$	$n = \sin \Theta \sqrt{N^2 - \sin^2 \varepsilon} - \sin \varepsilon \cos \Theta$
$\Theta < 90^{\circ}$	$n = \sin \Theta \sqrt{N^2 - \sin^2 \varepsilon} + \sin \varepsilon \cos \Theta$

Определение показателя преломления стекла может быть произведено с точностью до 0,0001, если преломляющий угол θ эталонной призмы предварительно измерен на гониометре с погрешностью не более $\pm 2''$

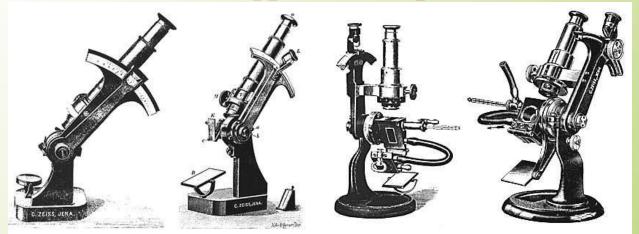
Тема 3 Рефрактометрия и интерферометрия

Определение дисперсии стекла и ошибки определения п

$$n = \sqrt{N^2 - \sin^2 \varepsilon}$$

$$dn = -\frac{\sin 2\varepsilon}{2\sqrt{N^2 - \sin^2 \varepsilon}} d\varepsilon + \frac{N}{\sqrt{N^2 - \sin^2 \varepsilon}} dN$$

$$dn = -\frac{\sin 2\varepsilon}{2n} d\varepsilon + \frac{N}{n} dN$$

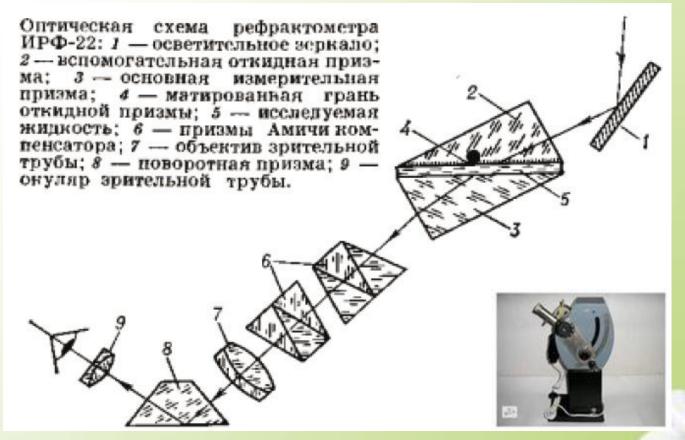

$$\sigma_n = \sqrt{\frac{\sin^2 2\varepsilon}{4n^2}} \sigma_{\varepsilon}^2 + \left(\frac{N}{n}\right)^2 \sigma_N^2$$

ГДе $d \varepsilon$ - приращение угла ε dN - дисперсия стекла призмы прибора для выбранной линии спектра;

$$\sigma_{\varepsilon}$$
 и σ_{N} - ошибки измерения ε и N соответственно

Тема 3 Рефрактометрия и интерферометрия

Рефрактометр Аббе


Тема 3 Рефрактометрия и интерферометрия

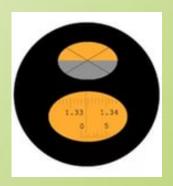
Рефрактометр Аббе состоит из двух стеклянных прямоугольных призм — измерительной призмы с высоким показателем преломления (n=1,7 для жёлтой линии натрия $\lambda=589$ нм), с полированной гипотенузной гранью и вспомогательной откидной призмы с матированной гипотенузной гранью, зрительной трубы, отсчётной шкалы, специального компенсатора. В поле зрения трубы наблюдается резкая линия раздела светлого и тёмного полей, соответствующая предельному углу.

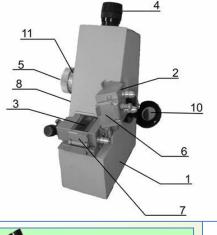
Состав иммерсионной жидкости	Показатель
	преломления
	стекла
Смесь глицерина с водой	1,33 1,47
Смесь бензина с керосином	1,35 1,45
Смесь альфа-монобромнафталина с керосином	1,45 1,65
Смесь альфа-монобромнафталина с йодистым	1,65 1,74
метиленом	
Раствор серы в йодистом метилене	1,74 1,78

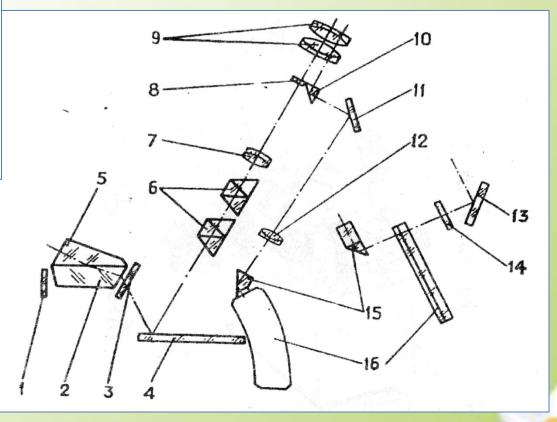
Тема 3 Рефрактометрия и интерферометрия

Для рефрактометра ИРФ-22 пределы измерения в проходящем свете $1,3 \div 1,7$, в отражённом - $1,3 \div 1,57$; точность измерения $\pm 0,0002$.

Тема 3 Рефрактометрия и интерферометрия


Современные модели рефрактометра Аббе




Лабораторные рефрактометры

Поле зрения и шкала

Тема 3 Рефрактометрия и интерферометрия

Внешний вид рефрактометров ИРФ -454 и ИРФ-454 Б2М и оптическая схема рефрактометра ИРФ-454 Б2М

Тема 3 Рефрактометрия и интерферометрия

Рефрактометр типа Пульфриха

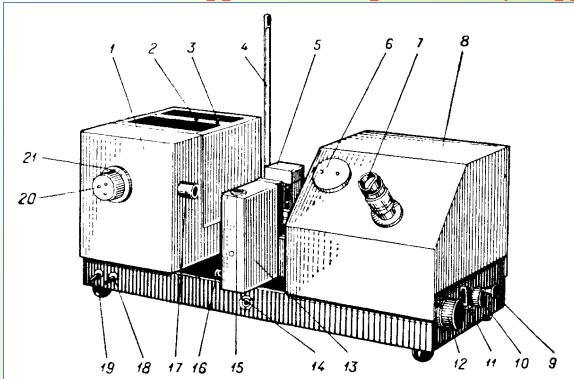
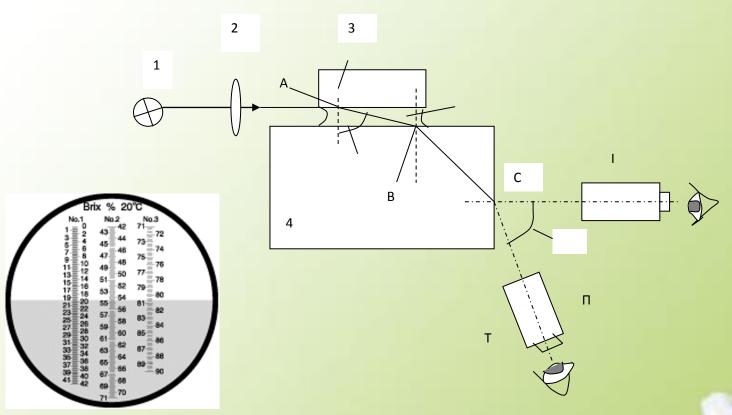



Рис. VIII, 13. Рефрактометр Пульфриха РR-2:

1—осветитель; 2, 3—юстировочные винты для H_2 и Не-ламп; 4—термометр; 5—измерительная призма; 6—крышка; 7—окуляр; 8—корпус измерительного устройства; 9—выключатель для автоколлимации; 10—рукоятка шкалы для точной установки; 11—переключатель для отсчета в зрительной трубе и по лимбу; 12—маховичок наводки зрительной трубы; 13—коллиматор; 14, 15—юстировочные вииты для измерительной призмы и коллиматора соответственио; 16—кнопка включения гейслеровых трубок; 17—выходной объектив осветителя со светофильтром; 18—выключатель ртутной лампы; 19—главный выключатель; 20—переключатель для смены ламп; 21—рукоятка смены светофильтров.

Тема 3 Рефрактометрия и интерферометрия

1 – источник света; 2 – конденсор;

3 – исследуемый образец; 4 – эталонная призма

Принципиальная схема рефрактометра Пульфриха

Тема 3 Рефрактометрия и интерферометрия

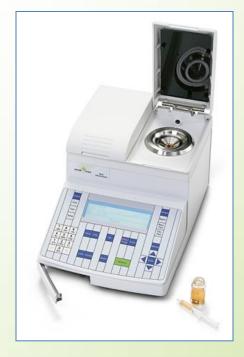
Требования к полировке граней призмы и подготовке образца

Параметр	ИРФ-23	ИРФ-24, ИРФ-25
Погрешность прямого угла между полированными гранями	±6′	±10′
Погрешность полировки, интерференционных полос $b = \lambda/2\gamma n_{_{\mathcal{H}\!$	2 5	2 5
Погрешность из-за клиновидности слоя жидкости (γ – угол клина)	$\Delta n \approx n_{\mathcal{H}} \left(1 - \frac{n_0^2}{2n_{\mathcal{H}}^2} \right) \gamma$	
Длина рабочей грани образца, мм, не менее при $\lambda = 0.6$ мкм,. $n_{\text{H}} = 1.6$ и $\gamma = 3'' = 1.5 \cdot 10^{-5}$ рад	15	15
Образец – прямоугольный параллелепипед (или - для ИРФ-23- прямоугольная призма) размером, мм, не менее	3x3x3	10x10x10
Стекло образца	Без видимых глазом свилей и крупных пузырей	

Тема 3 Рефрактометрия и интерферометрия

Таблица точек	поверки шкелы при определении
основной погра	ешности рефрактометра по показателю
предомления	и схолимости показаний

Модель рефрактометра	Диапазон измере- ния	Поверяемая точка шкалы	Примечание
Модель А	1,2-2,0		
- рефрактометрический		1,25	
блок 1	1,2-1,7	(1,33)	
		1,47	į
		1,65	1
- рефрактометрический		1,65	1
блок 2	1,6-2,0	1,75	
		1,94	l
Модель Б	1,2-1,7	1,25	
		(1,33)	
		1,47	
		1,65	


Тема 3 Рефрактометрия и интерферометрия

Точность измерения показателя преломления оптического стекла на рефрактометре ИРФ-23 зависит от следующих факторов:

- -точности измерения предельного угла; при $d\varepsilon = 0.5$ погрешность $\Delta n = \pm 5 \cdot 10^{-5}$;
- -неплоскостности поверхности образца, соприкасающейся с эталонной призмой; при неплоскостности равной 2b погрешность $\Delta n = \pm 2 \cdot 10^{-5}$;
- точности измерения показателя преломления эталонной призмы; при $\Delta N = \pm 2 \cdot 10^{-5}$ погрешность $\Delta n \sim \pm 2 \cdot 10^{-5}$;
- -отклонения преломляющего угла эталонной призмы от 90°; при $\Delta\theta = 3$ погрешность $\Delta n = \pm 1 \cdot 10^{-5}$;
- -отклонения температуры от 20°C ; при $\Delta t = 3^{\circ}\text{C}$ погрешность $\Delta n = \pm 1 \cdot 10^{-5}$.

Суммарная точность определения n равна $\pm 0.8 \cdot 10^{-4}$, дисперсии - $\pm 3 \cdot 10^{-5}$

Тема 3 Рефрактометрия и интерферометрия

Рефрактометры RE40D и RE50

Источник света — фотодиод, $\lambda_{max} = 589,3$ нм Приемник излучения — фотоэлемент Обработка и индикация сигнала - микропроцессор

Тема 3 Рефрактометрия и интерферометрия

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Наименование характеристики	Значение характеристики	
	RE40D	RE50
Рабочая длина волны, нм	589,3	
Диапазон измерений:		
- показателя преломления, n_D ;	1,32 1,70	1,32 1,58
- массовой концентрации сахарозы,		
% _{macc} (Brix)	0 100	
Дискретность показаний:		
- показателя преломления, n_D ;	0,0001	0,00001
- массовой концентрации сахарозы,		
% _{macc} (Brix)	0,1	0,01
Пределы допускаемой абсолютной		
погрешности:		
- показателя преломления, n_D в диапазоне		
- от 1,32 до 1,40 включительно	±1·10 ⁻⁴	±5·10 ⁻⁵
- свыше 1,40	±1·10 ⁻⁴	±1·10 ⁻⁴
- массовой концентрации сахарозы,		
% _{macc} (Brix)	±0,1	±0,03

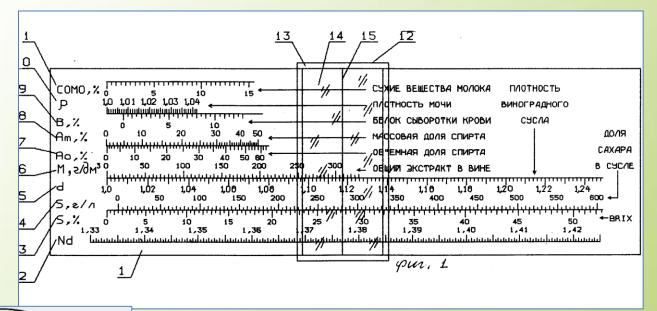
Тема 3 Рефрактометрия и интерферометрия

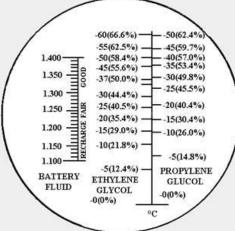
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

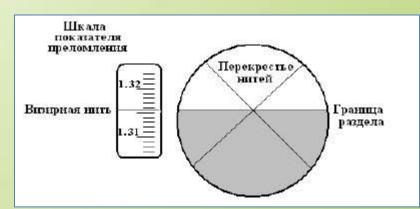
СКО результата измерений при пяти независимых наблюдениях, не более		
- показателя преломления, n_D ;	1.10-4	2·10-5
- массовой концентрации сахарозы,		
% _{Macc} (Brix)	0,1	0,01
Диапазон термостатирования, °C	15 70	15 50
Среднее время одного измерения, с	15	
Время непрерывной работы, ч, не менее	8	
Условия эксплуатации:		
- диапазон температуры окружающей	5 35	
среды, °С		
- диапазон относительной влажности		
воздуха, %	45 85	
- диапазон атмосферного давления, кПа	90,6 104,8	
Напряжение питающей сети, В	220+22-33	
Частота питающей сети, Гц	50 ± 1	
Потребляемая мощность, ВА, не более 20		20

Тема 3 Рефрактометрия и интерферометрия

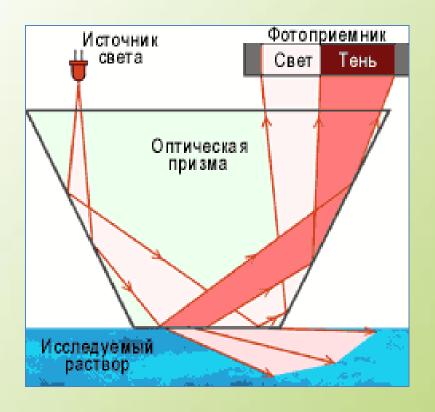
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

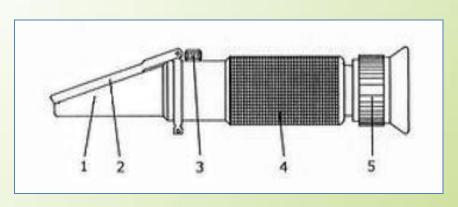

Габаритные размеры рефрактометров, мм:	
- длина	270
- ширина	400
- высота	225
Масса, кг, не более	9
Наработка на отказ, ч, не менее	2000
Средний срок службы, лет	8


Поверка рефрактометров RE40D и RE50 производится в соответствии с документом МП 242-0740-2008 «Рефрактометры мод. RE40Б и RE50. Методика поверки», утверждённым ГЦИ СИ «ВНИИМ имени Д.И. Менделеева» 05.08.2008.


Межповерочный интервал - 1 год

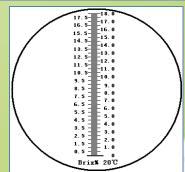
Тема 3 Рефрактометрия и интерферометрия


Калибровка шкал рефрактометров


Тема 3 Рефрактометрия и интерферометрия

Оптическая схема рефрактометра Хеш

Тема 3 Рефрактометрия и интерферометрия



5 – кольцо для настройки резкости; 6 – окуляр; Схема ручного рефрактометра

Рефрактометр для определения содержания сахара в фруктах

Ручной рефрактометр для определения влажности мёда

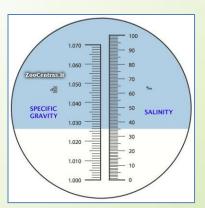
Рефрактометр для определения плотности сахаров в растворе

Тема 3 Рефрактометрия и интерферометрия

Рефрактометры для офтальмологии - кераторефрактометры

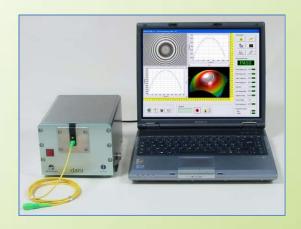
Рефрактометр Rudolph Research для фармацевтических измерений

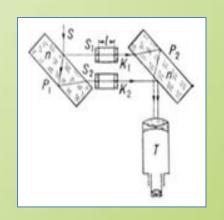
Тема 3 Рефрактометрия и интерферометрия


Рефрактометр для быстрой проверки плотности антифриза и температуры замерзания

Автоматический рефрактометр

Производственный рефрактометр




Рефрактометры цифровые

Тема 3 Рефрактометрия и интерферометрия

Интерференционные приборы - интерферометры

применяются для высокоточного измерения перемещений деталей, их линейных и угловых размеров, контроля формы и микрогеометрии поверхностей, исследования неоднородностей в прозрачных объектах, исследования качества оптических систем, измерения показателей преломления жидкостей и газов, контроля тонкослойных покрытий, анализа спектрального состава излучения и т.п.

Тема 3 Рефрактометрия и интерферометрия

Схемы с делением волн по амплитуде

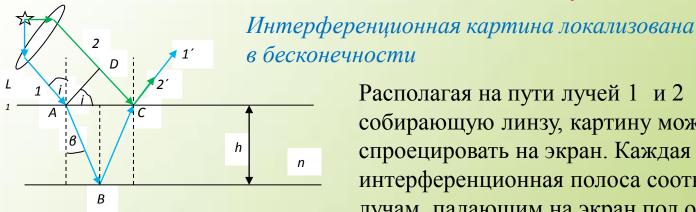
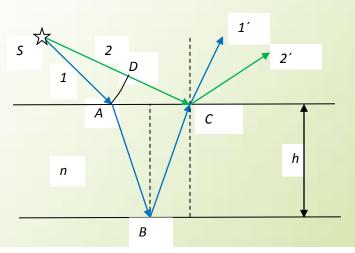


Рисунок 1 – Интерференция в тонкой плёнке при освещении её плоской волной

Располагая на пути лучей 1 и 2 собирающую линзу, картину можно спроецировать на экран. Каждая интерференционная полоса соответствует лучам, падающим на экран под одинаковым


углом. *Полосы равного наклона*

При наблюдении	Усиление света (максимум)	Ослабление света (минимум)
в отраженном свете	$2hn\cos\beta + \frac{\lambda}{2} = 2m\frac{\lambda}{2} = m\lambda; m = 0, 1, 2$	$2hn\cos\beta + \frac{\lambda}{2} = (2m+1)\frac{\lambda}{2}; m = 0, 1, 2$
в проходящем свете	$2hn\cos\beta = (2m+1)\frac{\lambda}{2}; m = 0, 1, 2$	$2hn\cos\beta = 2m\frac{\lambda}{2} = m\lambda; m = 0, 1, 2$

В формулах: h – толщина пластинки, n – показатель преломления материала, из которого изготовлена пластинка, β – угол преломления луча в пластинке, m – порядок интерференции, λ – длина волны излучения

Тема 3 Рефрактометрия и интерферометрия

Схемы с делением волн по амплитуде

Интерференционная картина имеет вид концентрических светлых и темных колец, центры которых совпадают с основанием перпендикуляра, опущенного из источника на верхнюю грань пластинки, на которой картина и локализована.

Полосы равной толщины

Рисунок 2 – Ход лучей при образовании полос равного наклона при освещении пластинки расходящимся пучком

Тема 3 Рефрактометрия и интерферометрия

Схемы с делением волн по амплитуде

Рисунок 3 — Схема образования полос равной толщины в клине

Интерференционные полосы параллельны ребру клина, локализованы на его поверхности, одинаковы по ширине для монохроматического света. При падении света нормально к поверхности клина разность хода волн, интерферирующих в точке С, равна

$$\Delta = 2dn + \lambda/2$$

$$_{\Gamma Дe} \lambda/2$$

- дополнительная разность хода, обусловленная отражением луча 2 от оптически более плотной среды. Ширина интерференционной полосы определяется из условий $2n\Delta d=\lambda$, $\alpha \approx \sin \alpha \approx tg\alpha = \frac{\Delta d}{R}$ и равна

$$B = \lambda/(2n\alpha)$$

Тема 3 Рефрактометрия и интерферометрия

Схемы с делением волн по амплитуде

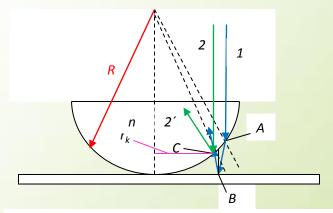
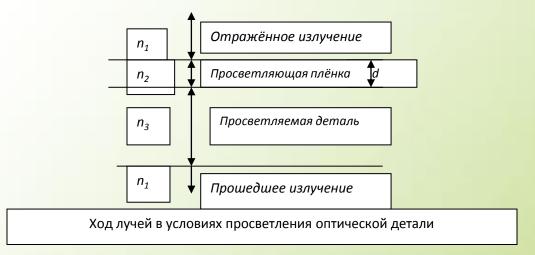


Рисунок 4 – Схема образования колец Ньютона


Кольца Ньютона составляют систему концентрических тёмных и светлых колец, сгущающихся в направлении от центра к краю интерференционной картины.

Радиусы колец Ньютона

При наблюдении	Светлые кольца максимум)	Темные кольца (минимум)
в отраженном свете	$r_k = \sqrt{(2k-1)\frac{\lambda R}{2}}; k = 1,2,3$	$r_k = \sqrt{k\lambda R}; k = 1, 2, 3$
в проходящем свете	$r_k = \sqrt{k\lambda R}; k = 1, 2, 3$	$r_k = \sqrt{(2k-1)\frac{\lambda R}{2}}; k = 1,2,3$

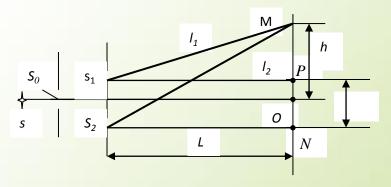
Тема 3 Рефрактометрия и интерферометрия

Схемы с делением волн по амплитуде

Применение:

- -просветление объективов и других оптических элементов;
- изготовление интерференционных светофильтров

Эффект просветления реализуется, если;


- показатель преломления плёнки удовлетворяет условию $n_2 = \sqrt{n_1 n_3}$;
- толщина пленки такова, что для волн, отражённых от верхней и нижней границ плёнки, выполняется условие интерференционного минимума:

$$\Delta = 2dn_2 \pm \lambda/2$$

(Знак плюс выбирают при потере полуволны на нижней границе, знак минус — при потере $\lambda/2$ на верхней границе)

Тема 3 Рефрактометрия и интерферометрия

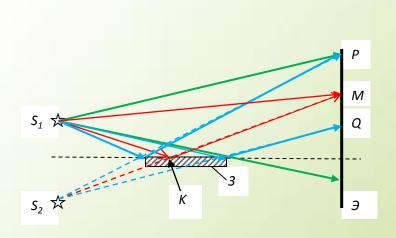
Схемы с делением по волновому фронту

Опыт Юнга

Оптическая разность хода $\Delta = \frac{2hl}{L}$

Координаты точек экрана, в которых имеют место максимумы и минимумы освещенности:

$$h_{\text{max}} = \frac{m\lambda L}{2l}$$
; $h_{\text{min}} = \frac{(2m+1)\lambda L}{4l}$


Геометрическое место точек, для которых при каждом m реализуется условие $\Delta = {\rm const},$ называют интерференционной полосой.

Расстояние *В* между двумя соседними максимумами (или минимумами) в интерференционной картине называют **шириной интерференционной полосы:**

$$B = h_{m+1} - h_m = \frac{\lambda L}{2l}$$

Тема 3 Рефрактометрия и интерферометрия

Схемы с делением по волновому фронту

 S_1 S_2 $\bar{\alpha}$

Зеркало Ллойда

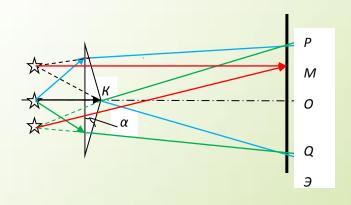
Бизеркало Френеля

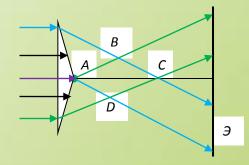
$$B = h_{m+1} - h_m = \frac{\lambda L}{2l}$$

2l – расстояние между источниками;

L — расстояние от плоскости расположения источников до экрана

Ширина интерференционной полосы


$$B = \frac{(a+b)\lambda}{2b\alpha}$$


b- расстояние от источника S до точки пересечения зеркал, a — расстояние от плоскости расположения источников до экрана; α — малый угол между зеркалами

Тема 3 Рефрактометрия и интерферометрия

Схемы с делением по волновому фронту

Бипризма Френеля

Освещение расходящимся пучком

Освещение параллельным пучком

$$B = \frac{(a+b)\lambda}{2b\alpha(n-1)}$$
 Ширина интерференционной полосы

$$B = \frac{\lambda}{2\alpha}$$

B — расстояние от источника до вершины бипризмы K, a — расстояние от вершины бипризмы до экрана Θ , n — показатель преломления материала бипризмы; α — малый угол при основании бипризмы

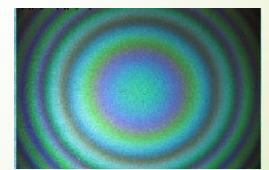
Тема 3 Рефрактометрия и интерферометрия

Условия пространственной когерентности:

- постоянная во времени разность фаз (условие, эквивалентное одинаковости циклических частот интерферирующих волн) $\omega_1 = \omega_2 = \omega$;
- соизмеримость амплитуд интерферирующих волн;
- одинаковое состояние поляризации (вектор напряжённости электрического поля в обеих волнах колеблется вдоль одной прямой);
- волны после прохождения разных путей «встречаются» в некоторой точке пространства.

Условие *временной когерентности*: оптическая разность хода волн не превышает *длины когерентности* $L_{\kappa o \varepsilon} = c \tau$, где c — скорость света в вакууме, $\tau \sim 10^{-8}$ с — время, за которое атом вещества излучает *цуг волн*.

Контрастность интерференционной картины

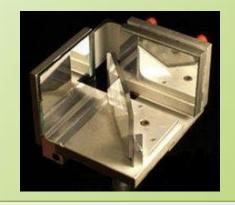

$$K = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

Тема 3 Рефрактометрия и интерферометрия

Интерференционные методы применяются для:

- прецизионного измерения расстояний;
- контроля качества поверхностей оптических деталей;
- измерения длины волны излучения;
- •определения показателей преломления и дисперсии показателя преломления оптических сред;
- •определения концентрации растворов;
- для анализа спектрального состава излучения различных источников;
- •для астрономических измерений и др.

Для этих целей используются **интерферометры** разных типов

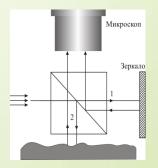


Интерференционная картина, полученная при расположении зеркал *строго и не строго* под углом 90°

Оптические измерения

Тема 3 Рефрактометрия и интерферометрия

1907 Нобелевская премия по физике за создание прецизионных инструментов и выполненные с их помощью спектроскопические и метрологические исследования.



Интерферометр Майкельсона

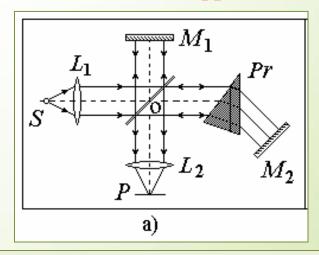
В 1890-е годы Майкельсон решил важную метрологическую задачу: провел измерение эталона метра в единицах длины волны излучения кадмия; изобрел спектральный прибор высокой разрешающей способности – «эшелон Майкельсона». В 1920 с помощью изобретенного им «звездного интерферометра» провел измерения угловых размеров звезды-гиганта Бетельгейзе. В 1929 он повторил опыт Майкельсона – Морли, добившись еще более высокой точности. Последним его исследованием, завершить которое пришлось ученикам, стало новое измерение – скорости света в вакууме.

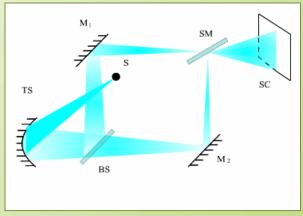
1 2 3 4 5 8 9 10 11 T T T 13 13 15 15 17

Rmax, Rz: 0,1-0,8 мкм

Оптические измерения

Тема 3 Рефрактометрия и интерферометрия

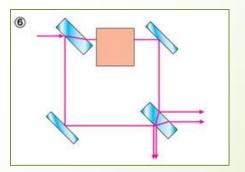

Микроинтерферометр МИИ-4М предназначен для измерения параметров шероховатости полированных и доведенных поверхностей, а также для измерения толщин пленок (высоты уступов, образованных краем пленки и подложки): h = (a/b) ·λ/2


а — величина искривления, b — ширина интерференционной полосы; $\Gamma = 500^{x}$ при визуальном наблюдении, линейное поле зрения в пространстве предметов 0,3 мм

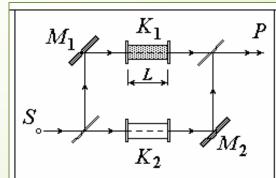
Отличительные особенности:

- -источник светодиод белого света; высокий контраст и яркость интерференционных полос; высокая чувствительность метода и стабильность ИК;
- низкое питающее напряжение от источника переменного тока; высокий уровень электробезопасности;
- возможны измерения с помощью винтового окулярного микрометра или фотоэлектрического окулярного микрометра (ФОМ) с автоматической обработкой результатов измерений;
- в сочетании с ФОМ точность измерения шероховатости повышается в 2 раза, производительность процесса измерения в 10 15 раз; снижается утомляемость оператора

Тема 3 Рефрактометрия и интерферометрия

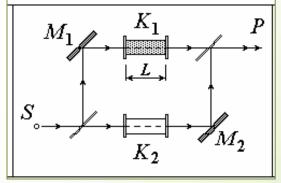

Интерферометр Бейтса

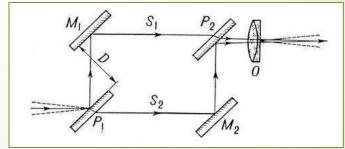
Интерферометр Тваймана-Грина собран на базе схемы интерферометра Майкельсона и служит для контроля оптических элементов . В его измерительном плече помещается оптический элемент, качество изготовления которого нужно оценить. В случае призмы второе плечо разворачивают, оставляя в нем плоский отражатель.


Для контроля линз или многолинзовых объективов зеркало ${\rm M_2}\,$ делают сферическим, как в *интерферометре Бейтса* для прецизионного контроля сферичности зеркал телескопов.

Тема 3 Рефрактометрия и интерферометрия

Интерферометр Маха



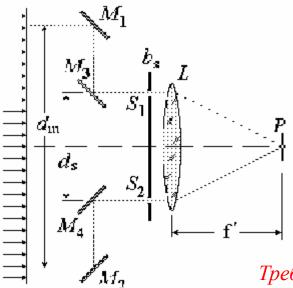


Австрийский физик Эрнст Мах, крупный исследователь процессов аэродинамики, сконструировал специальный интерферометр с широкими пучками и большим расстоянием между зеркалами для съёмки ударных волн и скачков уплотнения воздушных потоков, обтекающих различные тела. Показатель преломления воздуха в уплотнённом потоке выше, чем в невозмущённой среде. Это отражается на форме линий интерференции.

Интерферометр Маха - Цендера предназначен, в первую очередь, для измерения показателей преломления газов. При прохождении света через кюветы появляется добавочная разность хода $\Delta = (n_2 - n_1)L$, где L - длина кюветы, n_1 и $n_2 -$ показатели преломления веществ, заполняющих кюветы. Визуально можно заметить сдвиг интерференционной картины с точностью до 1/40 порядка, и при L = 10 см обнаружить изменение $n_2 - n_1$ около 10^{-7} .

Тема 3 Рефрактометрия и интерферометрия

Интерферометр Рождественского



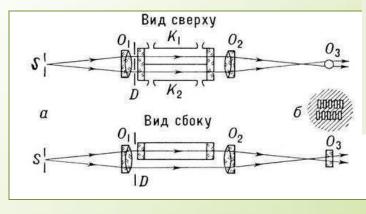
Отличие между интерферометрами Маха — Цендера и Рождественского состоит в том, что в первом из них попарно параллельно устанавливаются непрозрачные и прозрачные зеркала, а во втором - входное полупрозрачное с непрозрачным для отраженного луча и непрозрачное для прошедшего луча с выходным полупрозрачным.

Расстояние между пучками S_1 и S_2 может быть сделано очень большим, что облегчает установку в один из них различных исследуемых объектов. Широко применяется в аэрогазодинамических исследованиях. Д.С. Рождественский использовал интерферометр в сочетании со спектрографом для исследования дисперсии света и определения дисперсии оптических материалов

Тема 3 Рефрактометрия и интерферометрия

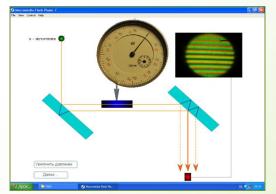
В звездном интерферометре Майкельсона,

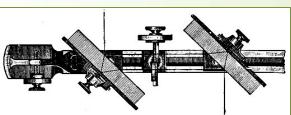
собранном на базе телескопа-рефрактора, перед объективом L установлена маска с двумя щелями. Свет на эти щели направляется системой зеркал, расстояние d_m между зеркалами M_1 и M_2 может изменяться. За счет этого удается измерить корреляционную функцию для лучей, расстояние между которыми намного больше, чем диаметр объектива телескопа.

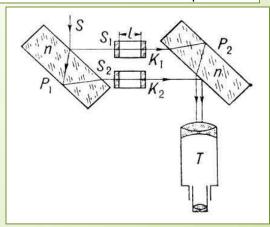

Видность интерференционной картины $V = \frac{\sin \frac{\pi u_m \phi}{\lambda}}{\frac{\pi d_m \phi}{\lambda}}$

При увеличении расстояния d_m видность полос в плоскости Р падает. Определяя значение $d_m = \lambda/\phi$, при котором $V(d_m) \to 0$, оценивают угловой размер источника 2ω .

Требование к конструкции интерферометра: перемещение зеркал M_1 и M_2 с сохранением их ориентации с точностью до долей длины волны. Майкельсону удалось обеспечить d_m до 6 м, что соответствует *угловому разрешению* 0,02 угловой секунды.

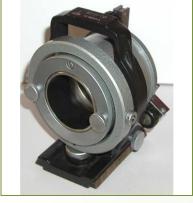

Интерферирующие пучки выделяются с помощью двух щелевых диафрагм D. Пройдя кюветы K_1 и K_2 , эти пучки собираются в фокальной плоскости объективом O_2 , где образуется ИК полос равного наклона, которая рассматривается через окуляр O_3 . При этом часть пучков, выходящих из диафрагм, проходит ниже кювет и образует свою интерференционную картину, расположенную ниже первой. Измеряя величину смещения ИК, по числу полос Δm можно найти показатель преломления


$$n_2 = n_1 + \frac{\lambda_0}{I} \cdot \Delta m,$$


где l- длина кюветы с газом, λ_0- длина волны излучения источника

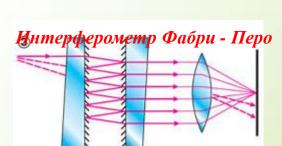
При типичных параметрах установки — длине кювет в один метр, длине волны в 550 нм и порядке интерференции $\Delta m = 1/40$, — можно измерить разницу показателей преломления, равную 10^{-8} . Чувствительность интерферометра определяется длиной кюветы. Её максимальная длина, как правило, определяется техническими возможностями контроля за температурой, так как тепловые флуктуации обусловят изменение показателей преломления газов.

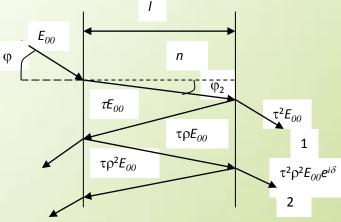
Тема 3 Рефрактометрия и интерферометрия

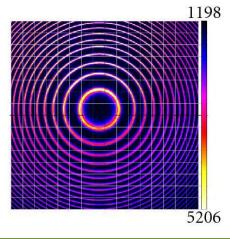


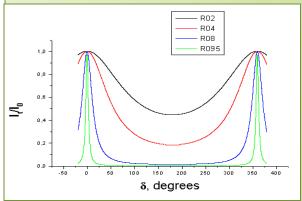
Интерферометр Жамена

Пучок света S после отражения от передней и задней поверхностей первой пластины P_1 разделяется на два пучка S_1 и S_2 . Пройдя через кюветы K_1 и K_2 , пучки, отразившиеся от поверхностей пластины P_2 , попадают в зрительную трубу T, где интерферируют, образуя полосы равного наклона. Если одна из кювет наполнена веществом с показателем преломления n_1 , а другая с n_2 , то по смещению интерференционной картины на m полос по сравнению со случаем, когда обе кюветы наполнены одним и тем же веществом, можно найти n_2 : $n_2 = n_1 = m \cdot \lambda \mathcal{N}$ (l — длина кюветы).


Интерферометр Жамена наиболее прост в юстировке и может использоваться для измерения показателей преломления жидкостей и газов. Его недостаток – близкое расположение обоих световых лучей: объектного и реперного.


Точность измерения показателей преломления с помощью интерференционных рефрактометров достигает 10⁻⁷ и даже 10⁻⁸.




Тема З Рефрактометрия и интерферометрия

IT51-30 (ЛОМО)

$$\frac{I_{np}}{I_{nad}} = \left(\frac{E_{20}}{E_{00}}\right) \left(\frac{E_{20}}{E_{00}}\right)^* = \frac{T^2}{(1-R)^2 + 4R\sin^2(\delta/2)} - \phi$$
ормула Эйри

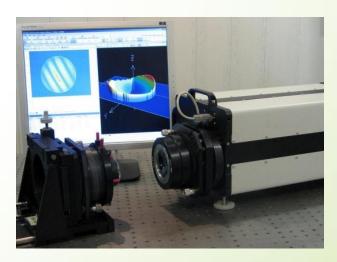
Наибольший порядок интерференции, который можно получить в интерферометре Фабри-Перо, определяется формулой $m=2l/\lambda$;

(при
$$l = 5$$
 см и $\lambda = 500$ нм $m = 200000$).

Угол между соседними максимумами $\delta \varphi = -\frac{\lambda}{2l \sin \varphi}$

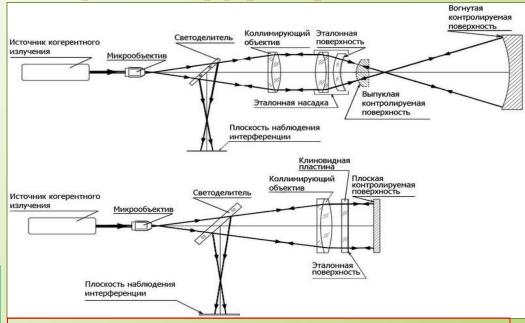
Область свободной дисперсии $\Delta \lambda = \lambda / m = \lambda^2 / (2l)$

При l = 0.5 см и $\lambda = 500$ нм $\Delta \lambda \approx 0.025$ нм


Тема 3 Рефрактометрия и интерферометрия

• Ширина исследуемой структуры и допустимое расстояние между пластинами интерферометра связаны формулой

$$\Delta \lambda = \lambda / m = \lambda^2 / (2l)$$


• Определяемая в ней величина $\Delta \lambda$ — область свободной дисперсии. При l=0.5 см и $\lambda=500$ нм . Это означает, что интерферометр Фабри—Перо следует использовать только для исследования контуров спектральных линий, выделенных каким-либо более грубым спектральным прибором.

Тема 3 Рефрактометрия и интерферометрия

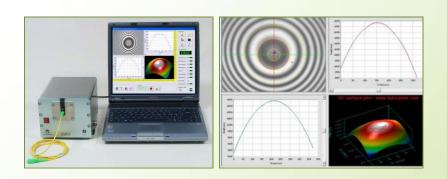
Интерферометр с фазовым сдвигом ФТИ-100 предназначен для прецизионного контроля плоских, сферических и асферических оптических поверхностей в условиях оптического производства и в научных исследованиях.

Измерения: точность λ/100; воспроизводимость λ/1000; время одного измерения <0,5 с

Интерферометр Физо — простейший многолучевой интерферометр, применяемый главным образом для контроля точности изготовления поверхностей оптических деталей и оптических систем. Интерферометр Физо часто относят к интерферометрам с общим ходом пучков, так как до эталонной (полупрозрачной) поверхности пучки имеют общий ход.

Тема 3 Рефрактометрия и интерферометрия

Шахтный интерферометр ШИ-11 применяется для контроля рудничной атмосферы при горноспасательных работах, в трубопроводах шахтных и дегазационных системах, в колодцах, промышленных котлах и резервуарах.


Волоконно-оптический интерферометр

Технические характеристики:

Пределы измерения содержания газов в объемных долях, 0-6. Предел допускаемой абсолютной погрешности измерения, $\pm 0,2$. *Рабочие условия эксплуатации прибора:* температура окружающей среды, °C от -10 до + 40; атмосферное давление, мм рт. ст. 720 - 800. Время одного определения, мин 0,5 Исполнение прибора: рудничное, искробезопасное . Габаритные размеры, мм 115х54х186. Масса прибора без футляра, кг 1,45

Тема 3 Рефрактометрия и интерферометрия

Полнофункциональные интерферометры компании Data-Pixel (DAISI, DAISI MT и 3DScope) предназначены для инспекции геометрии наконечников оптических коннекторов и применяются в лабораторных и производственных условиях. Несжатая высококачественная картинка в режиме реального времени передается с интерферометра в ПК через интерфейс USB2.0. Для снижения ошибок и повышения надежности измерений все шаги калибровки автоматизированы и встроены в дружественный интерфейс программного обеспечения.

DAISI MT сочетает в себе все преимущества интерферометра DAISI и применяется для измерения геометрии как *одноволоконных*, так и *многоволоконных* наконечников.

Тема 3 Рефрактометрия и интерферометрия

Основные характеристики DAISI

•Диапазон измерений радиуса кривизны поверхности торца, мм — от 3 до бесконечности.

Повторяемость/ воспроизводимость* измерений - $\pm 0.1\%$ / $\pm 0.2\%$

•Диапазон измерений смещения вершины торца наконечника относительно центра волокна, мкм - от 0 до 500.

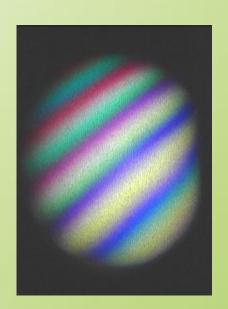
Повторяемость/ воспроизводимость* измерений - $\pm 0.5 / \pm 1.0$

•Диапазон измерений заглубления/возвышения волокна относительно поверхности торца наконечника, нм - ± 160

Повторяемость/ воспроизводимость* измерений - $\pm 1.0 / \pm 1.5$

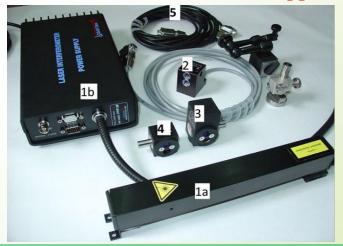
•Диапазон измерений угла скола, ° - 0 до 12.

Повторяемость/ воспроизводимость* измерений - $\pm 0.03^{\circ}$


Скорость измерений, сек - 2

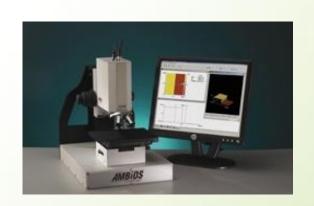
Увеличение - 300 ^X

Длина волны, нм - 633


Требования к питанию - 12V 25VA

* - Повторяемость — погрешность в значениях 50 последовательных измерений, не отключая измеряемого коннектора от интерферометра. Воспроизводимость - погрешность в значениях 50 измерений, отключая и подключая снова один и тот же измеряемый коннектор от интерферометра.

Тема 3 Рефрактометрия и интерферометрия


LaserScale LS10 состоит из:

- •стабилизированной лазерной головки (1a) соединённой с блоком питания (1b),
- детектора (2),
- •линейного интерферометра IL1 (3),
- •линейного рефлектора RL1 (4),
- •кабеля, используемого для подключения устройства к порту USB компьютера (5), измерительной лавки с шаговым

измерительной лавки с шаговым двигателем

Лазерный интерферометр LaserScale LS10 предназначен для применения в системах управления машинами вместо обычных магнитных измерителей. Применяя лазерный интерферометр удается существенно увеличить точность работы ЧПУ или другой промышленной машины. Возможности лазерного интерферометра LaserScale LS10 можно с легкостью расширить для измерения в двух осях одновременно с помощью дополнительно поставляемых опций. Для компенсации влияния окружающей среды при измерениях лазерным интерферометром используются специальные корректоры температуры, давления и влажности, работающие непрерывно в реальном времени.

Тема 3 Рефрактометрия и интерферометрия

Бесконтактный оптический интерференционный сканер-профилограф Xi-100

Компьютеризированный контактный вертикальный интерферометр

Интерферометр вертикальный предназначен в основном для измерения и аттестации концевых мер длины, измерение контркалибров, аттестация образцовых деталей и т.п. Интерферометры применяются как при точных измерениях длин, в частности в станкостроении и машиностроении, так и для оценки качества оптических поверхностей и проверки оптических систем в целом.

Тема 3 Рефрактометрия и интерферометрия

С использованием голографических интерферометров NANOTOUCH можно:

- Выбрать наиболее качественную и устойчивую к нагрузкам деталь из нескольких внешне идентичных, проанализировав поведение поверхностей под нагрузкой
- Оценить гигроскопичность материала
- Выяснить, является ли деформация необратимой.
- Оптимизировать конструкцию объекта с точки зрения устойчивости к характерным для него нагрузкам
- Выяснить предельно допустимые для детали или узла нагрузки
- Рассчитать ресурс детали
- Выявить скрытые дефекты
- Найти и устранить резонансы или причину повышенной вибрации
- Спрогнозировать развитие деформационных процессов
- Проконтролировать партию деталей на предмет соответствия требованиям по деформационной устойчивости
- Измерить прочность сварки или соединительных конструкций
- Выявить неравномерность реакции объекта на нагрузку (например, найти дефект сварки, место истончения материала или обнаружить наличие скрытых повреждений)
- Проследить развитие трещин
- Оценить текучесть, эластичность, хрупкость материалов
- Разработать объект с заданными деформационными характеристиками, в частности, чтобы в случае поломок из строя выходили дешевые сменные детали, вместо несменных дорогостоящих
- Найти «слабое звено» в конструкции

Оптические измерения Литература

Захарьевский, А. Н. Интерферометры. М.: Оборонгиз, 1952.—296 с.

Коломийцов, Ю. В. Интерферометры. Основы инженерной теории, применение. Л.: Машиностроение, 1976. – 296 с.

Малакара, Д. Оптический производственный контроль. М.: Машиностроение, 1985. – 400 с.

Ресурсы Интернет и др.