A. Л. MAPTЫHOBA¹, Л. M. AБPAMOBA²

РОЛЬ ZYGOPHYLLUM PINNATUM В РАСТИТЕЛЬНОМ СООБЩЕСТВЕ

¹МБОУ «Гимназия № 1 им. Н. Т. Антошкина»,
г. Кумертау, Российская Федерация,
anle. martynova@gmail.com
²Южно-Уральский ботанический сад-институт УФИЦ РАН,
г. Уфа, Российская Федерация,
abramova. lm@mail.ru

Методами пространственной статистики была изучена роль Zygophyllum pinnatum в растительном сообществе. Доказана низкая конкурентная способность этого вида.

Ключевые слова: Zygophyllum pinnatum, растительное сообщество, локальная плотность, степень доминирования, кросс-функция Рипли.

 $Zygophyllum\ pinnatum\ Cham.\ (Zygophyllaceae)$ — это многолетнее растение с мощным многоглавым деревенеющим каудексом. Цветет в мае-июне, плодоносит в июле-августе. Размножается семенами. Ксерофит, гипсофил, петрофит. Вид слабо изучен, занесен в Красные книги 5 регионов РФ [7], в том числе в Красную книгу Республики Башкортостан [3].

Результаты изучения онтогенетической структуры ценополуляций *Z. pinnatum* в двух регионах Российской Федерации (Республика Башкортостан и Оренбургская область) и северо-западном Казахстане (Актюбинская область) представлены в [2, 5]. Особенности пространственно-онтогенетической структуры популяций изучались в [4]. В указанных работах высказывались предположения о низкой конкурентной способности вида и о предпочтении сообществ с разреженной растительностью. В настоящей работе предполагается проверить это утверждение математическими методами пространственной статистики. Итак, цель работы — изучить роль *Z. pinnatum* в растительном сообществе и характер взаимодействия с растениями других видов.

Материалы и методы. Исследование проводили в июне-июле 2021 года, в Куюргазинском р-не Респ. Башкортостан на холмах по правому берегу р. Тугустемир, напротив д. Разномойка. Согласно схеме геоботанического районирования, местность относится к Кумертауско-Исянгуловскому степному району Общего Сырта. Растительное сообщество, включающее *Z. pinnatum*, приурочено к местам выхода гипсовых пород, основной грунт — элювий гипса, в граничной зоне содержит примеси красной глины.

Для исследования была заложена площадка размером 8×13 м, на которой проведено картирование растительного сообщества — для каждого растения определены координаты и видовая принадлежность. На учетной площадке, общепринятыми методами, определены следующие характеристики растительного сообщества. видовой состав, количество особей N, средняя плотность Λ . Для популяций каждого вида зафиксированы: количество особей N_i , средняя плотность популяции $\Lambda_i = N_i/S$, доля вида в растительном сообществе $P_i = N_i/N$ (здесь и далее $i=1,\ldots,m$, где m — количество видов в сообществе).

Покальные значения плотности растительного сообщества λ и каждой популяции λ_i вычисляли в центре каждого квадрата размером 5x5 см (далее – элементарные квадраты) методом сглаженной аппроксимации [9] на основе ядерной функции [15, 14]. Границы популяции определены путем сравнения локальных значений плотности в каждом элементарном квадрате с установленным нами пороговым значением 0,01 ос. M^2 – если значение плотности меньше порогового, то данный квадрат лежит за границей популяции. Площадь популяции S_i определена как сумма площадей элементарных квадратов (0,0025 м²) лежащих в пределах ее границы. Экологическая плотность популяции $\widehat{\Lambda}_i$ определена как отношение количества особей данного вида к площади популяции, т. е. $\widehat{\Lambda}_i = N_i/S_i$.

На основе локальных значений плотности были рассчитаны локальные значения доли вида в сообществе $p_i = \lambda_i/\lambda$. Доминирующий вид определяли как вид доля P_i которого максимальна на учетной площадке. Локальное доминирование определяли аналогично, но используя значения p_i для каждого элементарного квадрата. Для локально доминирующих видов подсчитана площадь доминирования \tilde{S}_i — сумма площадей элементарных квадратов на которых этот вид является доминирующим. Степень доминирования определяли по шкале Любарского: 0-4% — малозначимый вид ("М"), 4-16% — второстепенный ("В"), 16-36% — субдоминирующий ("С"), 36-64% — доминирующий ("Д"), 64-100% — абсолютно доминирующий ("А") [1].

Для определения характера размещения особей ("agg" – агрегированный, "reg" – регулярный, "CSR" – случайный) были рассчитаны и проанализированы функции Рипли [12, 13], которые представляли в линеаризованном виде [10]. Значимость отклонений построенной кросс-функции от таковой для однородного пуассоновского процесса (CSR) оценена методом симуляций Монте-Карло [11] на основе 299 симуляций CSR.

Характер взаимодействия особей Z. pinnatum с особями других видов в сообществе оценивали на основе коэффициента корреляции Пирсона между значениями локальных плотностей в соответствующих элементарных квадратах [8]. Если коэффициент корреляции по абсолютной величине превосходил 0,5, то дополнительно рассчитывали кросс-функцию Рипли.

Все расчеты и построение изображений проводили в статистическое среде R с использованием функций пакета spatstat [8]. Подробное описание выполненных расчетов и тексты кодов R представлены в форме дополнительных материалов и доступны на https://stok1946.blogspot.com/2022/04/blog-post. html.

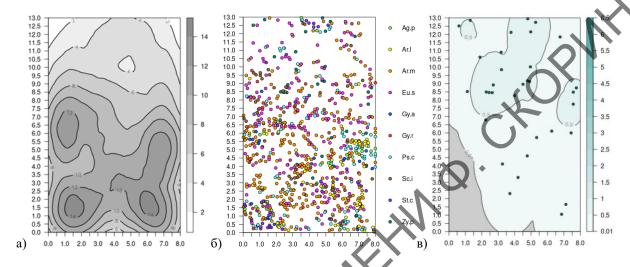

Результаты и обсуждение. На учетной площадке зарегистрированы растения 10 видов, принадлежащие к 6 семействам. Ниже приведен список видов, в скобках указано сокращение, которое далее будет использоваться для обозначения вида в таблицах и рисунках: сем. POACEAE – (Ag. p) Agropyron pectinatum (M. Bieb.) P. Beauv., (St. c) Stipa capillata L.; сем. ASTERACEAE – (Ar. l) Artemisia lercheana Weber ex Stechm., (Ar. m) A. marschalliana Spreng, (Ps. c) Psephellus carbonatus (Klokov) Greuter.; сем. EUPHORBIACEAE – (Eu.s) Euphorbia seguieriana Neck.; сем. DIPSACACEAE – (Sc. i) Scabiosa isetensis L.; сем. CARYOPHYLLACEAE – (Gy. a) Gypsophila altissima L., (Gy. r) G. rupestris A. Kuprian.; сем. ZYGOPHYLLACEAE – (Zy. p) Zygophyllum pinnatum Cham.

Таблица 1 – Характеристики популяций

Вид	N_i ,	Λ_i ,		λ_i , oc. / M^2		Разме-ще-	S	i i	$\widehat{\Lambda}_i$
	oc.	oc. $/M^2$	min	max	Mean	ние	\mathbf{M}^2	%	oc. $/\text{M}^2$
Ag. p	23	0,22	0,00	1,20	0,22	agg	69,1	66,4	0,33
Ar. l	60	0,58	0,00	3,20	0,58	agg	83,0	79,8	0,72
Ar. m	289	2,78	0,07	6,43	2,78	agg	104	100	2,78
Eu. s	179	1,72	0,08	3,18	1,72	agg	104	100	1,72
Gy. a	15	0,14	0,00	0,78	0,14	agg	55,2	53,1	0,27
Gy. r	46	0,44	0,00	1,19	0,44	CSR	97,0	93,3	0,47
Ps. c	103	0,99	0,00	3,42	0,99	agg	103,8	99,8	0,99
Sc. i	79	0,76	0,00	1,89	0,76	agg	103,1	99,1	0,77
St. c	44	0,42	0,00	2,83	0,42	agg	94,6	91,0	0,46
Zy. p	33	0,32	0,00	0,88	0,32	CSR	93,5	89,9	0,35
Всего	871	8,38	0,63	15,28	8,37	agg			

Как сообщество в целом, так и представленные в нем популяции характеризуются низкой плотностью, для большинства видов средняя плотность не превышает 1 ос. $/m^2$, кроме того, многие виды местами выпадают из растительного сообщества (таблица 1, рисунок 1, а-б).

Экологическая плотность популяции также низкая для всех видов. Характер размещения особей в большинстве популяций агрегированный, исключения составляют популяции *G. rupestris* и *Z. pinnatum* особи которых размещены случайным образом. Такой характер размещения характерен для растений моноцентрической биоморфы при оптимальных экологических условиях [6]. Популяция *Z. pinnatum* занимает 89,9% площади, средняя плотность составляет 0,32 ос. /м², в местах скоплений повышается до 0,88 ос. /м² (рисунок 1, в). Сравнение карт плотности растительного сообщества и популяции *Z. pinnatum* показывает, что количество особей *Z. pinnatum* возрастает в верхней части площадки, где общая плотность растительного сообщества падает. Ниже это будет обосновано математически.

а) плотность растительного сообщества; б) размещение особей в сообществе; в) плотность и размещение особей *Z. pinnatum*

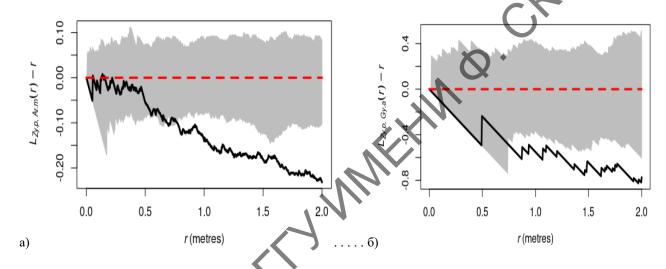
Рисунок 1 – Карты учетной площадки

Таблица 2 – Доли видов и локальное доминирование

_												
Вид	N_i ,	P_i ,	<i>p_i,</i> %			$ ilde{\mathcal{S}}_i$		степень доминирования				
Вид	oc.	%	min	max	mean	\mathbf{M}^2	%	M	В	С	Д	A
Ag. p	23	2,6	0,0	11,1	2,3	_	_	•	•			
Ar. l	60	6,9	0,0	39,0	5,5	2,10	2,01	•	•	•	•	
Ar. m	289	33,2	9,1	64,2	31,5	71,11	68,37		•	•	•	•
Eu. s	179	20,6	2,9	51,5	23,3	25,38	24,4	•	•	•	•	
Gy. a	15	1,7	0,0	8,7	1,3	_	_	•	•			
Gy. r	46	5,3	0,0	15,3	5,4	_	_	•	•			
Ps. c	103	11,8	0,0	31,9	11,3	2,99	2,87	•	•	•		
Sc. i	79	9,1	0,0	23,0	9,0	_	_	•	•	•		
St. c	44	5,1	0,0	27,6	4,9	2,41	2,31	•	•	•		
Zy. p	33	3,8	0,0	47,2	5,6	0,03	0,03	•	•	•	•	
Всего	871	100										

Примечание:. • – локально, в некоторой части площадки, ● – в целом по сообществу.

Основным доминирующим видом является A. marschalliana (33,2%), однако по степени доминирования — это вид-субдоминат, который делит эту позицию с E. seguieriana (20,6%). Кроме того, на отдельных участках доминируют P. carbonatus, A. lercheana, S. capillata и Z. pinnatum (таблица 2). В целом по сообществу Z. pinnatum представляется малозначимым


видом, однако на отдельных участках его доля возрастает до 47,2% и вид занимает доминирующее положение. По нашим наблюдениям, это происходит в местах выхода твердого гипса, где численность растений других видов значительно снижается. Кроме того, как отмечалось ранее [4], в таких местах увеличиваются размеры генеративных особей.

Коэффициент корреляции плотностей *Z. pinnatum* с другими видами хотя и не высокий, но почти всегда отрицателен (таблица 3), т. е. плотность вида падает в тех местах, где плотности других видов растут. Дополнительный анализ кросс-функций Рипли показал, что особи *Z. pinnatum* статистически значимо отталкиваются (отклонение функции вниз за серую зону) от особей *A. marschalliana* и *G. altissima* на расстояниях свыше 0,7 м (рисунок 2).

Таблица 3 – Корреляция плотностей Z. pinnatum и других видов

	Ag. p	Ar. l	Ar. m	Eu. s	Gy. a	Gy. r	Ps. c	Sc. i	St. c
Zy. p	-0. 39	-0. 29	-0. 55	0. 10	-0. 53	-0. 25	-0. 36	-0.33	-0. 34

Примечание: для все коэффициентов. $p \ll 0.01$

a) Z. pinnatum и A. marschalliana;. б) Z. pinnatum и G. altissima

Рисунок 2 – Кросс-функции Рипли

Выводы. Одним из основных естественных экологических факторов, влияющих на формирование и структуру популяции *Z. pinnatum*, является конкурентное воздействие растений других видов. При этом, развиваясь на обнажениях гипсовых пород, особи вида способны осваивать самые неблагоприятные участки.

Список литературы

- 1 Баканов, А. И. Количественная оценка доминирования в экологических сообществах / А. И. Баканов // Количественные методы экологии и гидробиологии (сборник научных трудов, посвященный памяти А. И. Баканова) / отв. ред. чл. -корр. РАН Г. С. Розенберг. Тольятти : СамНЦ РАН, 2005. С. 37–67.
- 2 Каримова, О. А. Анализ современного состояния популяций редких видов растений памятника природы Троицкие меловые горы (Оренбургская обл.) / О. А. Каримова, Л. М. Абрамова, Я. М. Голованов // Аридные экосистемы. 2017. Т. 23. №. 1 (70). С. 51–59.
- 3 Красная книга Республики Башкортостан : в 2 т. Т. 1: Растения и грибы / под ред. д-ра биол. наук В. Б. Мартыненко. 3-е изд., доп. и переработ. Москва : Студия онлайн, 2021. 392 с.

- 4 Мартынова, А. Л. Особенности пространственно-онтогенетической структуры популяций парнолистника перистого (Zygophyllaceae) / А. Л. Мартынова // Экология: факты, гипотезы, модели. Материалы конф. молодых ученых, 12–15 апреля 2021 г. / ИЭРиЖ УрО РАН Екатеринбург: ООО Универсальная Типография «Альфа Принт», 2021. С. 107–111.
- 5 Экология и структура ценопопуляций *Zygophyllum pinnatum* Cham. (ZYGOPHYLLACEAE) в Предуралье и Западном Казахстане / А. Н. Мустафина [и др.] // Бюллетень Московского общества испытателей природы. Отдел биологический. − 2021. − Т. 126, № 4. − С. 22–36.
- 6 Фардеева, М. Б. Экологические и биоморфологические закономерности пространственно-онтогенетической структуры популяций растений, динамика и мониторинг: дис. докобиол. наук: 03.02.01, 03.02.08 / М. Б. Фардеева; Казанский (Приволжский) фед. ун-т. Казань, 2014.-352 с.
- 7 Zygophyllum pinnatum Cham. [Электронный ресурс] // Плантариум Растения и лишайники России и сопредельных стран: открытый онлайн атлас и определитель растений. Режим доступа: https://www. plantarium. ru/page/view/item/41265. html Дата доступа: 08. 03. 2022.
- 8 Baddeley, A. Spatial Point Patterns. Methodology and Applications with R. / A/ Baddeley, E. Rubak, R. Turner. Boca Raton-London-New York: Chapman and Hall/CRC, 2015. 828 p.
- 9 Bailey, T. C. Interactive spatial data analysis / T. C. Bailey, A. Gatrell. Harlow, England: Longman Scientific & Technical, 1995. 413 p.
- 10 Besag, J. E. Comments on Ripley's paper / J. E Besag // Journal of the Royal Statistical Society, Series B. 1977. V. 39. P. 193–195.
- 11 Besag, J. E. Simple Monte Carlo tests for spatial pattern \ J. E. Besag, P. J. Diggle // Applied Statistics 1977. V. 26. P. 327-333.
- 12 Ripley, B. D. The second-order analysis of stationary point processes / B. D. Rypley // Journal of Applied Probability. -1976. $-N_{\odot}$. 13. -P. 255–266.
- 13 Ripley, B. D. Modelling spatial patterns \(\) B. D. Rypley \(\) Journal of the Royal Statistical Society. Series B. \(-1977. V. 39. P. 172-212. \)
- 14 Scott, D. W. Multivariate density estimation. Theory, Practice and Visualization / D. W. Scott. New York: John Wiley & Sons Ltd, 1992. 384 p.
- 15 Silverman, B. W. Density estimation for statistics and data analysis / B. W. Silverman. London: Chapman and Hall, 1986. 175 p.

A. L. Martynova¹, L. M. Abramova²

THE ROLE OF ZYGOPHYLLUM PINNATUM IN PLANT COMMUNITY

¹MBEI N. T. Antoshkin Gymnasium № 1 Kumertau, Russia, anle.martynova@gmail.com ²South Ural Botanical Garden-Institute of the UFRC of RAS Ufa, Russia, abramova.lm@mail.ru

Using the methods of spatial statistic, the role of Z. pinnatum in plant community is studied. Low competitiveness of this species is proved.

Keywords: Zygophyllum pinnatum, plant community, local density, degree of dominance, Ripley's crossfunction.