В исследовании использовались деревья сосны обыкновенной. Было подобрано здоровое дерево I категории состояния и усыхающее IV категории санитарного состояния. Электроды устанавливались в районе корневой шейки и на высоте 1,3 метра. Результаты представлены на рисунке 1.

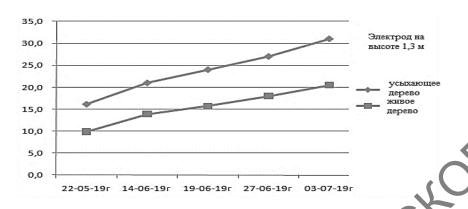


Рисунок 1 — Динамика изменения электрического сопротивления деревьев разного санитарного состояния

Полученные результаты показали, что у здорового дерева электрическое сопротивление древесины на уровне комбиального слоя, колеблется в районе от 9,9 кОм до 20,5 кОм. В то время как у усыхающего дерева этот показатель выше и составляет от 16,2 кОм до 31,0 кОм. С течением времени сопротивление увеличивается. Все это согласуется с данными литературы [1]. Кроме того, было выявлено, что во влажную погоду определение сопротивления древесины бессмысленно, так как его искажает поверхностная влага образовавшаяся на коре.

Литература

1 Карасев, В. Н. Диагностика жизненного состояния насаждений хвойных пород по биоэлектрическим показателям / В. Н. Карасев, М. А. Карасева. — Вестник Поволжского государственного технологического университета. Сер.: Лес. Экология. Природопользование. — 2016. — № 2(30). — С. 24—35.

Е. А. Попичева

Науч. рук. **Т. В. Макаренко**, канд. биол. наук, доцент

СОДЕРЖАНИЕ МЕДИ В БИОТИЧЕСКИХ И АБИОТИЧЕСКИХ КОМПОНЕНТАХ ВОДНЫХ ЭКОСИСТЕМ ГОРОДА ГОМЕЛЯ

Цель работы — изучение содержания меди в тканях стрелолиста обыкновенного, поверхностных водах и донных отложениях водоёмов г. Гомеля.

Таблица 1 – Содержание меди в биотических и абиотических компонентах водоёмов г. Гомеля

Водоём	Растения, мг / кг	Донные отложения, мг / кг	Вода, мг / дм ³
оз. Малое	18,99	12,2	0,005
оз. Шапор	24,75	11,9	0,007
оз. Волотовское	138,85	23,0	0,001
Гребной канал	46,48	9,1	0,088

Как показали исследования (таблица 1), наиболее загрязнены соединениями меди ткани стрелолиста обыкновенного в полностью замкнутом непроточном водоёме — оз. Волотовское, расположенном в городской зоне отдыха. Высокое содержание металла отмечено в Гребном канале, что может быть обусловлено поступлением в водоём поверхностного стока с территории д. Якубовка. Минимальная концентрация меди зафиксирована в водоёмах Шапор и Малое. Содержание изучаемого металла в макрофитах оз. Шапор в 5,61 раз, а в оз. Малое — в 7,31 раза меньше, чем в оз. Волотовское. Озёра Шапор и Малое испытывают значительную антропогенную нагрузку: оз. Шапор принимает поверхностный сток с территории предприятий «Гомельобои», «Гомельдрев» и ФСК, а в оз. Малое поступают поверхностные стоки с территории троллейбусного парка, близлежащей железной дороги, а также стоки автостоянки возле крупного торгового центра.

Максимальное содержание меди в донных отложениях наблюдается в оз. Волотовское. Высокое содержание металла отмечено в отложениях озёр Малое и Шапор, что ниже, чем в оз. Волотовское, в 1,89 и 1,93 раз соответственно. Минимальная концентрация меди зафиксирована в донных отложениях Гребного канала.

Для соединений меди ПДК в поверхностных водах составляет 0.005 мг/дм³ [1]. Превышение ПДК отмечено для воды Гребного канала в 17,6 раз. Хотя в донных отложениях водоёма концентрация металла минимальная, это говорит о его поступлении с поверхностным стоком и с водой р. Ипуть. Высокая концентрация металла отмечена также в оз. Шапор, что превышает ПДК в 1,4 раза, и в оз. Малое, где содержание меди находится на одном уровне с ПДК.

Литература

1 Об установлении нормативов качества воды поверхностных водных объектов [Электронный ресурс]: постановление Министерства природных ресурсов и охраны окружающей среды Республики Беларусь, 30 марта 2015 г. № 13 // Национальный правовой Интернет-портал Республики Беларусь. – Режим доступа: http://www.pravo.by/document/?guid=12551&p0=W21529808 &p1=1. – Дата доступа: 19.04.2020.

А. М. Попович

Науч. рук. **В. В. Трухоновец**, канд. с.-х. наук, доцент

РОСТ И ПЛОДОНОШЕНИЕ ВЕШЕНКИ ЛЕГОЧНОЙ В УСЛОВИЯХ ИСКУССТВЕННОГО КУЛЬТИВИРОВАНИЯ

После аварии на Чернобыльской АЭС, собирать лесные грибы нельзя, так как они накапливают радионуклиды. Их употребление в пищу является опасным для здоровья человека. Решить проблему дефицита грибных продуктов можно путем организации искусственного выращивания съедобных грибов. Перспективным видом для получения плодовых тел в искусственных условиях является съедобный гриб вешенка легочная.

Вешенка легочная (*Pleurotus pulmonarius* (Fr.) Quel.) — сапротрофный дереворазрушающий гриб [1, с. 9]. Плодовые тела гриба отмечены нами в лесах Гомельского опытного лесхоза с конца апреля по ноябрь. В качестве субстрата грибы используют мертвую древесину березы, осины, рябины, липы. Шляпка гриба небольшая, как правило до 9 см в диаметре, более или менее выпуклая, неправильно округлая, гладкая, светлоокрашенная, бледно-охристая, пепельная или почти белая. Пластинки белые, низбегающие, без анастомозов, средней ширины, тонкие, частые. Споровый порошок с фиолетовым оттенком.

Для выполнения работ использовали культуры вешенки легочной из рабочей коллекции культур высших грибов учреждения образования «Гомельский государственный университет им. Ф. Скорины». Опыты проводились в лаборатории кружка экспериментальной