Е. А. Попичева

Науч. рук. **Т. В. Макаренко,** канд. биол. наук, доцент

СОДЕРЖАНИЕ ТЯЖЁЛЫХ МЕТАЛЛОВ В РАСТЕНИЯХ ВОДОЁМОВ ГОРОДА ГОМЕЛЯ И ПРИЛЕГАЮЩИХ ТЕРРИТОРИЙ

Цель работы: определение и анализ уровней содержания хрома и меди в высших водных растениях водоёмов г. Гомеля и прилегающих территорий.

Таблица 1 — Содержание тяжёлых металлов в водной растительности изучаемых водоёмов г. Гомеля и прилегающих территорий, мг/кг

Водоём	Хром	Медь
Оз. Дедно	1,31	4,58
Оз. Малое	1,75	5,84
Гребной канал	4,42	9,31
Оз. Любенское	1,07	4,39

Как показали исследования (таблица 1), наиболее загрязнены растения Гребного канала, что может быть обусловлено поступлением в водоем поверхностного стока с территории д. Якубовка. Озёра Дедно и Малое испытывают значительную антропогенную нагрузку: оз. Дедно напрямую контактирует с водоёмами, принимающими стоки Хатаевичского и Прудковского коллекторов, в оз. Малое поступают поверхностные стоки с территории троллейбусного парка, близлежащей железной дороги, а также стоки автостоянки возле крупного торгового центра. Однако содержание как хрома, так и меди незначительно отличаются в растениях озер Малое и Дедно. Концентрация хрома в макрофитах вышеперечисленных водоемов в 2,95 раз меньше, чем в Гребном канале, а меди – в 1,81 раза. Низкое содержание изучаемых металлов отмечается в оз. Любенское. Содержание меди у растений оз. Любенское практически такое же, как и в оз. Дедно, хотя водоём не испытывает никакой видимой антропогенной нагрузки [1, с. 141–143].

Наиболее чистым водоёмом по содержанию тяжёлых металлов в растениях является оз. Любенское. Загрязнение растений Гребного канала требует дальнейшего детального изучения, так как водоём не испытывает высокой антропогенной нагрузки.

Литература

1 Макаренко, Т. В. Оценка степени загрязнения водоёмов и водотоков г. Гомеля и прилегающих территорий тяжёлыми металлами / Т. В. Макаренко // Экологический вестник. -2010. -№ 2 (12). -C. 138–145.

Е. И. Прохоренко, А. Н. Евтушенко, Ю. Ю. Черникова, А. А. Данченко Науч. рук. **В. В. Трухоновец,**

канд. с.-х. наук, доцент

РОСТ ВЕШЕНКИ ОБЫКНОВЕННОЙ НА ДРЕВЕСНЫХ ОТХОДАХ

Объемы искусственного выращивания съедобного гриба вешенка обыкновенная (*Pleurotus ostreatus (Jacg.: Fr.) Китт)* с каждым годом увеличиваются. В качестве питательных субстратов для получения плодовых тел гриба могут быть солома, кочерыжки кукурузы, подсолнечная лузга, древесина, древесные опилки, и многие другие растительные материалы.

Для лесохозяйственных предприятий при производстве вешенки обыкновенной интерес, в первую очередь, представляют древесные отходы. Поэтому целью наших исследований являлось изучение скорости вегетативного роста *P. ostreatus* на различных древесных субстратах. В экспериментах использовались опилки лиственных пород в чистом виде либо смешанные с отрубями, солома и древесные диски, которые раскладывались в Чашки Петри и заливались голодным агаром. Чашки Петри стерилизовались в автоклаве, охлаждались до комнатной температуры, после чего засевались культурой вешенки обыкновенной. Рост гриба происходил при температуре 28 °C. Скорость роста на агаризованных средах оценивали по увеличению диаметра колонии и расчета среднесуточной скорости, в мм. Особенности мицелиального роста вешенки обыкновенной представлены на рисунке 1.

Рисунок 1 – Скорость роста *P. ostreatus* на различных субстратах

Исследования позволили выявить, что на измельченных субстратах скорость роста $P.\ ostreatus$ выше, чем на компактной древесине. Обогащение опилочного субстрата повышает ростовую активность гриба.

А. А. Реуцкая, А. В. Солянка Науч. рук. **Д. Н. Дроздов,** канд. биол. наук, доцент

МОРФОМЕТРИЯ БУККАЛЬНОГО ЭПИТЕЛИЯ КУРЯЩИХ И НЕКУРЯЩИХ МОЛОДЫХ ЛЮДЕЙ

Важной социально и медико-биологической проблемой в настоящее время является проблема курения среди молодежи. По разным оценкам доля курящего населения в Республике Беларусь с каждым годом растет, растет и число «курильщиков» среди подростков и старшеклассников. Мониторинг молодежной среды в возрасте 15–19 лет показывает, что число курящих достигает 40–45 % (Постоялко Л. А., 2005, Александров А. А., 2009). Хроническое употребление никотина и компонентов табачного дыма ведет к изменению гигиенического состояния ротовой полости морфологическим и физиологическим изменениям в клеточных структурах слизистой оболочки. В этой связи нами было проведено обследование молодых людей из числа старшеклассников города Гомеля.

Для проведения исследования был проведен анонимный опрос и сбор клеток слизистой оболочки ротовой полости (буккального эпителия). В обследовании приняли участие 60 учащихся в возрасте 16–17 лет. Сбор материала проводился согласно стандартной