CC BY

http://dx.doi.org/10.35596/1729-7648-2023-21-4-40-45

Original paper

UDC 621.373.826

ESTIMATING THE PARAMETERS OF LASER PROCESSING OF DIAMONDS USING THE FINITE ELEMENT METHOD AND ARTIFICIAL NEURAL NETWORKS

VICTOR A. EMELYANOV¹, EVGENY B. SHERSHNEV², YURI V. NIKITJUK², SERGEY I. SOKOLOV², IGOR Y. AUSHEV³

¹Joint-Stock Company "INTEGRAL" – Manager Holding Company "INTEGRAL" (Minsk, Republic of Belarus) ²Francisk Skorina Gomel State University (Gomel, Republic of Belarus) ³University of Civil Protection of the Ministry for Emergency Situations of the Republic of Belarus (Minsk, Republic of Belarus)

Submitted 13.02.2023

© Belarusian State University of Informatics and Radioelectronics, 2023

Белорусский государственный университет информатики и радиоэлектроники, 2023

Abstract. This paper provides the simulation of laser processing of diamonds by using a combination of artificial neural networks and the finite element method. The training data array and the data array for testing neural networks were generated in ANSYS. The calculations were performed for 600 types of input parameters, 60 of which were used to test artificial neural networks. The influence of the parameters of neural network models on the accuracy of determining temperatures in the laser processing area were studied. The parameters of neural networks were established that provide acceptable results in predicting temperatures generated by laser radiation in diamonds. The results obtained can be used to determine the technological parameters of the laser processing of diamonds.

Keywords: neural network, laser processing, diamond, ANSYS.

Conflict of interest. The authors declare no conflict of interest.

For citation. Emelyanov V. A., Shershnev E. B., Nikitjuk Y. V., Sokolov S. I., Aushev I. Y. (2023) Estimating the Parameters of Laser Processing of Diamonds Using the Finite Element Method and Artificial Neural Networks. *Doklady BGUIR*. 21 (4), 40–45. http://dx.doi.org/10.35596/1729-7648-2023-21-4-40-45.

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ЛАЗЕРНОЙ ОБРАБОТКИ АЛМАЗОВ С ПРИМЕНЕНИЕМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ И ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ

В. А. ЕМЕЛЬЯНОВ¹, Е. Б. ШЕРШНЕВ², Ю. В. НИКИТЮК², С. И. СОКОЛОВ², И. Ю. АУШЕВ³

¹ОАО «ИНТЕГРАЛ» – управляющая компания холдинга «ИНТЕГРАЛ» (г. Минск, Республика Беларусь) ²Гомельский государственный университет имени Франциска Скорины (г. Гомель, Республика Беларусь) ³Университет гражданской защиты МЧС Республики Беларусь (г. Минск, Республика Беларусь)

Поступила в редакцию 13.02.2023

Аннотация. С помощью сочетания искусственных нейронных сетей и метода конечных элементов выполнено моделирование процесса лазерной обработки алмазов. Обучающий массив данных и массив данных для тестирования нейронных сетей были сформированы с использованием программы конечно-элементного анализа ANSYS. Расчеты выполняли для 600 вариантов входных параметров, 60 из которых использовали для тестирования искусственных нейронных сетей. Исследовано влияние параметров нейросетевых моделей на точность определения температур в зоне лазерной обработки. Установлены параметры нейронных сетей, обеспечивающие приемлемые результаты при прогнозировании температур, формируемых лазерным излучением в алмазах. Полученные результаты могут быть использованы при определении технологических параметров процессов лазерной обработки алмазов.

Ключевые слова: нейронная сеть, лазерная обработка, алмаз, ANSYS.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Для цитирования. Определение параметров лазерной обработки алмазов с применением метода конечных элементов и искусственных нейронных сетей / В. А. Емельянов [и др.] // Доклады БГУИР. 2023. Т. 21, № 4. С. 40–45. http://dx.doi.org/10.35596/1729-7648-2023-21-4-40-45.

Introduction

The properties of diamond ensure the reliable operation of diamond-based devices under critical conditions and make it promising to use diamonds in developing new technology [1]. Laser processing of diamond has a number of advantages which include the possibility of forming narrow cuts, high productivity of the laser dimensional processing, and the possibility of automating the process of diamond cutting using laser radiation [2, 3].

At present, ANSYS is widely used to calculate the temperature fields during laser processing of materials, including diamonds [4–9]. Artificial neural networks are also effectively used to study laser processing of materials [5, 10–12]. In some cases, a combination of artificial neural networks and the finite element method is applied when simulating laser processing [13–18]. This research aims to predict the temperature fields during laser processing of diamonds via the finite element method and artificial neural networks.

Finite element analysis

The training data array and the array data for testing neural networks were generated as a result of finite element calculations with ANSYS of temperature fields during laser processing of diamonds. A model consisting of 45418 Solid 87 elements was used during the simulation process [19]. The properties of diamonds presented in [2, 20] were used for calculations. The calculations were performed for a sample with the shape of a rectangular parallelepiped with geometric dimensions of $2 \times 3 \times 1.5$ mm, while the temperatures were determined on its surface in the center of a circular laser beam, as well as at a depth of 0.00002 and 0.00004 m.

The parameters used for finite element simulation of two-beam laser cleaning of quartz raw materials are presented in Tab. 1. Fig. 1 shows the distribution of temperature fields during laser processing of diamond. Calculations were performed for 600 types of input parameters, 100 of which were used to test neural networks (Tab. 2).

Parameter	Value range		
Processing speed v, m/s	0.001-0.010		
Laser beam radius <i>R</i> , m	0.00005-0.00007		
Laser power density P_0 , 10^{10} W/m ²	1-5		

Table 1. Parameters of laser action on diamond
--

Fig. 1. Temperature distribution in the volume of diamond to be processed, K $(v = 1 \text{ mm/s}, R = 5 \text{ mm}, P_0 = 10^{10} \text{ W/m}^2)$

Table 2. Test dataset

No	<i>v</i> , m/s	<i>R</i> , m	$P_0, W/m^2$	<i>T</i> ₁ , K	<i>T</i> ₂ , K	<i>T</i> ₃ , K
1	0.00584	0.00006	1660000000	2411	1774	1374
2	0.00669	0.00006	2960000000	4067	2931	2218
3	0.00791	0.00007	4020000000	6302	4713	3641
4	0.00639	0.00005	1020000000	1361	986	775
5	0.00309	0.00006	24300000000	3408	2475	1890
6	0.00116	0.00007	46700000000	7445	5599	4353
7	0.00462	0.00005	4780000000	5305	3548	2558
8	0.00144	0.00007	1090000000	1953	1523	1232
9	0.00494	0.00006	1500000000	2209	1633	1272
10	0.00104	0.00007	13300000000	2336	1811	1456
11	0.00786	0.00007	3900000000	6123	4582	3541
12	0.00521	0.00005	2550000000	2965	2028	1500
13	0.00852	0.00006	4050000000	5450	3896	2920
14	0.00608	0.00007	11600000000	2030	1571	1262
15	0.00230	0.00007	24500000000	3995	3026	2373
16	0.00174	0.00005	4460000000	5009	3369	2446
17	0.00701	0.00007	14600000000	2477	1900	1511
18	0.00339	0.00006	2330000000	3277	2383	1822
19	0.00851	0.00006	2610000000	3617	2615	1986
20	0.00414	0.00005	1640000000	2014	1411	1071
21	0.00797	0.00006	3160000000	4318	3105	2344
22	0.00207	0.00007	41200000000	6528	4899	3800
23	0.00761	0.00005	3670000000	4132	2783	2023
24	0.00140	0.00006	4860000000	6590	4724	3554
25	0.00999	0.00005	1740000000	2111	1471	1111
26	0.00513	0.00005	3990000000	4475	3008	2182
27	0.00899	0.00007	3000000000	4774	3588	2788
28	0.00201	0.00007	3740000000	5955	4477	3479
29	0.00612	0.00007	17700000000	2943	2244	1772
30	0.00981	0.00006	2890000000	3970	2861	2165
31	0.00188	0.00007	2220000000	3658	2780	2188
32	0.00939	0.00005	2910000000	3334	2264	1662
33	0.00485	0.00006	3630000000	4930	3537	2663
25	0.00510	0.00005	4180000000	40/4	3137	2272
26	0.00652	0.00006	3700000000	5089	3040	2/40
30	0.00300	0.00005	3400000000	3470	2611	2035
38	0.00402	0.00003	3400000000	6135	4508	3560
30	0.00401	0.00007	1050000000	1629	1226	973
40	0.00765	0.00006	37100000000	5020	3596	2702
41	0.00108	0.00005	49700000000	5591	3763	2734
42	0.00350	0.00007	12900000000	2233	1723	1379
43	0.00867	0.00006	44400000000	5946	4242	3173
44	0.00945	0.00007	4590000000	7146	5332	4107
45	0.00839	0.00005	17800000000	2154	1500	1131
46	0.00261	0.00006	1990000000	2848	2084	1605
47	0.00327	0.00007	4870000000	7621	5696	4397
48	0.00996	0.00005	4020000000	4493	3015	2182
49	0.00146	0.00006	3940000000	5394	3881	2932
50	0.00345	0.00005	2190000000	2594	1788	1335
51	0.00905	0.00006	3200000000	4366	3138	2367
52	0.00674	0.00006	3060000000	4195	3020	2283
53	0.00660	0.00006	4260000000	5725	4090	3064
54	0.00497	0.00005	3870000000	4350	2927	2125
55	0.00888	0.00007	3440000000	5431	4072	3154
56	0.00599	0.00007	4560000000	7122	5319	4103
57	0.00483	0.00007	2400000000	3892	2944	2304
58	0.00431	0.00007	1560000000	2635	2018	1602
59	0.00845	0.00006	2600000000	3604	2606	1980
60	0.00846	0.00005	19200000000	2332	1615	1211

Neural network application

The key feature of artificial neural networks is that they are trained, not programmed. At the same time, neural networks are effective in simulating complex associations between input and output parameters [21]. As mentioned earlier, the training data array and the array data for testing neural networks were generated as a result of solving the corresponding problems in ANSYS. After training, the artificial neural network, dealing with new sets of laser processing parameters, can determine accurately the maximum temperatures at different depths in diamond crystals.

Feedforward neural networks created in TensorFlow were provided to determine the temperature value during laser processing [22]. While generating networks, the Adam optimizer, the MSE loss function, and ReLu activation function were used. The number of epochs for training networks was 100. Neural networks with the architecture shown in Fig. 2 were used to determine the temperature values during laser processing.

Fig. 2. Neural network architecture

To assess the efficiency of neural networks, the following criteria were used:

- coefficient of determination

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (d_{i} - y_{i})^{2}}{\sum_{i=1}^{n} (d_{i} - \overline{d})^{2}};$$
(1)

- mean absolute error

MAE =
$$\frac{1}{n} \sum_{i=1}^{n} |d_i - y_i|;$$
 (2)

- root mean square error

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (d_i - y_i)^2}$$
; (3)

- mean absolute percentage error

MAPE =
$$\frac{1}{n} \sum_{i=1}^{n} \left| \frac{d_i - y_i}{d_i} \right| 100$$
, (4)

where d_i is the desired network output; y_i is the actual network output.

The outcomes of the resulting neural networks are provided in Tab. 3.

No	0	Network architecture	RMSE	MAE	MAPE	R^2
1	а	[2 5 2]	38.0	27.1	1.0	0.9989
1	b	[3-3-3]	35.9	26.5	0.9	0.9991
2	a	[2 10 2]	15.8	11.4	0.4	0.9998
	b	[5-10-5]	14.7	10.6	0.3	0.9998

Fable	3.	Neural	network	testing	outcomes
	••	1 10 01 01	network	costing	0400011100

N	0	Network architecture	RMSE	MAE	MAPE	<i>R</i> ²
3	a	[2 15 2]	22.4	17.8	0.7	0.9996
	b	[3-13-3]	21.7	16.7	0.6	0.9996
4	а	[2,5,5,2]	23.4	16.8	0.7	0.9995
	b	[3-3-3-3]	19.1	14.5	0.6	0.9997
5	a	[3-10-5-3]	34.9	28.0	1.0	0.9991
5	b		31.3	24.9	0.9	0.9993
6	а	[2, 5, 10, 2]	11.7	8.7	0.3	0.9998
	b	[3-3-10-3]	10.4	7.9	0.3	0.9999
7	а	[3-10-10-3]	10.2	7.9	0.3	0.9999
	b		9.7	7.6	0.3	0.9999
8	a	[3-10-15-3]	21.8	15.8	0.6	0.9996
	b		17.7	13.3	0.6	0.9997
9	a	[2, 15, 10, 2]	9.1	6.6	0.2	0.9999
	b	[3-13-10-3]	7.3	5.4	0.2	0.9999
10	а	[3-15-15-3]	17.3	13.4	0.6	0.9997
	b		15.5	8.7	0.5	0.9998

Ending of Tab. 3

In testing, the best results were obtained for option 9 of the neural network configuration with two hidden layers. MAPE did not exceed 0.2 %, and MAE and RMSE did not exceed 10 K.

Conclusion

The current paper shows the possibility of predicting the modes of laser processing of diamonds using a combination of the finite element method and artificial neural networks. Based on numerical experiments, the neural network architecture has been established, which ensures a better outcome when determining the temperature values in the laser action area. The results can be used to determine the technological parameters of laser processing of diamonds.

References

- 1. Mityagin A. Y., Altukhov A. A., Mityagina A. B. (2009) Technology and Equipment for Processing Diamond Materials of Modern Technology. *Technology and Design in Electronic Equipment*. (1), 53–58 (in Russian).
- Shkadov A. I., Bocharov A. M. (ed.) (1997) Physical Foundations of Laser Processing of Diamonds. *Physical Bases of Laser Diamond Processing*. 3, 288 (in Russian).
- Retukhin G. E., Koshcheev A. G., Fain I. V., Shershnev E. B. (2001) Dimensional Processing of Gem Diamonds by Q-Switched YAG: ND Laser Radiation. *Proceedings of the National Academy of Sciences of Belarus*. *Physical-Technical Series*. (1), 73–77 (in Russian).
- Bessmeltsev V. P., Bulushev E. D. (2014) Optimization of Laser Microprocessing Modes. *Avtometriya*. 50 (6), 3–21 (in Russian).
- 5. Parandoush P., Hossain A. (2014) A Review of Modeling and Simulation of Laser Beam Machining. *International Journal of Machine Tools and Manufacture*. (85), 135–145.
- 6. Shalupaev S. V., Shershnev E. B., Nikitjuk Y. V., Sviridova V. V. (2001) Dependence of the Diamond Laser Processing Efficiency on Crystallographic Directions. *SPIE*. 4358, 329–333.
- 7. Shershnev E. B., Nikityuk Y. V., Shershnev A. E. (2011) Simulation of Laser Processing of Diamond Crystals. *Proceedings of Francisk Skorina Gomel State University*. (6), 164–168 (in Russian).
- 8. Shershnev E. B., Nikityuk Y. V., Shershnev A. E., Sokolov S. I. (2015) Features of the Formation of Thermoelastic Fields During Laser Processing of Diamond Crystals. *Problems of Physics, Mathematics and Technics*. (1), 38–40 (in Russian).
- 9. Emelyanov V. A., Shershnev E. B., Nikitjuk Y. V., Sokolov S. I., Aushev I. Y. (2022) Optimization of Laser Processing of Diamonds. *Problems of Physics, Mathematics and Technics*. (4), 30–36.
- 10. Bakhtiyari A. N., Wang Z., Wang L., Zheng H. (2021) A Review on Applications of Artificial Intelligence in Modeling and Optimization of Laser Beam Machining. *Optics & Laser Technology*. 135, 1–18.
- Yousef B. F., Knopf G. K., Bordatchev E. V., Nikumb S. K. (2003) Neural Network Modeling and Analysis of the Material Removal Process During Laser Machining. *International Journal of Advanced Manufacturing Technology*. 22 (1–2), 41–53.
- 12. Ismail M., Okamoto Y., Okado A. (2013) Neural Network Modeling for Prediction of Weld Bead Geometry in Laser Microwelding. *Advances in Optical Technologies*. 7.

- Kadri M. B., Nisar S., Khan S. Z., Khan W. A. (2015) Comparison of ANN and Finite Element Model for the Prediction of Thermal Stresses in Diode Laser Cutting of Float Glass. *Optik – Int. J. Light Electron Optics*. 126 (19), 1959–1964.
- 14. Kant R., Joshi S. N., Dixit U. S. (2015) An Integrated FEM-ANN Model for Laser Bending Process with Inverse Estimation of Absorptivity. *Mech Adv Mater Mod Process*. (1), 6.
- Nikitjuk Y., Bayevich G., Myshkovets V., Maximenko A., Aushev I. (2022). Characterization of Laser Welding of Steel 30XΓCH2A by Combining Artificial Neural Networks and Finite Element Method. *Research and Education: Traditions and Innovations. INTER-ACADEMIA 2021. Lecture Notes in Networks and Systems.* 422. Springer, Singapore. https://doi.org/10.1007/978-981-19-0379-3_28.
- Nikityuk Y. V., Serdyukov A. N., Prokhorenko V. A., Aushev I. Y. (2021) Application of Artificial Neural Networks and the Finite Element Method to Determine the Processing Parameters of Quartz Sol-Gel Glasses with Elliptical Laser Beams. *Problems of Physics, Mathematics and Technics*. (3), 30–36 (in Russian).
- 17. Nikitjuk Y. V., Serdyukov A. N., Aushev I. Y. (2022) Determination of the Parameters of Two-Beam Laser Splitting of Silicate Glasses Using Regression and Neural Network Models. *Journal of the Belarusian State University. Physics.* 5–43.
- 18. Nikityuk Y. V. et al. (2022) Application of the Finite Element Method and Artificial Neural Networks to Determine the Parameters of Laser Processing of Steel 12X18H9T. *Bulletin. Sukhoi State Technical University of Gomel.* (1), 48–55 (in Russian).
- 19. Bokii G. B., Bezrukov G. N., Klyuev Y. A. et al. (1986) *Natural and Synthetic Diamonds*. Moscow, Nauka Publ. 221 (in Russian).
- 20. Novikov N. V. et al. (1987) Physical Properties of Diamond. Kiev, Navukova Dumka Publ. 201 (in Russian).
- 21. Golovko V. A., Krasnoproshin V. V. (2017) Neural Network Technologies for Data Processing: Teaching Manual. Minsk, BSU Publ. 263 (in Russian).
- 22. François Chollet (2018) Deep Learning with Python. St. Petersburg, Peter Publ. 400.

Authors' contribution

Emelyanov V. A. and Shershnev E. B. developed a model of laser processing of diamonds.

Nikitjuk Y. V., Sokolov S. I. and Aushev I. Y. carried out a numerical experiment using a model of laser processing of diamonds and performed the optimization of the corresponding parameters.

Information about the authors

Emelyanov V. A., Dr. of Sci. (Tech.), Professor, Corr. Member of the National Academy of Sciences of Belarus, Joint-Stock Company "INTEGRAL" – Manager Holding Company "INTEGRAL"

Shershnev E. B., Cand. of Sci., Associate Professor, Head of the Department of General Physics of Francisk Skorina Gomel State University

Nikitjuk Y. V., Cand. of Sci., Associate Professor, Vice Rector for Academic Affairs of Francisk Skorina Gomel State University

Sokolov S. I., Senior Lecturer at the Department of General Physics of Francisk Skorina Gomel State University

Aushev I. Y., Cand. of Sci., Associate Professor, Professor at the Department of Industrial Safety of the University of Civil Protection of the Ministry for Emergency Situations of the Republic of Belarus

Address for correspondence

246019, Republic of Belarus, Gomel, Sovietskaya St., 104 Francisk Skorina Gomel State University Tel.: +375 232 50-38-17 E-mail: sokolov@gsu.by Sokolov Sergey Ivanovich