ISSN 2077-8708

— ТЕХНИКА -

УДК 621.382.049.77

DOI: https://doi.org/10.54341/20778708_2023_3_56_75 EDN: XCTKQN

НЕЛИНЕЙНАЯ МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА ТЕПЛОМАССОПЕРЕНОСА В ТЕХНОЛОГИЯХ ТЕРМОХИМИЧЕСКОЙ ОБРАБОТКИ АЛМАЗА

Е.Б. Шершнев

Гомельский государственный университет имени Франциска Скорины

NONLINEAR MATHEMATICAL MODEL OF THE HEAT AND MASS TRANSFER PROCESS IN DIAMOND THERMOCHEMICAL PROCESSING TECHNOLOGIES

E.B. Shershnev

Francisk Skorina Gomel State University

Аннотация. Разработана нестационарная нелинейная осесимметричная модель процесса лазерной термохимической обработки алмаза. Рассчитаны значения температуры и диффузионных коэффициентов в трёхфазной системе «водород – металл – алмаз». Определены значения диффузионных коэффициентов и проведена оценка скорости удаления алмаза в диапазоне плотностей мощности теплового источника $q = 10^4 - 10^7$ Вт/м² и толщин металлического покрытия h = 10 нм до 1 мкм.

Ключевые слова: лазерная обработка, алмаз, диффузия, углерод.

Для цитирования: Шершнев, Е.Б. Нелинейная математическая модель процесса тепломассопереноса в технологиях термохимической обработки алмаза / Е.Б. Шершнев // Проблемы физики, математики и техники. – 2023. – № 3 (56). – С. 75–80. – DOI: https://doi.org/10.54341/20778708_2023_3_56_75. – EDN: XCTKQN

Abstract. A non-stationary nonlinear axisymmetric model of the process of laser thermochemical processing of diamond has been developed. The values of temperature and diffusion coefficients in the three-phase system "hydrogen – metal – diamond" are calculated. The diffusion coefficients are determined and the diamond removal rate is estimated in the range of heat source power densities $q = 10^4 - 10^7$ W/m² and metal coating thicknesses h = 10 nm to 1 µm.

Keywords: laser processing, diamond, diffusion, carbon.

For citation: Shershnev, E.B. Nonlinear mathematical model of the heat and mass transfer process in diamond thermochemical processing technologies / E.B. Shershnev // Problems of Physics, Mathematics and Technics. – 2023. – № 3 (56). – P. 75–80. – DOI: https://doi.org/10.54341/20778708_2023_3_56_75 (in Russian). – EDN: XCTKQN

Введение

В настоящее время обработка алмазов (природных и синтетических) в технологиях микро- и наноэлектроники осуществляется как механическим способом, так и с использованием лазерного излучения. При традиционном применении лазерного излучения (лазерная резка, гравировка и т.п.) происходит графитизация обрабатываемой поверхности с последующим удалением материала по заданной траектории обработки [1]. При этом перспективным представляется термохимический способ обработки алмаза. Основная идея этого способа – использование химических свойств алмаза [2]. А именно: алмаз приводят в контакт с металлом, который способен растворять в себе углерод (например, с молибденом), а для обеспечения непрерывности протекания процесса его проводят в атмосфере газа, который взаимодействует с растворенным в металле углеродом, но не реагирующим непосредственно с алмазом. В качестве такого газа может быть использован водород, способный создавать с атомами углерода летучие соединения [3].

В основе термохимического способа обработки алмаза лежит процесс каталитического взаимодействия углерода, входящего в состав алмаза с водородом или смесями водорода с водяным паром и углекислым газом [4].

Для выбора оптимальных режимов указанного способа обработки необходимо исследовать физико-химические механизмы протекающих тепловых и диффузионных процессов. Для локализации теплового источника на поверхности металла используется лазерное излучение. Упрощённая схема термохимической обработки представлена на рисунке 1.1 [4].

Поскольку лазерное излучение формирует осесимметричный тепловой источник [5], то следует решать трехмерную задачу в цилиндрической системе координат, что сводит её к двухмерной, но усложняет форму оператора Лапласа [6].

Таким образом, рассматривается нестационарная нелинейная задача тепломассопереноса в трехслойной системе «водород – металл – алмаз».

© Шершнев Е.Б., 2023

¹ Постановка задачи

При этом будем полагать, что конвективный теплообмен с газовой фазой отсутствует, поскольку тепловой поток за счет конвекции по сравнению с радиационным составляет не более 3 %, и газ поддерживается при постоянной температуре Т₀. Начальные температуры алмаза и металлического покрытия так же равны Т₀. В целом рассматриваемую систему можно считать теплоизолированной. Лазерное излучение воздействует на поверхность металла, формируя при этом поверхностный тепловой источник с плотностью мощности q, равномерно распределённой по сечению лазерного пятна. Это обеспечивает нагрев металлического слоя и его насыщение углеродом, а также активирует диффузионные процессы на обеих границах фаз: «металл – алмаз» и «водород – металл».

Рисунок 1.1 – Схема лазерной термохимической обработки алмаза

1 – металл,

2 – алмаз,

4 – газовая среда

Кроме того, при постановке задачи приняты следующие разумные допущения:

 диапазон температур, при которых проводится лазерная обработка, ограничен температурой плавления металла при нормальных условиях;

 давление в газовой фазе соизмеримо с нормальным атмосферным и не превышает его.

В общем случае решение задачи тепломассопереноса в описанной системе сводится к решению системы дифференциальных уравнений, включающих уравнения теплопроводности со смешанными граничными условиями, а также уравнения диффузии в трёх средах.

$$c_{1}(T_{1})\rho(T_{1})\frac{\partial T_{1}}{\partial \tau} =$$

$$= \frac{1}{r}\frac{\partial}{\partial r}\left(\lambda_{1}(T_{1})r\frac{\partial T_{1}}{\partial \tau}\right) + \frac{\partial}{\partial x}\left(\lambda_{1}(T_{1})\frac{\partial T_{1}}{\partial x}\right); \quad (1.1)$$

$$c_{2}(T_{2})\rho(T_{2})\frac{\partial T_{2}}{\partial \tau} =$$

$$= \frac{1}{r}\frac{\partial}{\partial r}\left(\lambda_{2}(T_{2})r\frac{\partial T_{2}}{\partial \tau}\right) + \frac{\partial}{\partial x}\left(\lambda_{2}(T_{2})\frac{\partial T_{2}}{\partial x}\right). \quad (1.2)$$

В формулах: индекс «1» – для металла, «2» – для алмаза соответственно; c, ρ и λ – теплоёмкость, плотность и теплопроводность материалов, зависящие от температуры T.

При этом на границах «водород – металл» и «водород – алмаз» реализованы граничные условия II-го рода.

$$x = 0: \begin{cases} -\lambda_1(T_1) \frac{\partial T_1}{\partial x} = q, & 0 \le r \le R_0; \\ \lambda_1(T_1) \frac{\partial T_1}{\partial x} = 0, & r \ge R_0; \end{cases}$$
(1.3)
$$x = L_2: \lambda_2(T_2) \frac{\partial T_2}{\partial x} = 0,$$
(1.4)

где R_0 — радиус лазерного пятна на поверхности металла, L_2 — координата нижней границы раздела «алмаз — водород», q — плотность мощности теплового источника.

На границе раздела «металл – алмаз», координата которой $x = L_1$, реализованы граничные условия IV-го рода в форме (1.5):

$$= L_1 : \lambda_2(T_2) \frac{\partial T_2}{\partial x} = \lambda_1(T_1) \frac{\partial T_1}{\partial x}.$$
 (1.5)

Система (1.1)-(1.5) решается совместно с уравнениями диффузии для всех трёх сред, представленными в форме (1.6):

$$\frac{\partial C}{\partial \tau} = \frac{\partial}{\partial x} \left(D(T) \frac{\partial C}{\partial x} \right), \tag{1.6}$$

где *С* – массовая концентрация углерода каждой из трёх рассматриваемых фаз, при этом коэффициенты диффузии *D* принимаются зависящими от температуры (уравнение Аррениуса):

$$D(T) = D_0 \exp\left(-\frac{E}{kT}\right), \qquad (1.7)$$

где D_0 – фактор диффузии, E – соответствующая энергия активации реакции диссоциации (ассоциации) углерода, $k = 1,38 \cdot 10^{-23}$ Дж/К – постоянная Больцмана.

При задании начальных условий считается, что температура системы в начальный момент времени постоянна во всех точках:

$$\tau = 0: \ T_1 = T_2 = T_3 = T_0. \tag{1.8}$$

Также в начальный момент времени заданы значения массовых концентраций углерода во всех фазах:

 $\tau = 0$: $C_1 = C_{01}$; $C_2 = C_{02}$; $C_3 = C_{03}$. (1.9) При этом на границах фаз x = 0 и $x = L_1$ должны быть реализованы условия неразрывности потока массы:

$$D(T)_i \frac{\partial C_i}{\partial x} = D(T)_j \frac{\partial C_j}{\partial x}.$$
 (1.10)

2 Моделирование и область применения модели

Представленную дифференциальную задачу (1.1)–(1.5) можно аппроксимировать конечноразносной схемой, выполненной с первым

Проблемы физики, математики и техники, № 3 (56), 2023

порядком точности по времени *t* и вторым по пространственным координатам *x* и *r*. При этом была выбрана неявная разностная схема, поскольку она является наиболее устойчивой [7], т. е. позволяет проводить интегрирование краевой задачи с любым малым разностным шагом по времени.

Поскольку теплофизические свойства алмаза существенно изменяются в исследуемых температурных режимах, то это было учтено в линейном приближении следующим образом: коэффициент теплопроводности $\lambda(T) = 628 - 0,148 \cdot T \text{ Вт/(м·K)}$ и удельная теплоёмкость $c = 344 + 1,445 \cdot T \text{ Дж/(кг·K)}$ [8].

В среде Mathcad были разработаны файлысценарии для динамического моделирования температурного поля представленной двумерной осесимметричной задачи. Это позволило, варьируя существенные параметры в широком диапазоне, получать мгновенные значения диффузионных коэффициентов в любых точках рассматриваемой трёхфазной системы, в том числе и на границах раздела фаз. Фрагмент файла-сценария представлен на рисунке 2.1.

Разработанная модель позволяет определять осесимметричное распределение температуры в двухслойной системе («металл» – «алмаз») в любой момент времени в широком диапазоне интенсивностей лазерного излучения для произвольных зависимостей теплофизических параметров от температуры, а также для различных типов металлического покрытия.

На рисунке 2.2 представлены поля температур в координатах: *х* – глубина, *г* – радиус, для плотности мощности теплового источника $q = 10^6 \text{ Br/m}^2$ в различные моменты времени воздействия лазерного излучения.

Полученные значения температуры позволяют на основании соотношений (7–10) оценить коэффициенты диффузии в любой точке исследуемой двухслойной системы в произвольный момент времени, а также оценить скорость диффузионных процессов в любой области системы.

На рисунке 2.3 представлено распределение значений диффузионных коэффициентов D в различные моменты времени для плотности мощности теплового источника $q = 10^6$ BT/m².

Представленная модель позволят также оценить зависимость диффузионных коэффициентов от толщины металлического покрытия кристаллов алмаза как непосредственно в самом покрытии, так и на границе раздела фаз «металл – алмаз». Что позволит сделать выводы об эффективности удаления алмаза методом лазерной термохимической обработки в зависимости от теплофизических и геометрических параметров металлического слоя.

На рисунке 2.4 представлена зависимость значений диффузионных коэффициентов на границе раздела фаз «металл – алмаз» от расстояния r до центра лазерного пятна на поверхности при различных значениях толщины h металлического покрытия при плотностях мощности поверхностного теплового источника $q = 10^6$ Вт/м² и $q = 10^5$ Вт/м², радиусе лазерного пятна на поверхности $r_0 = 100$ мкм.

Рисунок 2.3 – Поле коэффициентов диффузии D (10⁻¹¹ м²/с) двухслойной системы «металл – алмаз» в различные моменты времени воздействия лазерного излучения

Рисунок 2.4 – Зависимость значений диффузионных коэффициентов от толщины металлического покрытия *h* и плотности мощности теплового источника, сформированного лазерным излучением *q*

Результаты моделирования показали, при фиксированной плотности мощности лазерного теплового источника и изменении толщины металлического покрытия в 8–10 раз, изменение диффузионного коэффициента отличаются лишь на 2–3%. При этом показано, что при уменьшении плотности мощности теплового источника в пределах одного порядка диффузионные коэффициенты так же уменьшаются по абсолютному значению на 35–40% в пределах всей зоны термического влияния лазерного излучения. Этот факт, очевидно, свидетельствует о снижении интенсивности диффузионных процессов, а значит и уменьшении скорости удаления алмаза в целом.

Problems of Physics, Mathematics and Technics, № 3 (56), 2023

3 Результаты и выводы

Разработана нестационарная двухмерная осесимметричная нелинейная математическая модель тепломассопереноса в системе водород металл – алмаз, в которой учтены температурные зависимости теплофизических свойств и коэффициентов диффузии при нагреве поверхности металла лазерным излучением. Анализ результатов моделирования (в частности, значений диффузионных коэффициентов и соответствующей им интенсивности диффузионных процессов) в диапазоне плотностей мощности теплового источника $q = 10^4 - 10^7$ Вт/м² и толщин металлического покрытия h = 10 нм до 1 мкм позволяет установить наиболее эффективные режимы термохимической обработки и обеспечить скорость удаления алмаза (1,2-1,8)·10⁻¹⁰ кг/(м²·с), минуя стадию графитизации при точности обработки (10–30)·10⁻⁶ м.

ЛИТЕРАТУРА

1. *Митягин, А.Ю.* Технология и оборудование для обработки алмазных материалов современной техники / А.Ю. Митягин, А.А. Алтухов, А.Б. Митягина // Технология и конструирование в электронной аппаратуре. – 2009. – № 1. – С. 53–58.

2. Григорьев, А.П. Механизм гидрирования углерода в присутствии никеля, железа и платины / А.П. Григорьев, С.У. Лифшиц, П.П. Шамаев // Кинетика и катализ. – 1977. – Т. 18, № 4. – С. 948–952.

3. Изучение влияния параметров обработки на протекание поверхностных нанопроцессов при формообразовании синтетических алмазов / В.А. Емельянов [и др.] // Известия Гомельского государственного университета имени Ф. Скорины. – 2021. – № 6 (129). – С. 159–163.

4. Термохимическая лазерная обработка монокристаллов алмаза / В.А. Емельянов, Е.Б. Шершнев, А.Н Купо, С.И. Соколов // Квантовая электроника: материалы XIII Междунар. науч.-техн. конференции, Минск, 22–26 ноября 2021 г. / БГУ, НИИ прикладных физических проблем им. А.Н. Севченко БГУ, Ин-т физики им. Б.И. Степанова НАН Беларуси, Белорусский республиканский фонд фундаментальных исследований; [редкол.: М.М. Кугейко (отв. ред.), А.А. Афоненко, А.В. Баркова]. – Минск: БГУ, 2021. – С. 382–385.

5. Взаимодействие лазерного излучения с металлами / А.М. Прохоров [и др.]. – Бухарест: Academiei; Москва: Наука, 1988. – 537 с.

6. Козлов, В.П. Двумерные осесимметричные нестационарные задачи теплопроводности / В.П. Козлов; под ред. А.Г. Шашкова. – Минск: Наука и техника, 1986. – 392 с.

7. Кузнецов, Г.В. Разностные методы решения задач теплопроводности: учебное пособие / Г.В. Кузнецов, М.А. Шеремет. – Томск: Изд-во ТПУ, 2007. 172 с.

8. Физические свойства алмаза. Справочник; под ред. академика АН УССР Н.В. Новикова. – «Навукова думка», 1987. – 188 с.

Поступила в редакцию 29.06.2023.

Информация об авторах

Шершнев Евгений Борисович – к.т.н., доцент