Таблица 1 – Атрибуты документа Adresant

Поле	Тип поля	Описание
id	Счётчик	Код адресанта. Первичный ключ.
		Уникальный идентификатор адресанта.
adresant_name	Короткий текст	Наименование адресанта

Логическая схема базы данных автоматизированной системы для проведения социологических опросов представлена на рисунке 1.

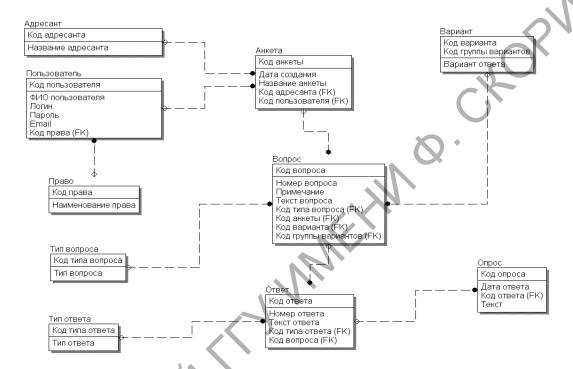


Рисунок 1 – Логическая схема базы данных

Д. **Н. Соболь, Н. А. Аксёнова** (ГГУ имени Ф. Скорины, Гомель)

Науч. рук. А. В. Воруев, канд. техн. наук, доцент

РЕАЛИЗАЦИЯ ПРОГРАММНОГО МОДУЛЯ ДЕТЕКТОРА УГЛОВ ХАРРИСА НА РУТНОМ С OPENCY

В данной статье описывается разработка программного модуля детектора углов Харриса на Python с использованием библиотеки компьютерного зрения OpenCV. Исследуется алгоритм Харриса определения углов на проектно-сметной документации застройщика. Разработанное программное дополнение будет использоваться в Blender 3D для моделирования трехмерных структур.

Угловой детектор Харриса — это детектор определения углов, который обычно используется в алгоритмах компьютерного зрения для выделения углов и определения особых точек на изображении. Впервые он был представлен Крисом Харрисом и Майком Стивенсом в 1988 году после усовершенствования углового детектора Могачес. Основной особенностью углового детектора Харриса является то, что он учитывает разницу в оценке угла непосредственно по отношению к направлению, вместо использования смещающихся участков для каждых углов 45 градусов, и было доказано, что он более точен в различении краев и углов [1, 2].

Для реализации детектора используется функция *cv2.cornerHarris* из библиотеки OpenCV.

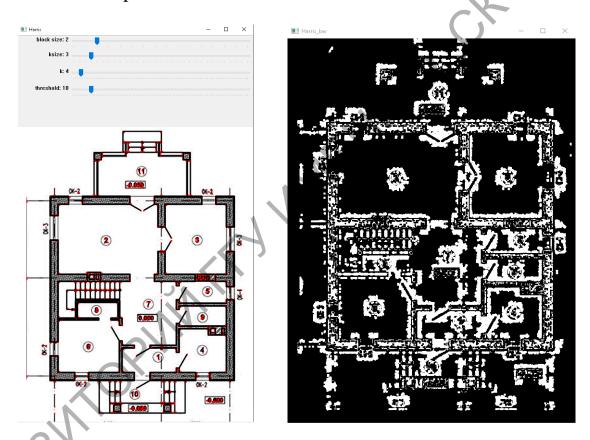


Рисунок 1 – Результат работы детектора Харриса

Синтаксис:

cv2.cornerHarris(src, dest, blockSize, kSize, freeParameter, border-Type).

Используемые параметры:

- src входное изображение (Single-channel, 8-bit or floating-point);
- dest параметр для хранения изображения с отмеченными углами. Размер, как у исходного изображения;

- -blockSize это размер окрестности вокруг каждого пиксела, используемого для определения углов (для каждого пикселя значение blockSize * blockSize считается соседством);
 - -ksize параметр диафрагмы для оператора Sobel();
 - freeParameter свободный параметр детектора Харриса;
- borderType способ экстраполяции пикселей (используемый режим экстраполяции возвращает координату пикселя, соответствующую указанному экстраполированному пикселю).

Литература

- 1. Demidenko, O. M. Development of a Machine Vision System for Image Recognition of Design Estimates / O. M. Demidenko, N. A. Aksionova // Nonlinear Phenomena in Complex Systems. 2022. Vol.25, №2. pp. 159 167. DOI: https://doi.org/10.33581/1561-4085-2022-25-2-159-167.
- 2. Harris, C. A combined corner and edge detector / C. Harris, M. Stephens // In Fourth Alvey Vision Conference. Manchester. 1988, p. 147–151.

Д. Н. Соболь, Н. А. Аксёнова

(ГГУ имени Ф. Скорины, Гомель)

Науч. рук. А. В. Воруев, канд. техн. наук, доцент

РЕАЛИЗАЦИЯ ПРОГРАММНОГО МОДУЛЯ ДЕТЕКТОРА УГЛОВ ШИ-ТОМАЗИ НА РҮТНОМ С OPENCV

В данной статье описывается разработка программного модуля детектора углов Ши-Томази на Python с использованием библиотеки компьютерного зрения OpenCV. Исследуется алгоритм Ши-Томази определения углов на проектно-сметной документации застройщика. Разработанное программное дополнение позволит использовать извлеченные углы для построения трехмерных моделей в Blender. Апробация построения моделей проводится для архитектурных планов проектно-сметной документации зданий [1].

Обнаружение углов Ши-Томаси было опубликовано Дж. Ши и К. Томаси в их статье «Хорошие функции для отслеживания». Здесь основная интуиция состоит в том, что повороты можно обнаружить, отыскивая значительные изменения во всех направлениях.

Угловой детектор Ши-Томази (Shi-Tomasi или Kanade-Tomasi) во многом такой же, как детектор Харриса, но отличается вычислением