- -blockSize это размер окрестности вокруг каждого пиксела, используемого для определения углов (для каждого пикселя значение blockSize * blockSize считается соседством);
 - -ksize параметр диафрагмы для оператора Sobel();
 - freeParameter свободный параметр детектора Харриса;
- borderType способ экстраполяции пикселей (используемый режим экстраполяции возвращает координату пикселя, соответствующую указанному экстраполированному пикселю).

Литература

- 1. Demidenko, O. M. Development of a Machine Vision System for Image Recognition of Design Estimates / O. M. Demidenko, N. A. Aksionova // Nonlinear Phenomena in Complex Systems. 2022. Vol.25, №2. pp. 159 167. DOI: https://doi.org/10.33581/1561-4085-2022-25-2-159-167.
- 2. Harris, C. A combined corner and edge detector / C. Harris, M. Stephens // In Fourth Alvey Vision Conference. Manchester. 1988, p. 147–151.

Д. Н. Соболь, Н. А. Аксёнова

(ГГУ имени Ф. Скорины, Гомель)

Науч. рук. А. В. Воруев, канд. техн. наук, доцент

РЕАЛИЗАЦИЯ ПРОГРАММНОГО МОДУЛЯ ДЕТЕКТОРА УГЛОВ ШИ-ТОМАЗИ НА РҮТНОМ С OPENCV

В данной статье описывается разработка программного модуля детектора углов Ши-Томази на Python с использованием библиотеки компьютерного зрения OpenCV. Исследуется алгоритм Ши-Томази определения углов на проектно-сметной документации застройщика. Разработанное программное дополнение позволит использовать извлеченные углы для построения трехмерных моделей в Blender. Апробация построения моделей проводится для архитектурных планов проектно-сметной документации зданий [1].

Обнаружение углов Ши-Томаси было опубликовано Дж. Ши и К. Томаси в их статье «Хорошие функции для отслеживания». Здесь основная интуиция состоит в том, что повороты можно обнаружить, отыскивая значительные изменения во всех направлениях.

Угловой детектор Ши-Томази (Shi-Tomasi или Kanade-Tomasi) во многом такой же, как детектор Харриса, но отличается вычислением

меры отклика: алгоритм вычисляет значение напрямую, поскольку предполагается, что поиск углов будет более стабильным. Авторы используют то же уравнение для анализа оптического потока Лукаса и Канадэ.

Для реализации детектора используется функция cv2.goodFeaturesToTrack из библиотеки OpenCV.

Синтаксис:

cv2.goodFeaturesToTrack(gray_img, maxc, Q, minD).

Используемые параметры:

- gray_img изображение в градациях серого с целыми значениями;
- maxc Максимальное количество углов, которые мы хотим (дайте отрицательное значение, чтобы получить все углы);
 - $-Q-\Pi$ араметр уровня качества (предпочтительное значение = 0,01);
 - maxD-Максимальное расстояние (предпочтительное значение = 10).

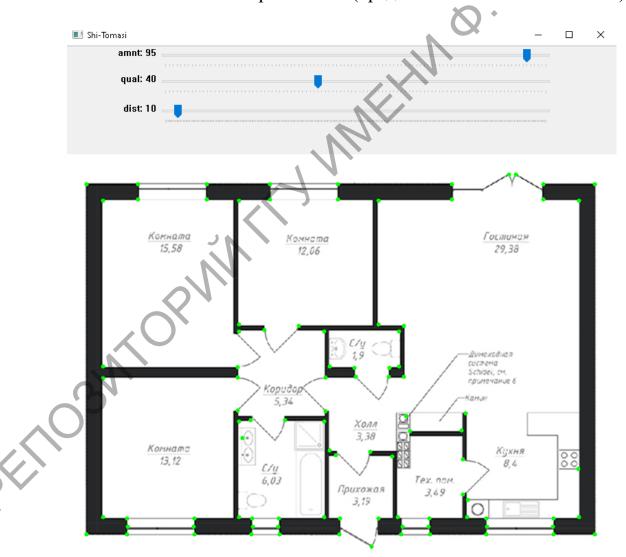


Рисунок 1 – Результат работы детектора Ши-Томази

Литература

1. Demidenko, O. M. Development of a Machine Vision System for Image Recognition of Design Estimates / O. M. Demidenko, N. A. Aksionova // Nonlinear Phenomena in Complex Systems. – 2022. – Vol.25, №2. – p. 159 – 167. DOI: https://doi.org/10.33581/1561-4085-2022-25-2-159-167.

Т. Д. Стасенко

(ГГТУ имени П. О. Сухого, Гомель) Науч. рук. **В. С. Мурашко**, ст. преподаватель

МЕТОДИКА КОМПИЛЯЦИИ И ПОДКЛЮЧЕНИЯ К КОМПАС-3D НА С#

Автоматизация работы конструктора в Компас-3D достигается за счет того, что множество рутинных операций можно выполнить с использованием специальных прикладных библиотек.

«Конструкторская» библиотека применяется для вставки в чертежи изображений болтов, винтов, гаек, пружин, подшипников и т.д. Библиотека «Стандартные изделия» используется для вставки 3D моделей стандартных изделий в сборку. Файлы библиотек имеют расширения *.dll (dynamic link library – динамически подключаемая библиотека Windows).

Система Компас предоставляет другим приложениям посредством технологии СОМ тесно взаимодействовать с ней. Это позволяет самостоятельно разрабатывать сложные пользовательские библиотеки при знании таких языков программирования, как С#, С++, с помощью которых в дальнейшем в автоматизированном режиме можно создавать достаточно сложные детали, сборки, чертежи и спецификации, значительно упрощая тем самым работу пользователя.

Документация по системе Компас оформлена в виде одного СНМ файла, полный путь к которому может выглядит так: «C:\Program Files\ASCON\KOMPAS-3D v20\SDK\SDK.chm».

Помимо документации в комплект поставки Компас входит также большое количество примеров программирования под эту систему на разных языках программирования. Они расположены в том же каталоге, что и документация. Открыв каталог «SDK», можно увидеть несколько архивов, названия которых соответствуют языкам