Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

Е. М. БЕРЕЗОВСКАЯ

МЕТОДЫ ВЫЧИСЛЕНИЙ: СОБСТВЕННЫЕ ЗНАЧЕНИЯ И НЕЛИНЕЙНЫЕ УРАВНЕНИЯ

Практическое пособие

для специальностей 1-31 03 07 «Прикладная информатика (по направлениям)», 1-31 03 07-01, 6-05-0533-11 «Прикладная информатика (программное обеспечение компьютерных систем)»

Гомель ГГУ им. Ф. Скорины 2024 УДК 519.614(076) ББК 22.192.3я73 Б484

Рецензенты:

кандидат физико-математических наук В. И. Мироненко, кандидат физико-математических наук С. П. Новиков

Рекомендовано к изданию научно-методическим советом учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Березовская, Е. М.

Б484 Методы вычислений: собственные значения и нелинейные уравнения: практическое пособие / Е. М. Березовская; Гомельский гос. ун-т им. Ф. Скорины. — Гомель: ГГУ им. Ф. Скорины, 2024. — 46 с.

ISBN 978-985-32-0003-4

Практическое пособие содержит теоретический материал по вопросам вычисления собственных значений и решения нелинейных уравнений, контрольные вопросы и практические задания для индивидуального выполнения. Издание предназначено для оказания помощи студентам в овладении и закреплении базовых знаний в области численных методов.

Адресованы студентам специальностей 1-31 03 07 «Прикладная информатика (по направлениям)», 1-31 03 07-01, 6-05-0533-11 «Прикладная информатика (программное обеспечение компьютерных систем)».

УДК 519.614(076) ББК 22.192.3я73

ISBN 978-985-32-0003-4

- © Березовская Е. М., 2024
- © Учреждение образования «Гомельский государственный университет имени Франциска Скорины», 2024

ОГЛАВЛЕНИЕ

Предисловие	4
Тема 1. Вычисление собственных значений и собственных век-	
торов матрицы	5
1.1. Вычисление собственных значений и собственных векто-	
ров матрицы	5
1.1.1. Характеристический многочлен матрицы	5
1.1.2. Метод Крылова	7
1.1.3. Метод Данилевского	11
1.2. Итерационные методы решения проблемы собственных	
значений	14
1.2.1. Итерационный метод вращения	14
1.2.2. Нахождение наибольшего по модулю собственного зна-	
чения матрицы итерационным методом	17
Тема 2. Методы решения нелинейных уравнений	22
2.1. Приближенные методы решения нелинейных уравнений	22
2.1.1. Отделение корней	22
2.1.2. Определение числа действительных корней	24
2.1.3. Методы итераций, хорд и Ньютона	26
2.2. Численные методы решения систем нелинейных уравнений	35
2.2.1. Общая постановка задачи	35
2.2.2. Метод простой итерации для систем нелинейных урав-	
нений n -го порядка	36
2.2.3. Метод Ньютона для систем нелинейных уравнений n -го	
порядка	39
Литература	46

ПРЕДИСЛОВИЕ

Характерной особенностью современного этапа образования и развития производства следует считать резкое повышение требований к квалификации работников производства, управления и образования. Содержание образовательного процесса в вузах достаточно строго определяется государственными образовательными стандартами высшего профессионального образования, которые предусматривают выпуск конкурентно способных на рынке труда специалистов. Последние должны формировать у себя прочные теоретические и практические навыки самообразования, что возможно в современных условиях только при наличии должного уровня информационной культуры.

Изучение учебного курса «Методы вычислений» предусмотрено учебным планом подготовки специалистов. Данный курс должен облегчить изучение теоретического материала, а также способствовать приобретению практических навыков в области вычислительной математики.

Издание направлено на формирование теоретической и практической углубленной подготовки студентов в области применения численных методов. Изучение курса базируется на дисциплинах: «Алгебра и теория чисел», «Математический анализ», «Дифференциальные уравнения», «Технологии программирования».

Практическое пособие может быть использовано преподавателями при проведении практических занятий и студентами в их самостоятельной работе над предметом.

ТЕМА 1. ВЫЧИСЛЕНИЕ СОБСТВЕННЫХ ЗНАЧЕНИЙ И СОБСТВЕННЫХ ВЕКТОРОВ МАТРИЦЫ

1.1. Вычисление собственных значений и собственных векторов матрицы

1.1.1. Характеристический многочлен матрицы

Пусть $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ $i, j = \overline{1,n}$ квадратичная матрица n-го порядка с действительными коэффициентами и λ_i некоторые неизвестные числа. Тогда матрица $(A - \lambda E)$, где E — единичная матрица n-го порядка называется xарактеристической матрицей матрицы A.

Характеристическую матрицу можно представить в виде:

$$A - \lambda E = \begin{bmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{bmatrix}$$
(1.1)

Определитель этой матрицы называется характеристическим определителем

$$D(\lambda) = \det(A - \lambda E). \tag{1.2}$$

В развёрнутом виде $\det(A-\lambda E)$ есть многочлен n-й степени относительно λ и имеет вид

$$\det(A - \lambda E) = (-1)^n \left[\lambda^n + p_1 \lambda^{n-1} + \dots + p_n \right] = (-1)^n P_n(\lambda). \tag{1.3}$$

Многочлен (1.3) называется *характеристическим многочленом* матрицы A, а его корни $\lambda_1, \lambda_2, ..., \lambda_n$ называются *собственными* числами или собственными значениями матрицы A. Числа p_i называются коэффициентами характеристического многочлена. Собственные числа могут быть как действительными, так и комплексно-сопряжёнными. Они характеризуются тем, что однородная система

$$Ax = \lambda x \tag{1.4}$$

имеет ненулевое решение в том и только в том случае, когда λ является собственным значением матрицы A. Отвечающие ему ненулевые решения системы называют *собственными векторами* матрицы, соответствующими значению λ . Каждому собственному значению λ_i соответствует свой собственный вектор $X^{(i)}$, $(i=\overline{1,n})$. Для определения координат собственного вектора составляется характеристическое уравнение

$$(A - \lambda E)x = 0. ag{1.5}$$

Так как собственный вектор ненулевой, то очевидно, что определитель $\det(A-\lambda E)=0$ и из этого условия определяется собственное значение матрицы A. Следовательно, система (1.5) имеет бесчисленное множество решений и ее можно решить с точностью до постоянного множителя. Решив эту систему для заданного λ_i , найдём координаты собственного вектора $X^{(i)}$, $(i=\overline{1,n})$. Собственные вектора можно пронормировать, то есть вынести постоянный множитель.

Таким образом, задача отыскания собственных значений и собственных векторов матрицы сводится к отысканию коэффициентов характеристического уравнения, отделения его корней, к отысканию нетривиальных решений системы (1.4), в которой вместо λ подставлено одно из найденных собственных значений. Если для данного собственного значения система (1.4) имеет несколько линейно-независимых решений, то этому собственному значению соответствует несколько собственных векторов.

Все численные методы отыскания собственных значений и собственных векторов можно разделить на две группы:

- 1) прямые методы, в которых сначала находится характеристическое уравнение, решая которое находят собственные значения матрицы, а потом, соответствующие им собственные вектора;
- 2) итерационные методы, в которых собственные значения находятся как пределы некоторых числовых последовательностей без предварительного определения коэффициентов характеристического уравнения. При этом, как правило, вычисляются и собственные векторы.

Прямые методы применяются для решения полной проблемы собственных значений, то есть находятся все собственные значения и все соответствующие им собственные векторы.

Итерационные методы чаще всего применяются к решению частичной проблемы собственных значений, то есть к отысканию одного или нескольких собственных значений и отвечающих им собственных векторов.

1.1.2. Метод Крылова

Этот метод основан на свойстве невырожденной квадратичной матрицы обращать свой характеристический многочлен в нуль. Согласно тождеству Гамильтона-Кели всякая квадратичная матрица является корнем своего характеристического многочлена, а значит, обращает его в нуль.

Пусть

$$P_n(\lambda) = (-1)^n \left[\lambda^n + p_1 \lambda^{n-1} + p_2 \lambda^{n-2} + \dots + p_n \right]$$
 (1.6)

является характеристическим многочленом матрицы A. Заменяем в равенстве (1.6) величину λ на $A = [a_{ij}]$, получим:

$$A^{n} + p_{1}A^{n-1} + p_{2}A^{n-2} + \dots + p_{n}E = 0.$$
 (1.7)

Возьмём произвольный нулевой вектор

$$y^{(0)} = \begin{pmatrix} y_1^{(0)} \\ y_2^{(0)} \\ \dots \\ y_n^{(0)} \end{pmatrix}$$
 (1.8)

и, умножив обе части равенства (1.7) справа на $y^{(0)}$, получим:

$$A^{n}y^{(0)} + p_{1}A^{n-1}y^{(0)} + p_{2}A^{n-2}y^{(0)} + \dots + p_{n}y^{(0)} = 0.$$
 (1.9)

Положим

$$A^k y^{(0)} = y^{(k)}, \quad k = \overline{1, n}.$$
 (1.10)

Тогда равенство (1.9) примет вид:

$$y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + \dots + p_n y^{(0)} = 0.$$
 (1.11)

Или в развёрнутом виде придём к системе алгебраических выражений:

$$\begin{cases} p_{1}y_{1}^{(n-1)} + p_{2}y_{1}^{(n-2)} + \dots + p_{n}y_{1}^{(0)} = -y_{1}^{(n)} \\ p_{1}y_{2}^{(n-1)} + p_{2}y_{2}^{(n-2)} + \dots + p_{n}y_{2}^{(0)} = -y_{2}^{(n)} \\ \dots \\ p_{1}y_{n}^{(n-1)} + p_{2}y_{n}^{(n-2)} + \dots + p_{n}y_{n}^{(0)} = -y_{n}^{(n)} \end{cases}$$

$$(1.12)$$

Координаты начального вектора $y^{(0)}$ берутся произвольно, если линейная система (1.11) имеет единственное решение, то её корни $p_1, p_2, ..., p_n$ являются коэффициентами характеристического многочлена (1.6). Решение системы (1.12) может быть получено с помощью метода Гаусса.

Так как из формулы (1.10) следует, что

$$y^{(k)} = Ay^{(k-1)}, \quad k = \overline{1,n},$$
 (1.13)

то координаты $y_1^{(k)}, y_2^{(k)}, ..., y_n^{(k)}$ вектора $y^{(k)}$ последовательно вычисляются по формулам:

$$\begin{cases} y_i^{(1)} = \sum_{j=1}^n a_{ij} y_i^{(0)} \\ \dots \\ y_i^{(n)} = \sum_{j=1}^n a_{ij} y_i^{(n-1)} \end{cases}$$
 (1.14)

Таким образом, система (1.12) становится определенной.

Тогда по методу Крылова коэффициенты $p_1, p_2, ..., p_n$ определяются как решение системы (1.12) при известных коэффициентах (1.14) с произвольным начальным вектором $y^{(0)}$.

Замечание: Если система уравнений (1.12) не имеет решений или их бесконечно много, то следует взять другой начальный вектор $y^{(0)}$ и заново пересчитав $y^{(k)}$ прийти к системе (1.12).

Получить решение характеристического многочлена можно, используя методы решения нелинейных уравнений, сначала отделить корни определителя (1.6) $\lambda^n + p_1 \lambda^{n-1} + p_2 \lambda^{n-2} + ... + p_n = 0$, а затем уточнить их с помощью метода хорд или касательных.

1.1.2.1. Вычисление собственных векторов по методу Крылова

Если известны коэффициенты $p_1, p_2, ..., p_n$ характеристического многочлена и собственные значения $\lambda_1, \lambda_2, ..., \lambda_n$, то метод Крылова даёт возможность найти собственные векторы по следующей формуле:

$$X^{(i)} = y^{(n-1)} + q_{1i}y^{(n-2)} + \dots + q_{n-1,i}y^{(0)} \quad (i = \overline{1,n}).$$
 (1.15)

Здесь $y^{(n-1)}, y^{(n-2)}, ..., y^{(0)}$ — векторы, которые использовались при нахождении коэффициентов p_i методом Крылова, а $q_{ji}, (j=\overline{1,n-1}, i=\overline{1,n})$ определяется по схеме Горнера:

$$q_{01} = 1, \quad q_{ii} = \lambda_i q_{i-1,i} + p_i.$$
 (1.15a)

Необходимо помнить, что соответствующие собственные векторы $X^{(i)}$ определяются по формуле (1.15) с точностью до произвольной постоянной.

Пример. Методом Крылова развернуть характеристический многочлен матрицы

$$\begin{cases} 9x_1 + 2x_2 + 3x_3 = 35 \\ 2x_1 + 8x_2 + 4x_3 = 22 \\ 3x_1 + 4x_2 + 12x_3 = 37. \end{cases}$$

Решение. Выберем произвольный ненулевой вектор

$$y^{(0)} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

Пользуясь формулами (1.13) $y^{(k)} = Ay^{(k-1)}$, $k = \overline{1,n}$ определим координаты векторов $y^{(k)}$. А именно:

$$y^{(1)} = Ay^{(0)} = \begin{pmatrix} 9 & 2 & 3 \\ 2 & 8 & 4 \\ 3 & 4 & 12 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 9 \\ 2 \\ 3 \end{pmatrix},$$
$$\begin{pmatrix} 9 & 2 & 3 \end{pmatrix} \begin{pmatrix} 9 \end{pmatrix} \begin{pmatrix} 94 \end{pmatrix}$$

$$y^{(2)} = Ay^{(1)} = \begin{pmatrix} 9 & 2 & 3 \\ 2 & 8 & 4 \\ 3 & 4 & 12 \end{pmatrix} \cdot \begin{pmatrix} 9 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 94 \\ 46 \\ 71 \end{pmatrix},$$

$$y^{(3)} = Ay^{(2)} = \begin{pmatrix} 9 & 2 & 3 \\ 2 & 8 & 4 \\ 3 & 4 & 12 \end{pmatrix} \cdot \begin{pmatrix} 94 \\ 46 \\ 71 \end{pmatrix} = \begin{pmatrix} 1151 \\ 840 \\ 1318 \end{pmatrix}.$$

Составляем систему (1.12), которая принимает вид:

$$\begin{pmatrix} 94 & 9 & 1 \\ 46 & 2 & 0 \\ 71 & 3 & 0 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} = -\begin{pmatrix} 1151 \\ 840 \\ 1318 \end{pmatrix}.$$

Решая эту систему методом Гаусса, получим

$$p_1 = -29$$
, $p_2 = 247$, $p_3 = -648$.

Таким образом, характеристический многочлен имеет вид

$$P_n(\lambda) = \det(A - \lambda E) = -\left[\lambda^3 + p_1 \lambda^2 + p_2 \lambda^1 + p_3\right] =$$

= $-(\lambda^3 - 29\lambda^2 + 247\lambda - 648)$.

Приравнивая нулю и решая полученное уравнение известными методами, находим собственные значения: $\lambda_1 \approx 16,26, \ \lambda_2 \approx 7,22, \ \lambda_3 \approx 5,52.$ Для определения собственных векторов составляем уравнение (1.15):

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}^{(i)} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}^{(2)} + q_{1,i} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}^{(1)} + q_{2,i} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}^{(0)}, \quad i = 1, 2, 3.$$

Так, например, для $\lambda_1 \approx 16,26$ собственный вектор будет:

$$X^{(1)} = y^{(2)} + q_{11}y^{(1)} + q_{21}y^{(0)}.$$

Находим значения коэффициентов q_{ii} по схеме Горнера (1.15a)

$$\begin{aligned} q_{11} &= \lambda_1 q_{01} + p_1 = 16, 26 \cdot 1 - 29 \approx -12, 74, \\ q_{21} &= \lambda_1 q_{11} + p_2 = -16, 26 \cdot 12, 74 + 247 \approx 39, 85. \\ x_1^1 &= 94 + 9 \cdot q_{11} + 1 \cdot q_{21}, \\ x_2^1 &= 46 + 2 \cdot q_{11} + 0 \cdot q_{21}, \\ x_3^1 &= 71 + 3 \cdot q_{11} + 0 \cdot q_{21}. \end{aligned}$$

Следовательно,

$$x_1^{(1)} \approx 19,19, \quad x_2^{(1)} \approx 20,52, \quad x_3^{(1)} \approx 32,78.$$

Далее, вектор $X^{(1)}$ можно нормировать, вычислив норму $\|X^{(1)}\| \approx 43,17$

и
$$\frac{X^{(1)}}{\|X^{(1)}\|} \approx \begin{pmatrix} 0,44\\0,48\\0,76 \end{pmatrix}$$
. Разделив на 0,76, получим $X^{(1)} \approx \begin{pmatrix} 0,59\\0,63\\1,00 \end{pmatrix}$.

1.1.3. Метод Данилевского

В нём используется основное свойство подобных матриц. Две матрицы A и B называются подобными, если одна получается из другой путём следующего преобразования подобия $B = M^{-1}AM$, где M – некоторая не особая матрица.

Известно, что подобные матрицы имеют одинаковые характеристические многочлены. Заданную матрицу A

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

необходимо привести к матрице Фробениуса:

$$F = \begin{bmatrix} f_{11} & f_{12} & \dots & f_{1n} \\ 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

с помощью преобразования подобия и затем составить определитель

$$\det(F - \lambda E) = \begin{bmatrix} f_{11} - \lambda & f_{12} & f_{13} & \dots & f_{1n} \\ 1 & -\lambda & 0 & \dots & 0 \\ 0 & 0 & -\lambda & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}.$$

Разложив его по элементам первой строки, получим характеристический многочлен матрицы Фробениуса.

$$P_{n}(\lambda) = \det(F - \lambda E) = (-1)^{n} \left[\lambda^{n} + p_{1} \lambda^{n-1} + \dots + p_{n} \right], \tag{1.16}$$

где $p_1 = f_{11}$, $p_2 = f_{12}$,..., $p_n = f_{1n}$ — коэффициенты характеристического многочлена матрицы Фробениуса.

В силу подобия матриц характеристический многочлен (1.16) будет являться характеристическим многочленом матрицы A.

По методу Данилевского переход матрицы A к подобной ей матрице Фробениуса осуществляется с помощью (n-1) преобразования подобия. Последовательно преобразовываются строки матрицы A в строки матрицы Фробениуса, начиная с последней строки.

Матрица M_{n-1} формируется из единичной матрицы после таких же преобразований, что и над матрицей A.

$$M_{n-1} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ m_{n-1,1} & m_{n-1,2} & \dots & m_{n-1,n} \\ 0 & 0 & \dots & 1 \end{bmatrix},$$

где

$$m_{n-1,i} = -\frac{a_{n,i}}{a_{n,n-1}}; m_{n-1,n-1} = \frac{1}{a_{n,n-1}},$$
 (1.17)

 M_{n-1}^{-1} получается из единичной, если на n-1-й строке записать коэффициенты n-й строки матрицы A:

$$M_{n-1}^{-1} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \\ 0 & 0 & \dots & 1 \end{bmatrix}.$$

Строим матрицу $B = AM_{n-1}$, а затем $C = M_{n-1}^{-1}B$. В результате получим матрицу C, подобную матрице A с одной приведённой строкой к матрице Фробениуса, следовательно $C = M_{n-1}^{-1}AM_{n-1}$.

Потом строится матрица $D = CM_{n-2}$. Тогда матрица $E = M_{n-2}^{-1}D$, после соответствующей подстановки, имеет вид

$$E = M_{n-2}^{-1} M_{n-1}^{-1} A M_{n-1} M_{n-2}$$
.

В результате n-1-го преобразования придём к матрице Фробениуса

$$F = M_1^{-1} M_2^{-1} ... M_{n-1}^{-1} A M_{n-1} M_{n-2} ... M_1$$
.

Если в некоторой матрице преобразование подобия элемент $e_{n-2,n-2} = 0$, то нужно поменять местами строки.

1.1.3.1. Вычисление собственных векторов по методу Данилевского

Пусть $y = (y_1, y_2, ..., y_n)^T$ — собственный вектор матрицы Фробениуса, соответствующий значению λ . Тогда $Fy = \lambda y$. Откуда

$$(F - \lambda E)y = 0, \tag{1.18}$$

и, следовательно, произведя умножение, получим систему уравнений для нахождения координат $y_1, y_2, ..., y_n$ собственного вектора матрицы Фробениуса:

$$\begin{cases} (f_{11} - \lambda)y_1 + f_{12}y_2 + \dots + f_{1n}y_n = 0 \\ y_1 - \lambda y_2 = 0 \\ \dots \\ y_{n-1} - \lambda y_n = 0. \end{cases}$$

С точностью до коэффициента пропорциональности её решение можно найти, задав произвольно y_n (например, $y_n = 1$). Тогда

$$y_{n-1} = \lambda$$
 $y_{n-2} = \lambda y_{n-1} = \lambda^2$
 $y_1 = \lambda^{n-1}$ $y = (\lambda^{n-1}, \lambda^{n-2}, ..., 1),$ (1.19)

Так как матрица F подобна матрице A, то λ является собственным значением матрицы A. Обозначим $X = (x_1, x_2, ..., x_n)$ собственный вектор матрицы A соответствующим собственному значению λ , следовательно,

$$X = M_{n-1}M_{n-2}...M_1y, (1.20)$$

где M_i , $(i = \overline{1, n-1})$ матрицы преобразования по методу Данилевского.

Задание 1.1 Для матрицы A определить собственные значения и отвечающие им собственные вектора прямыми методами.

$$A = \begin{pmatrix} 8+k & 2 & 1\\ 1 & 7+k & 3\\ 1 & 1 & 9+k \end{pmatrix},$$

где
$$k = 0.03n + \frac{g-n}{g+n}$$
;

n — номер варианта, исходя из списка по журналу; g — номер года.

Задание выполнить:

- 1) методом Крылова;
- 2) методом Данилевского.

Вопросы для самоконтроля

- 1. Что такое характеристический многочлен?
- 2. В чем заключается смысл прямых и итерационных методов в решении проблемы собственных значений?
 - 3. Какие прямые методы вы знаете?
 - 4. Какова вычислительная схема метода Крылова?
 - 5. Какова вычислительная схема метода Данилевского?
- 6. Как происходит вычисление собственных векторов по методу Крылова?
- 7. Как происходит вычисление собственных векторов по методу Данилевского?
- 8. Какую проблему собственных значений решают методы Крылова и Данилевского?

1.2. Итерационные методы решения проблемы собственных значений

1.2.1. Итерационный метод вращения

Всякая симметричная действительная матрица A может быть приведена подобными преобразованиями к диагональному виду

$$A = U\lambda U^{-1}, \tag{1.21}$$

где U — ортогональная и λ — диагональная матрица, элементы которой являются собственными значениями $\lambda_1, \lambda_2, ..., \lambda_n$ матрицы A.

Так как для ортогональных матриц обратная совпадает с транспонированной $(U=U^{-1})$, равенство (1.21) равносильно следующему:

$$UAU^{-1} = \lambda. (1.22)$$

Это равенство даёт возможность построить бесконечно много алгоритмов для приближённого вычисления матрицы λ , отличающихся между собой способами построения матрицы U. В основании методов лежит следующий **факт**: пусть каким-либо ортогональным преобразованием с матрицей U мы привели матрицу A к некоторой матрице λ , мало отличающейся от диагональной, и получили равенство:

$$U'AU = \lambda, \tag{1.23}$$

$$\lambda = \begin{pmatrix} \lambda_{11} & \lambda_{12} & \dots & \lambda_{1n} \\ \lambda_{21} & \lambda_{22} & \dots & \lambda_{2n} \\ \dots & \dots & \dots \\ \lambda_{n1} & \lambda_{n2} & \dots & \lambda_{nn} \end{pmatrix}.$$
 (1.24)

Собственные значения матриц A и λ совпадают между собой. Если бы оказалось, что все недиагональные элементы λ_{ij} $(i \neq j)$ в λ равны 0, то равенства (1.22) и (1.23) совпали бы и собственные значения матрицы A были бы равны элементам λ_{ij} в матрице λ .

Если же недиагональные элементы λ_{ij} $(i \neq j)$ не все равны 0, но все будут иметь малые значения, то следует ожидать, что собственные значения матрицы A будут близкими к λ_i $(i = \overline{1,n})$ и λ_{ii} могут быть приняты за приближенные величины этих значений.

Для использования равенства (1.22) нужно построить последовательность ортогональных преобразований.

Меру близости A к диагональному методу целесообразно определять следующим образом:

$$\sigma_i(A) = \sum_{i=1}^n |a_{ij}|^2, \ (i = \overline{1, n}, i \neq j)$$
 (1.25)

и за нужную нам величину примем число:

$$t(A) = \sigma_1 + \sigma_2 + ... + \sigma_n = \sum_{i \neq i} |a_{ij}|^2$$
. (1.26)

Пусть с помощью преобразования подобия с ортогональными матрицами построена последовательность матриц $A^0 = A, A^1, ..., A^k$. Процесс построения называется **монотонным**, если $t(A^k) < t(A^{k-1})$. Таких процессов может быть построено большое число.

1.2.1.1. Метод вращений Якоби

По заданной матрице A будем строить последовательность матриц (A^k) , такую, что каждая следующая матрица A^{k+1} получается из предыдущей матрицы A^k при помощи преобразования подобия со следующей ортогональной матрицей вращения:

$$U_{ij}(\varphi) = \begin{bmatrix} 1 & & & & & & 0 \\ & 1 & & & & & 0 \\ & & \cos\varphi & & -\sin\varphi & & & \\ & & & \sin\varphi & & \cos\varphi & & \\ & & & & 1 \\ 0 & & & & 1 \end{bmatrix},$$
 (1.27)

где индексы i и j определены из условия $a_{ij}^k = \max_{i < j} a_{ij}^k$.

Предположим, преобразование доведено до шага k и построена матрица $A^k = [a_{ij}]$. Найдём в ней наибольший по модулю недиагональный элемент. Пусть это a^k_{ij} . В силу симметричности A^k , можно считать i < j. По индексам i и j строим матрицу вращения $U^k_{ij} = U^k_{ij}(\varphi^k)$, в которой угол φ^k определим ниже.

Образуем после этого матрицу

$$A^{k+1} = U_{ij}^{k'} A^k U_{ij}^k. (1.28)$$

Для упрощения записи введём обозначение $B^k = A^k U_{ij}^k$, $B^k = [b_{ij}^k]$.

В силу определения матрицы (1.27) все столбцы B^k , кроме i и j, будут такими же, как и в A^k . Элементы же столбцов номеров i и j вычисляются по формулам:

$$\begin{cases} b_{vi}^{k} = a_{vi}^{k} \cos \varphi^{k} + a_{vj}^{k} \sin \varphi^{k} \\ b_{vj}^{k} = -a_{vi}^{k} \sin \varphi^{k} + a_{vj}^{k} \cos \varphi^{k} \end{cases}, \quad v = \overline{1, n}$$
 (1.29)

Аналогично, строки $A^{k+1} = U_{ij}^{k'} B^k$, кроме i и j, будут такими же, как в B^k , а элементы i и j строк вычисляются по формулам:

$$\begin{cases} a_{i\nu}^{k+1} = b_{i\nu}^{k} \cos \varphi^{k} + b_{j\nu}^{k} \sin \varphi^{k} \\ a_{j\nu}^{k+1} = -b_{i\nu}^{k} \sin \varphi^{k} + b_{j\nu}^{k} \cos \varphi^{k} \end{cases}, \quad \nu = \overline{1, n}. \quad (1.30)$$

Равенства (1.29) и (1.30) позволяют легко вычислить a_{ij}^{k+1} :

$$a_{ij}^{k+1} = b_{ij}^{k} \cos \varphi^{k} + b_{jj}^{k} \sin \varphi^{k} =$$

$$= (-a_{ii}^{k} \sin \varphi^{k} + a_{ij}^{k} \cos \varphi^{k}) \cos \varphi^{k} + (-a_{ji}^{k} \sin \varphi^{k} + a_{jj}^{k} \cos \varphi^{k}) \sin \varphi^{k},$$

так как $a_{ij}^k = a_{ji}^k$ (симметрия), то значит:

$$a_{ij}^{k+1} = a_{ij}^{k} \cos 2\varphi^{k} + \frac{1}{2} (a_{jj}^{k} - a_{ii}^{k}) \sin 2\varphi^{k}.$$
 (1.31)

Выберем теперь φ^k таким образом, чтобы a_{ij}^{k+1} обратился в 0. Это требование даёт:

$$\tan 2\varphi^{k} = \frac{2a_{ij}^{k}}{a_{ii}^{k} - a_{jj}^{k}} = p^{k}.$$

Откуда следует, что

$$\varphi^k = \frac{1}{2} \arctan p^k. \tag{1.32}$$

Что касается значения меры $t(A^k)$ близости A^k к диагональной форме, то пользуясь симметричностью A и соотношениями (1.29)— (1.31), можно показать, что

$$t(A^{k+1}) = t(A^k) - 2(a_{ij}^k)^2. (1.33)$$

Так как a_{ij}^k есть наибольший недиагональный элемент и он предполагается отличным от 0 (если $a_{ij}^k = 0$, то A^k были бы собственными значениями матрицы A и переход к A^{k+1} не нужен), верно неравенство $t(A^{k+1}) \le t(A^k)$ и $t(A^k)$ уменьшается при переходе к A^{k+1} .

1.2.2. Нахождение наибольшего по модулю собственного значения матрицы итерационным методом

Пусть имеем характеристическое уравнение $D(\lambda) = \det(A - \lambda E) = 0$. Корни этого уравнения $\lambda_1, \lambda_2, ..., \lambda_n$ являются собственными значениями матрицы A. Пусть им соответствуют линейно независимые собственные векторы $x^1, x^2, ..., x^n$. Рассмотрим итерационный метод вычисления наибольшего по модулю собственного значения матрицы A, не требующего раскрытия векового определителя.

Пусть среди собственных значений матрицы A есть одно наибольшее по модулю. Для определенности положим

$$\left|\lambda_{1}\right| > \left|\lambda_{2}\right| \geq, \dots, \geq \left|\lambda_{n}\right|. \tag{1.35}$$

Тогда наибольшим по модулю является первое собственное значение. Очевидно, что для действительной матрицы наибольшее по модулю собственное значение матрицы A λ_1 будет действительным. Такой случай всегда имеет место, если матрица A действительна и её элементы положительны.

Определим λ_1 . Для этого возьмем произвольный вектор $y=(y_1,...,y_n)^T$ и разложим его по собственным векторам матрицы A. $y=\sum_{j=1}^n c_j x^j$, где c_j – постоянные коэффициенты $j=\overline{1,n}$.

Произведя преобразования A над вектором y, получим:

$$Ay = \sum_{j=1}^{n} c_j (Ax)^j.$$

Отсюда так как x^j собственный вектор преобразования A, получим, что $Ax^j = \lambda x^j$ и тогда имеем

$$Ay = \sum_{j=1}^{n} c_{j} \lambda_{j} x^{j}.$$

Величину Ay называют **итерацией** над вектором y. Последовательно образуя итерации $Ay, A^2y, ..., A^my$, находим, что m-я итерация

$$y^{m} = A^{m} y = \sum_{j=1}^{n} c_{j} \lambda_{j}^{m} x^{j} . \qquad (1.36)$$

Пусть
$$y^m = A^m y$$
, $m = 1, 2, ...$ и $y = \begin{bmatrix} y_1^m \\ y_2^m \\ ... \\ y_n^m \end{bmatrix}$, где y_i^m , $i = \overline{1,n}$ координаты

 y^m в выбранном базисе $e_1, e_2, ..., e_n$. Разлагая собственные векторы x^j по векторам базиса, можем записать выражение для составляющих вектора y:

$$y_i^m = \sum_{j=1}^n c_j \lambda_j^m x_{ij} . {(1.37)}$$

Выражение в (1.37) является m-й итерацией. Аналогично

$$y_i^{m+1} = \sum_{j=1}^n c_j \lambda_j^{m+1} x_{ij} . {(1.38)}$$

Разделив (1.38) на (1.37), получим:

$$\frac{y_i^{m+1}}{y_i^m} = \frac{c_1 \lambda_1^{m+1} x_{i1} + c_2 \lambda_2^{m+1} x_{i2} + \dots + c_n \lambda_n^{m+1} x_{in}}{c_1 \lambda_1^m x_{i1} + c_2 \lambda_2^m x_{i2} + \dots + c_n \lambda_n^m x_{in}}.$$
 (1.39)

Пусть $c_1 \neq 0$ и $x_{i1} \neq 0$, что можно всегда получить, выбирая надлежащим образом, исходный вектор y и базис $e_1, e_2, ..., e_n$. Преобразуем выражение (1.39) к виду:

$$\frac{y_i^{m+1}}{y_i^m} = \lambda_1 \cdot \frac{1 + \frac{c_2 x_{i2}}{c_1 x_{i1}} \left(\frac{\lambda_2}{\lambda_1}\right)^{m+1} + \dots + \frac{c_n x_{in}}{c_1 x_{i1}} \left(\frac{\lambda_n}{\lambda_1}\right)^{m+1}}{1 + \frac{c_2 x_{i2}}{c_1 x_{i1}} \left(\frac{\lambda_2}{\lambda_1}\right)^{m} + \dots + \frac{c_n x_{in}}{c_1 x_{i1}} \left(\frac{\lambda_n}{\lambda_1}\right)^{m}}.$$

Переходя к пределу при $m \to \infty$ и учитывая неравенство (1.35), получим:

$$\lim_{m \to \infty} \frac{y_i^{m+1}}{y_i^m} = \lambda_1 \quad . \tag{1.40}$$

Можем записать:

$$\lambda_1 \approx \frac{y_i^{m+1}}{y_i^m}, \quad \forall \ i = \overline{1, n} , \qquad (1.41)$$

а точнее:

$$\lambda_1 = \frac{y_i^{m+1}}{y_i^m} + O\left(\left(\frac{\lambda_2}{\lambda_1}\right)^m\right), \quad \forall \ i = \overline{1, n}.$$

Для достаточно большого номера итерации m можем с любой степенью точности с помощью формулы (1.41) определить наибольший по модулю корень λ_1 характеристического многочлена матрицы A. Для получения более точного значения корня λ_1 следует взять среднее

арифметическое из суммы отношений координат вектора y. $\frac{y_1^{m+1}}{y_1^m} \approx \frac{y_2^{m+1}}{y_2^m} \approx \dots \approx \frac{y_n^{m+1}}{y_n^m}, \text{ следовательно, считают } \lambda_1 = \frac{1}{n} \sum_{i=1}^n \frac{y_i^{m+1}}{y_i^m}.$

Собственный вектор матрицы A соответствующий λ_1 приближенно можем взять, полагая, что $x^1 = y^m = A^m y$, так как $A^m y = c_1 \lambda_1^m x^1$, то есть $A^m y$ лишь числовым множителем отличается от собственного вектора x^1 и поэтому является собственным вектором соответствующим λ_1 .

Пример. Найти наибольшее собственное значение матрицы A и собственный вектор:

$$A = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 1 & 1 \end{bmatrix}.$$

Решение.

- 1. Выберем начальный вектор y = (1,1,1).
- 2. Составим итерации, например, для m=10 $y^1=Ay^0$; $y^2=A^2y=Ay^1$; ...; $y^{10}=A^{10}y$.
- 3. Для различных координат вектора y следует воспользоваться формулой (1.41), а результаты итераций сведем в таблицу:

y ⁰	$y^1 = Ay^0$	•••	A^7y	A^8y	$y^9 = A^9 y$	$y^{10} = A^{10}y$
1	4		10260	62973	243569	941378
1	5		14193	54630	210663	812585
1	2		5002	19193	73845	284508

Из (1.41) следует, что

$$\lambda_{11} \approx \frac{y_1^{10}}{y_1^9} = \frac{941378}{243569} \approx 3,865, \ \lambda_{12} \approx \frac{y_2^{10}}{y_2^9} = \frac{812585}{210663} \approx 3,857,$$

$$\lambda_{13} \approx \frac{y_3^{10}}{y_3^9} = \frac{284508}{73845} \approx 3,853.$$

4. Вычислим λ_1 как среднее арифметическое из $\lambda_{11}, \lambda_{12}, ..., \lambda_{13}$.

$$\lambda_1 = \frac{\lambda_{11} + \lambda_{12} + \lambda_{13}}{3} = 3,858.$$

5. В качестве 1-го собственного вектора матрицы A можно взять вектор $y^{10} = A^{10}y = \begin{bmatrix} 941378 \\ 812585 \\ 284508 \end{bmatrix}$. Нормируя этот вектор, то есть разделив его на

норму вектора $\|y^{10}\| = \sqrt{941378^2 + 812585^2 284508^2} \approx 1.28 \cdot 10^6$. Получим 1-й собственный вектор матрицы A, принадлежащий собственному значению $\lambda_1 = 3,858$:

$$x_1 = \begin{bmatrix} 0,74\\0,64\\0,22 \end{bmatrix}$$

Задание 1.2. Для матрицы A определить собственные значения и отвечающие им собственные вектора итерационными методами.

$$A = \begin{pmatrix} 7+k & 2 & 1\\ 1 & 9+k & 3\\ 1 & 1 & 8+k \end{pmatrix},$$

где
$$k = 0.03n + \frac{g-n}{g+n}$$
;

n — номер варианта, исходя из списка по журналу;

g – номер года.

Задание выполнить:

- 1) методом Якоби;
- 2) методом итераций.

Найти наибольшее первое собственное значение и отвечающий ему собственный вектор.

Вопросы для самоконтроля

- 1. В чем заключается смысл итерационных методов?
- 2. Приведите вычислительную схему метода Якоби (вращений)?
- 3. Какую проблему собственных значений решает метод Якоби?
- 4. Как находится наибольшее по модулю собственное значение?
- 5. Как находится второе собственное значение?
- 6. Как определяются собственные вектора в итерационных методах?
- 7. Что вы можете сказать о точности вычислений в итерационных методах?

ТЕМА 2. МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2.1. Приближенные методы решения нелинейных уравнений

При решении уравнений вида

$$f(x) = 0, \tag{2.1}$$

где f — известная функция действительного или комплексного аргумента, требуется знать область существования корней и метод их нахождения. Большинство методов отыскания корней уравнения (2.1) предполагает, что заранее известны достаточно малые окрестности, в каждой из которых имеется только один корень уравнения, т.е. корень отделен. Принимая за начальное приближение корня одну из точек этой окрестности можно с помощью приближенных методов вычислить искомый корень с заданной точностью. Следовательно, задача приближенного вычисления корней уравнения (2.1) состоит из двух задач:

- задачи **отделения** корней: отыскания достаточно малых областей, в каждой из которых заключен только один корень уравнения (2.1);
- **вычисления** корня с заданной точностью, если известно некоторое начальное его приближение в области, не содержащей других корней.

2.1.1. Отделение корней

Пусть дано уравнение (2.1). Будем предполагать, что оно имеет лишь изолированные корни, то есть для любого корня уравнения (2.1) существует окрестность, не содержащая других корней этого уравнения.

Отделить корень — это значит разбить всю область допустимых значений на отрезки, в каждом из которых содержится только один корень. Отделение корней можно выполнять двумя способами: **графически** и **аналитически**.

2.1.1.1. Графический метод отделения корней

Графический способ обычно применяется для отделения действительных корней уравнения (2.1). Для графического метода отделения корней существует два способа:

1. Строят график функции y = f(x) (рисунок 2.1). Абсциссы точек пересечения графика функции с осью OX будут грубыми значениями корней уравнения (2.1). За окрестности корней принимаются интервалы, внутри которых находится единственный корень.

2. Сначала уравнение (2.1) представляется в виде $\varphi(x) = g(x)$, причем функции $\varphi(x)$ и g(x) выбираются так, чтобы графики этих функций строились просто. Потом строятся графики $y = \varphi(x)$ и y = g(x) (рисунок 2.2). Абсциссы точек пересечения этих графиков будут приближенными значениями корней. Затем выделяют интервалы, внутри которых находится только один корень.

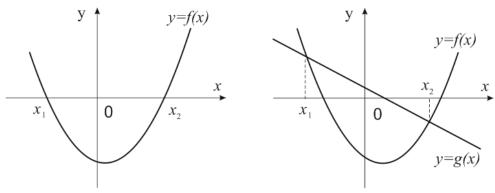


Рисунок 2.1 – Первый способ

Рисунок 2.2 – Второй способ

Для отыскания комплексных корней уравнения вида

$$f(z) = 0, (2.2)$$

можно, положив z = x + iy, представить уравнение (2.2) в виде

$$\varphi(x, y) + i\psi(x, y) = 0,$$

где $\varphi(x,y)$ и $\psi(x,y)$ – действительные функции действительных переменных x и y.

Тогда это уравнение равносильно решению системы двух уравнений

$$\begin{cases} \varphi(x, y) = 0 \\ \psi(x, y) = 0 \end{cases}$$

Построив кривые $\varphi(x,y) = 0$ и $\psi(x,y) = 0$, получим действительные и мнимые части корней уравнения (1.2) как соответственно абсциссы и ординаты их точек пересечения.

2.1.1.2. Аналитический метод отделения корней

Аналитически корень уравнения можно определить, используя некоторые свойства функции, изучаемые в курсе математического анализа. Если в уравнении (2.1) функция y = f(x) непрерывная, то следует воспользоваться следующими известными фактами:

- 1. Если на концах некоторого отрезка непрерывная функция принимает значения разных знаков, то на этом отрезке уравнение (2.1) имеет, по крайней мере, один корень.
- 2. Если при этом функция имеет первую производную, не меняющую знака, то корень будет единственным.
- 3. Пусть аналитическая функция y = f(x) на концах [a,b] принимает значения разных знаков, то есть f(a)f(b) < 0, то между a и b имеется нечетное число корней уравнения (2.1); если же на концах [a,b] функция принимает значения одинаковых знаков, то есть f(a)f(b) > 0, то между a и b или нет корней, или их имеется четное число (с учетом кратности).

Для непрерывной на отрезке [a,b] функции f(x) можно предложить следующий порядок действий для отделения корней аналитическим методом:

- 1. Найти f'(x) и определить критические точки.
- 2. Составить таблицу знаков функции f(x), полагая x равным:
 - а) критическим значениям производных или ближайшим к ним;
- б) граничным значениям области допустимых значений неизвестных.
- 3. Отделить интервалы, на концах которых функция принимает значения разных знаков. Внутри этих интервалов содержится по одному корню.

Пример. Пусть дано $f(x) = x^3 - 6x + 2 = 0$. Отделить его корни.

Решение. Составляем приблизительную схему. Находим производную и ее критические точки $f'(x) = 3x^2 - 6 = 0$. Они равны $x_1 = \sqrt{2}$, $x_2 = -\sqrt{2}$.

Таблица 2.1 – Знаки функции

X	$-\infty$	-3	-1	0	1	3	$+\infty$
sign f(x)	_	_	+	+	_	+	+

Из таблицы 2.1 следует, что рассматриваемое уравнение имеет три действительных корня, лежащих в интервалах (-3, -1), (0, 1) и (1, 3), то есть имеет место 3 смены знаков функции.

2.1.2. Определение числа действительных корней

Пусть дано алгебраическое уравнение n степени

$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = 0,$$
 (2.3)

где $a_0, a_1, ..., a_n$ – действительные коэффициенты.

Определить приближенно **число** действительных корней уравнения (2.3) можно с помощью **правила** Декарта: число положительных корней уравнения (2.3) с учетом их кратностей равно числу перемен знаков в последовательности коэффициентов $a_0, a_1, ..., a_n$ (причем равные нулю коэффициенты не учитываются) или меньше этого числа на четное число. Для определения числа отрицательных корней достаточно применить правило Декарта к многочлену f(-x).

Более точно число корней уравнения (2.3) можно определить, используя теорему Штурма: Пусть уравнение (2.3) не имеет кратных корней на некотором отрезке [a,b]. Обозначим через $f_1(x)$ производную f'(x); через $f_2(x)$ остаток от деления f(x) на $f_1(x)$, взятый с обратным знаком; через $f_3(x)$ остаток от деления $f_1(x)$ на $f_2(x)$, взятый с обратным знаком; и т. д. до тех пор, пока не получим $f_n(x) = \text{const}$. Получился так называемый ряд Штурма:

$$f(x), f_1(x), f_2(x), \dots, f_n(x)$$
. (2.4)

Число действительных корней уравнения (2.3), расположенных на отрезке [a,b], равно разности между числом перемен знаков в последовательности (2.4) при x=a и числом перемен знаков в последовательности (2.4) при x=b.

Практическое применение теоремы Штурма сводится к следующему: определяются границы отрезка, на котором расположены действительные корни уравнения (2.3) и их число. Полученный отрезок [a,b] делится на некоторое число частей точками α_i : $a=\alpha_0<\alpha_1<\alpha_2<...<\alpha_{n-1}<\alpha_n=b$. Рассматривая отрезок $[\alpha_i,\alpha_{i-1}]$ по теореме Штурма, определяется число корней на этом отрезке. Если окажется, что их больше одного, то этот отрезок делится пополам и теорема Штурма применяется к каждому полученному отрезку. Процесс продолжается до тех пор, пока на каждой части отрезка [a,b] уравнение (2.3) будет иметь не больше одного действительного корня.

Пример. Отделить корни уравнения

$$f(x) = 4x^3 - 2x^2 - 4x - 3 = 0.$$

Находим выражения: $f_1(x) = 3x^2 - x - 1$, $f_2(x) = 26x + 29$, $f_3(x) = -1$. Составляем таблицу перемены знаков.

Из таблицы 2.2 видно, что действительный корень один и находится он в интервале (1,2).

Таблица 2.2 – Перемена знаков

X	$-\infty$	0	1	2	+8
sign f(x)	_	_	_	+	+
$sign f_1(x)$	+	_	+	+	+
$sign f_2(x)$	_	+	+	+	+
$sign f_3(x)$	_	_	_	_	_
Число перемен знаков	2	2	2	1	1

2.1.3. Методы итераций, хорд и Ньютона

На данном этапе задача состоит в получении приближенного значения корня, принадлежащего отрезку [a,b], с заданной точностью (погрешностью) ε . Это означает, что вычисленное значение корня \tilde{x} должно отличаться от точного x^* не более чем на величину ε , то есть $|x^* - \tilde{x}| \le \varepsilon$.

Существует большое количество численных методов решения нелинейных уравнений для уточнения корней: метод половинного деления; метод хорд; метод простой итерации; метод Ньютона; метод парабол (Метод Мюллера); метод Ридерса; метод Дэккера и Брэнта; метод Лобачевского.

Все методы уточнения основаны на последующем приближении.

2.1.3.1. Метод итераций

Уравнение (2.1) заменяется равносильным ему уравнением

$$x = \varphi(x). \tag{2.5}$$

Допустим, нам известно некоторое начальное приближение x_0 . Тогда, в методе итераций, все приближения строятся по формуле

$$x_{k+1} = \varphi(x_k), \quad k = 0, 1, 2, \dots$$
 (2.6)

Если последовательность (2.6) сходится при некотором выборе начального приближения x_0 , то существует предел $\xi = \lim_{k \to \infty} x_k$ и предполагая функцию $\varphi(x)$ непрерывной, найдем $\lim_{k \to \infty} x_k = \varphi(\lim_{k \to \infty} x_{k-1})$ или $\xi = \varphi(\xi)$. Таким образом, ξ является корнем уравнения (2.5) и может быть вычислен по формуле (2.6) с любой степенью точности.

Поэтому для практического применения метода итерации нужно выяснить достаточные условия сходимости итерационного процесса.

Теорема. Пусть $\varphi(x)$ определена и дифференцируема на [a,b] и все её значения принадлежат отрезку [a,b]. Если существует такое q, что

$$|\varphi'(x)| \le q < 1,\tag{2.7}$$

то **итерационный процесс (2.6) сходится** κ единственному корню на отрезке [a,b].

Для скорости сходимости итерационного процесса, справедливы соотношения

$$|\xi - x_n| \le q^n |\xi - x_0| \tag{2.8}$$

$$\left|\xi - x_n\right| \le \frac{q^n}{1 - q} \left|x_1 - x_0\right|$$
 (2.9)

$$\left|\xi - x_0\right| \le \frac{q}{1 - q} \left|x_n - x_{n-1}\right|.$$
 (2.10)

Из (2.8) следует, что метод сходится со скоростью геометрической прогрессии со знаменателем q. Формула (2.9) позволяет определить достаточное число итераций n при выбранном $|x_1-x_0|$. На практике для оценки сходимости удобно пользоваться (2.10). Так, если $\varepsilon>0$ $|x_n-x_{n-1}|\leq \frac{1-q}{q}\varepsilon$, то корни уравнения определяются с точностью до ε .

Обычно для получения $\varphi(x)$ пользуются следующим способом приведения (2.1) к виду (2.5). Строят уравнение

$$x = x - \lambda f(x), \tag{2.11}$$

где λ – параметр.

Пусть f'(x) постоянного знака на отрезке [a,b]. Для нахождения λ положим

$$\lambda = \begin{cases} \frac{k}{M_1}, & f'(x) > 0\\ \frac{-k}{M_1}, & f'(x) < 0 \end{cases}, k = 1, 2, ..., M_1 = \max_{x \in [a,b]} |f'(x)|,$$

В этом случае будет верно $|\phi'(x)| < 1$, значит итерационный процесс по формуле (2.11) будет сходящимся.

2.1.3.2. Метод хорд

Пусть дано уравнение (2.1) с непрерывными на отрезке [a,b] функцией f(x)и ее производными f'(x), f''(x). Корень считается отделённым на [a,b] и притом единственным.

Рассмотрим случай, когда f'(x), f''(x) — одного знака. Пусть для определенности f(a) < 0 < f(b), f'(x) > 0, f''(x) > 0, то есть f'(x)f''(x) > 0. График функции y = f(x) проходит через точки $A_0(a, f(a)), B(b, f(b))$ (рисунок 2.3).

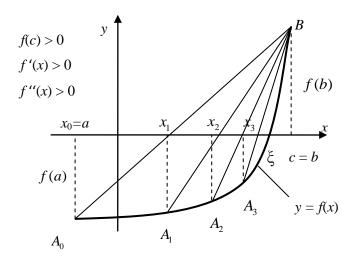


Рисунок 2.3 – Иллюстрация метода хорд f(c)f''(c) > 0

Искомый корень ξ уравнения f(x) = 0 — есть абсцисса пересечения графика y = f(x) с осью OX. Эта точка нам известна, но вместо нее можно взять точку x — точку пересечения хорды A_0B с осью OX. Это и будет первое приближение к корню ξ . Уравнение хорды, проходящей через две точки A_0 и B, запишется:

$$\frac{y-f(a)}{f(b)-f(a)} = \frac{x-a}{b-a}.$$

Положив y = 0, найдем $x = x_1$

$$x = a - \frac{f(a)(b-a)}{f(b) - f(a)}.$$

Следовательно, последовательные приближения при этом можно вычислить по следующей итерационной формуле:

$$x_{n+1} = x_n - \frac{f(x_n)(x_n - c)}{f(x_n) - f(c)}.$$
 (2.12)

В формуле (2.12) точка c является неподвижной и в качестве ее берется тот конец [a,b], для которого выполняется условие f(c)f''(c) > 0, а за начальное приближение x_0 выбирается противоположный конец [a,b], так что $f(x_0)f(c) < 0$ (в нашем случае c = b, $x_0 = a$).

Описанный метод называется также **методом секущих** или методом линейной интерполяции. Последовательные приближения в методе хорд образуют — монотонную, ограниченную сверху или снизу корнем ξ последовательность. При этом справедлива оценка:

$$|\xi - x_n| \le \frac{M_1 - m_1}{m_1} |x_n - x_{n-1}|,$$
 (2.13)

где
$$M_1 = \max_{x \in [a,b]} |f'(x)|;$$

$$m_1 = \min_{x \in [a,b]} |f'(x)|.$$

Оценка (1.13) позволяет на каждом шаге следить за достигнутой точностью.

При решении задачи на ЭВМ целесообразно отрезок [a,b] выбирать столь малым, чтобы выполнялось условие $M_1 \le 2m_1$. В этом случае итерационный процесс сходится быстро.

Метод хорд (секущих) можно рассматривать, как метод итерации для эквивалентного уравнения:

$$x = x - \frac{f(x)(x-c)}{f(x) - f(c)} = \varphi(x)$$
, где $f(c)f''(c) > 0$.

Геометрически этот метод состоит в том, что значение x_{n+1} есть абсцисса точки пересечения прямой, проходящей через точки $(x_0, f(x_0))$ и $(x_n, f(x_n))$ с осью Ox. Графическая иллюстрация метода приведена [5]. Следует обратить внимание на то, как выбирается неподвижная точка.

Из приведенного выше следует, что выбор неподвижной точки осуществляется следующим образом:

1 — неподвижен тот конец отрезка, для которого знак функции f(x) совпадает со знаком ее второй производной f''(x).

2 – последовательные приближения x_n лежат по ту сторону корня ξ , где функция f(x) имеет знак, противоположный знаку ее второй производной f''(x).

В обоих случаях каждое следующее приближение x_{n+1} ближе к корню ξ , чем предшествующее x_n .

2.1.3.3. Метод Ньютона

Метод Ньютона (касательных) позволяет привести решение нелинейных уравнений к решению последовательности линейных задач. Достигается это при помощи выделения из нелинейного уравнения его главной линейной части.

Пусть корень уравнения (2.1) отделен на [a,b], причем f'(x), f''(x) непрерывны и сохраняют определенные знаки и f'(x) не обращается в нуль на [a,b]. Метод Ньютона заключается в том, что кривая уравнения y = f(x) заменяется касательной к ней. Имея n-е приближение корня $\xi \approx x_n \in [a,b]$, уточним его по методу Ньютона следующим образом: положим

$$\xi = x_n + h_n, \tag{2.14}$$

где h_n считаем малой величиной.

Теперь, применяя формулу Тейлора, получим

$$f(\xi) = 0 = f(x_n + h_n) = f(x_n) + h_n f'(x_n).$$

Откуда следует, что

$$h_n = -\frac{f(x_n)}{f'(x_n)}.$$

Внося эту поправку в формулу (2.14), найдем следующее приближение корня

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2,$$
 (2.15)

Геометрически метод Ньютона (2.15) эквивалентен замене небольшой дуги кривой y = f(x) касательной, проведенной в некоторой точке касания (рисунок 2.4).

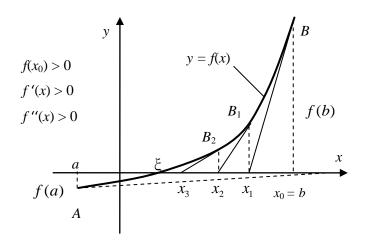


Рисунок 2.4 – Иллюстрация метода Ньютона

Если положить (рисунок 2.11) $x_0 = a$ и, следовательно, $f(x_0)f''(x_0) < 0$ то, проведя касательную к кривой y = f(x) в точке A(a, f(a)), получили бы точку x_1^1 , лежащую **вне** отрезка [a,b], и можем не прийти к корню $\xi \approx x_n \in [a,b]$ уравнения (2.1). Поэтому за начальное приближение x_0 в формуле (2.15) выбирается тот конец отрезка [a,b], для которого знак функции совпадает со знаками второй производной, то есть $f(x_0)f''(x_0) > 0$.

Теорема. Если f(a)f(b) < 0, причем f'(x), f''(x) отличны от нуля и сохраняют определенные знаки при $x \in [a,b]$, удовлетворяющего неравенству $f(x_0)f''(x_0) > 0$, то можно вычислить методом Ньютона по формуле (2.15) единственный корень ξ уравнения (2.1) с любой степенью точности.

Из формулы (2.15) видно, что чем больше численное значение производной f'(x) в окрестности данного корня, тем меньше поправка, которую нужно прибавить к n-му приближению, чтобы получить (n+1)-е приближение. Поэтому метод Ньютона особенно удобно применять тогда, когда в окрестности данного корня график функции имеет большую крутизну. Но, если численное значение производной f'(x)близ корня мало, то поправки будут велики, и вычисление корня по этому методу может оказаться очень долгим, а иногда и вовсе невозможным. Следовательно, если кривая y = f(x) вблизи точки пересечения с осью Ox почти горизонтальна, то применять метод Ньютона для решения уравнения (2.1) не рекомендуется.

Для оценки погрешности n-го приближения x_n можно воспользоваться формулой

$$\left|\xi - x\right| \le \frac{\left|f(x_n)\right|}{m_1} \tag{2.16}$$

или формулой

$$\left|\xi - x\right| \le \frac{M_2}{2m_1} (x_n - x_{n-1})^2,$$
 (2.17)

где
$$M_2 = \max_{x \in [a,b]} |f''(x)|;$$

$$m_1 = \min_{x \in [a,b]} |f'(x)|.$$

В общем случае совпадение с точностью до ε двух последовательных приближений x_n и x_{n+1} вовсе не гарантирует, что с той же точностью совпадает значение x_{n+1} и корень ξ (рисунок 2.5).

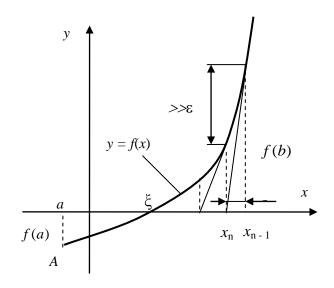


Рисунок 2.5 – О двух последовательных приближениях

Оценки (2.16), (2.17) указывают на квадратичную сходимость метода Ньютона. Поэтому если f'(x) мало меняется на [a,b], то можно пользоваться видоизмененной формулой Ньютона:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}, \quad n = 0, 1, 2,...$$
 (2.18)

В этом случае для получения требуемой точности в отличии от формулы (2.15) необходимо сделать лишь несколько дополнительных шагов.

Пример. Методом хорд и Ньютона с точностью $\epsilon = 10^{-3}$ решить уравнение

$$x^3 + 3x^2 - 3 = 0$$
.

Использовать правило Декарта для определения числа корней.

Решение. Определим по правилу Декарта число положительных и отрицательных корней. Пусть $f(x) = x^3 + 3x^2 - 3$. Имеем два положительных коэффициента (1 и 3) и один отрицательный (–3) коэффициент. Но тогда уравнение f(x) = 0 имеет, по крайней мере, один положительный корень, так как имеется только одна перемена знака. Теперь, заменяя x на -x, получим, что в коэффициентах уравнения $f(-x) = -x^3 + 3x^2 - 3 = 0$ имеется две перемены знака, а это означает, что данное уравнение имеет два отрицательных действительных корня.

Отделение корней проведем аналитически. Функция f(x) определена для любых x. Найдем производные, а затем критические точки:

$$f'(x) = 3x^2 + 6x$$
, $f'(x) = 0$, $\Rightarrow x(x+2) = 0$, $\Rightarrow x = 0$ и $x = -2$. Составим таблицу знаков для функции $f(x)$.

Таблица 2.3 – Знаки функций

Х	$-\infty$	-3	-2	1	0	+1	+∞
sign f(x)	_	_	+	_	_	+	+

Из таблицы 2.3 видно, что имеется три перемены знака, следовательно, действительные корни лежат в интервалах: (-3, -2), (-2, 1) и (0, 1).

Теперь перейдем непосредственно к вычислению корней. При вычислениях будем использовать видоизменение метода Ньютона (2.18) с постоянным значением производной:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}, \quad n = 0, 1, 2,...$$
 (2.22)

Для окончания счета по методу хорд или методу Ньютона воспользуемся зависимостью

$$|\xi - x_n| \le |x_n - x_{n-1}| \le \varepsilon$$
.

Но для этого сначала надо проверить, что для выбранного интервала выполняется условие $M_1 \leq 2m_1$, где $M_1 = \max_{x \in [a, b]} \left| f'(x) \right|, \ m_1 = \min_{x \in [a, b]} \left| f'(x) \right|.$

Возьмем сначала промежуток [-3,-2]. Имеем $M_1 = \max_{x \in [-3,3]} \left| f'(x) \right| = 3 \max_{x \in [-3,3]} \left| x^2 + 2x \right| = 9 \,, \quad m_1 = \min_{x \in [-3,3]} \left| 3(x^2 + 2x) \right| = 0 \,.$ Значит, $M_1 > 2m_1$.

Разделим данный промежуток на две части и рассмотрим отрезки [-3,-2,5] и [-2,5,-2]. На первом промежутке функция меняет знак (значит здесь лежит корень уравнения), а на втором — нет. Тогда для первого промежутка $M_1=9$ и $m_1=3,75$. Опять имеем $M_1>2m_1$. Снова разбиваем интервал на две части и после проверки знаков функции остается промежуток [-2,75,-2,5], на котором $M_1=6,189$ и $m_1=3,75$, но тогда $M_1<2m_1$.

Теперь уточним корень, лежащий на отрезке [-2,75,-2,5] по:

- методу хорд (секущих) по формулам (2.12)

$$x_1 = b - \frac{f(b)(b-a)}{f(b) - f(a)}$$
 u $x_{n+1} = x_n - \frac{f(x_n)(x_n - a)}{f(x_n) - f(a)}$,

где a=-2,75, f(a)=-1,10938, f''(a)=-1,75, то f(a)f''(a)>0, тогда за начальную точку берем $x_0=-2,5$.

Проделав вычисления, получим, что $\xi \approx x_n \approx -2,532$;

— **методу Ньютона** (касательных), применяя формулу (2.22), учитывая, что f(-2.75)f''(-2.75)>0 и $x_0=-2.75$, получим $\xi\approx x_n\approx -2,533$.

Результаты вычислений по обоим методам приведены в таблице 2.4.

Таблица 2.4 – Вычисления по методу хорд и Ньютон
--

	Men	год хорд	Метод Ньютона				
n	X_n	$-\frac{f(x_n)(x_n-c)}{f(x_n)-f(c)}$	n	X_n	$-\frac{f(x_n)}{f'(x_0)}$		
0	-2,5	0,02532	0	-2,75	0,17929		
1	-2,52532	0,00537	1	-2,57071	0,02634		
2	-2,53069	0,00111	2	-2,54436	0,00813		
3	-2,5318	$0,00023 < 10^{-3}$	3	-2,53623	0,00272		
4	-2,53203		4	-2,53351	$0,00093 < 10^{-3}$		
			5	-2,53258			

Для метода хорд $\xi \approx x_4 \approx -2,53203$, а для метода Ньютона, так как $|x_5-x_4| \leq 0,001$, то $\xi \approx x_5 \approx -2,53258$.

2.2. Численные методы решения систем нелинейных уравнений

2.2.1. Общая постановка задачи

Пусть дана система нелинейных уравнений с *п* неизвестными

или $f_i(x_1, x_2, ..., x_n) = 0, i = 1, ..., n$, или, более коротко, в векторной форме

$$f(x) = 0, (2.24)$$

где x — вектор неизвестных величин; f — вектор-функция

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} f = \begin{pmatrix} f_1(x) \\ f_2(x) \\ \dots \\ f_n(x) \end{pmatrix} 0 = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$$

Рассматривается задача: с заданной точностью решить систему уравнений (2.23) или (2.24). Требуется найти такой вектор x, который при подстановке в систему вида (2.23) превращает каждое уравнение в верное числовое равенство.

Особенностью этой задачи является ее сложность. Дело в том, что в общем случае неизвестно количество решений системы (2.23), в том числе и имеет ли система хотя бы одно решение. Если же решение существует, то корни могут быть найдены только приближенно, поскольку для системы (2.23) в принципе не существует прямых методов нахождения решений. В редких случаях для решения такой системы удается применить метод последовательного исключения неизвестных и свести решение исходной задачи к решению одного нелинейного уравнения с одним неизвестным. Значения других неизвестных величин находятся соответствующей подстановкой в конкретные выражения.

Пример. Решим нелинейную систему

$$\begin{cases} xy^2 + 4 = 0 \\ x - y^2 + 5 = 0 \end{cases}$$

Решение. Из второго уравнения найдем $x = y^2 - 5$ и подставим в первое. Получаем уравнение с одним неизвестным

$$y^2(y^2-5)+4=0$$
,

корни которого $y_1=1, y_2=-1, y_3=2, y_4=-2$. Решениями системы являются точки $(x_1,y_1), (x_2,y_2), (x_3,y_3), (x_4,y_4)$ или в численном значении (-4,1), (-4,-1), (-1,2), (-1,-2).

Однако в подавляющем большинстве случаев для решения систем нелинейных уравнений используются итерационные методы.

В дальнейшем предполагается, что ищется изолированное решение нелинейной системы. Как и в случае одного нелинейного уравнения, локализация решения может осуществляться на основе специфической информации по конкретной решаемой задаче (например, по физическим соображениям), и с помощью методов математического анализа. При решении системы двух уравнений, достаточно часто удобным является графический способ, когда месторасположение корней определяется как точки пересечения кривых $f_1(x_1, x_2) = 0$, $f_2(x_1, x_2) = 0$ на плоскости (x_1, x_2) .

2.2.2. Метод простой итерации для систем нелинейных уравнений n-го порядка

Аналогично методу простой итерации для нелинейных уравнений, построим рассуждения относительно решения систем нелинейных уравнений этим методом.

Пусть необходимо решить систему нелинейных уравнений вида (2.23). Приведем эту систему предварительно к виду

$$\begin{cases} x_1 &= \phi_1(x_1, x_2, ..., x_n), \\ x_2 &= \phi_2(x_1, x_2, ..., x_n), \\ ... &... &... \\ x_n &= \phi_n(x_1, x_2, ..., x_n), \end{cases}$$
(2.25)

или, в векторной форме, $x = \Phi(x)$.

Пусть $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)})$ — начальное приближение. Последующие приближения в методе простой итерации находятся по формулам

$$\begin{cases} x_1^{(k+1)} &= \phi_1(x_1^{(k)}, x_2^{(k)}, ..., x_n^{(k)}), \\ x_2^{(k+1)} &= \phi_2(x_1^{(k)}, x_2^{(k)}, ..., x_n^{(k)}), \\ ... & ... & ... \\ x_n^{(k+1)} &= \phi_n(x_1^{(k)}, x_2^{(k)}, ..., x_n^{(k)}), \end{cases}$$
(2.26)

или, в векторной форме, $x^{(k+1)} = \Phi(x^{(k)}), k = 0, 1, \dots$

Если последовательность векторов $x^{(k)} = (x_1^{(k)}, x_2^{(k)}, ..., x_n^{(k)})$ сходится к вектору $x^* = (x_1^*, x_2^*, ..., x_n^*)$, а функции $\varphi_i(x)$ непрерывны, то вектор x^* является решением системы (2.24).

Допустим, что в некоторой выпуклой области G функции $\phi_i(x)$

имеют непрерывные первые производные $\frac{\partial \varphi_i(x)}{\partial x_j}$, $M_{i,j} = \max_G \left| \frac{\partial \varphi_i(x)}{\partial x_j} \right|$ и

в G система (2.23) имеет единственное решение $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$. Будем считать, что при некотором начальном приближении $x^{(0)}$ все последующие приближения $x^{(k)}$ не выходят из области G.

Теорема. Для сходимости метода итераций достаточно, чтобы все собственные значения матрицы $M = [M_{i,j}]$ были по модулю меньше 1, а начальное приближение $x^{(0)}$ было достаточно близко к решению α .

Условие теоремы будет выполнено, если какая-нибудь из норм матрицы M меньше единицы. Следовательно, для сходимости метода итерации достаточно выполнения одного из условий

$$\sum_{j=1}^{n} M_{i,j} < 1, i = \overline{1,n}, \sum_{i=1}^{n} M_{i,j} < 1, j = \overline{1,n}, \sum_{i,j=1}^{n} M_{i,j} < 1.$$

2.2.2.1. Метод простой итерации для систем нелинейных уравнений второго порядка

Пусть дана система двух уравнений с двумя неизвестными

$$\begin{cases} F_1(x, y) = 0 \\ F_2(x, y) = 0 \end{cases}$$
 (2.27)

Требуется найти действительные корни системы (2.27) с заданной степенью точности.

Предположим, что система (2.27) допускает лишь изолированные корни. Число этих корней и их приближенные значения можно установить, построив кривые $F_1(x,y) = 0$ и $F_2(x,y) = 0$, и определив координаты их точек пересечения.

Для применения метода итераций система (3.27) приводится к виду

$$x = \phi_1(x, y)$$

$$y = \phi_2(x, y)$$

$$(2.28)$$

Функции $\phi_1(x, y)$, $\phi_2(x, y)$ называются *итерирующими*.

Алгоритм решения задается формулами

$$\begin{cases} x_{n+1} &= \phi_1(x_n, y_n) \\ y_{n+1} &= \phi_2(x_n, y_n) \end{cases}, n = 0, 1, 2, \dots$$
 (2.29)

где x_0 , y_0 — некоторое начальное приближение.

Имеет место следующая теорема.

Теорема. Пусть в некоторой замкнутой окрестности R ($a \le x \le A, b \le y \le B$) имеется одно и только одно решение $x = \xi, y = \eta$ системы (2.28). Если

- 1) функции $\varphi_1(x, y)$, $\varphi_2(x, y)$ определены и непрерывно дифференцируемы в R;
- 2) начальные приближения x_0, y_0 и все последующие приближения $x_n, y_n, n=1, 2,...$ принадлежат R;
 - 3) в R выполнены неравенства

$$\begin{cases}
\left| \frac{\partial \varphi_{1}}{\partial x} \right| + \left| \frac{\partial \varphi_{2}}{\partial x} \right| \leq q_{1} < 1 \\
\left| \frac{\partial \varphi_{1}}{\partial y} \right| + \left| \frac{\partial \varphi_{2}}{\partial y} \right| \leq q_{2} < 1
\end{cases}$$
(2.30)

то процесс последовательных приближений (2.29) сходится к решению $x=\xi,\ y=\eta$ системы, то есть

$$\lim_{n\to\infty} x_n = \xi, \lim_{n\to\infty} y_n = \eta.$$

Эта теорема остается верной, если условие (2.30) заменить условием

$$\begin{cases}
\left|\frac{\partial \varphi_{1}}{\partial x}\right| + \left|\frac{\partial \varphi_{1}}{\partial y}\right| \leq q_{1} < 1 \\
\left|\frac{\partial \varphi_{2}}{\partial x}\right| + \left|\frac{\partial \varphi_{2}}{\partial y}\right| \leq q_{2} < 1
\end{cases}$$
(2.31)

Это есть условие сходимости итерационного процесса. Оценка погрешности n-го приближения дается неравенством

$$\left|\xi - x_n\right| + \left|\eta - y_n\right| \le \frac{M}{1 - M} \left(\left|x_n - x_{n-1}\right| + \left|y_n - y_{n-1}\right|\right),$$

где M — наибольшее из чисел q_1, q_2 , входящих в неравенства (2.30) или в неравенства (2.31).

Сходимость метода итераций считается хорошей, если $M < \frac{1}{2}$, при этом $\frac{M}{1-M} < 1$, так что если в двух последовательных приближениях совпадают, скажем, первые три десятичных знака после запятой, то ошибка последнего приближения не превосходит 0,001.

2.2.3. Метод Ньютона для систем нелинейных уравнений n-го порядка

Метод Ньютона применяется к решению систем уравнений вида (2.23)

$$f_i(x_1, x_2, ..., x_n) = 0, i = 1, ..., n$$
.

Введем матрицу Якоби J(x) для функций $f_i(x) = 0, i = 1,...,n$, которые будем предполагать непрерывно дифференцируемыми

$$J(x) = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \dots & \frac{\partial f_1(x)}{\partial x_n} \\ \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \dots & \frac{\partial f_2(x)}{\partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial f_n(x)}{\partial x_1} & \frac{\partial f_n(x)}{\partial x_2} & \dots & \frac{\partial f_n(x)}{\partial x_n} \end{bmatrix}.$$
(2.32)

Пусть задано начальное приближение $x^{(0)}$. Вместо нелинейного уравнения (2.24) решаем линейное уравнение

$$f(x^{(0)}) + J(x^{(0)})(x - x^{(0)}) = 0. (2.33)$$

Если $\det J(x^{(0)}) \neq 0$, то уравнение (2.33) имеет единственное решение, которое обозначим $x^{(1)}$. Вначале удобно решить уравнение (2.33) относительно $\Delta x^{(0)} = x - x^{(0)}$, а затем вычислить $x^{(1)} = x^{(0)} + \Delta x^{(0)}$. Если найдено $x^{(k)}$, то $x^{(k+1)}$ вычисляем по формуле $x^{(k+1)} = x^{(k)} + \Delta x^{(k)}$, а поправку $\Delta x^{(k)} = (\Delta x_1^{(k)}, ..., \Delta x_n^{(k)})$ находим из системы

$$f(x^{(k)}) + J(x^{(k)}) \Delta x^{(m)} = 0,$$

которая в координатной форме имеет вид:

2.2.3.1. Метод Ньютона для систем нелинейных уравнений второго порядка

Пусть дана система

$$\begin{cases}
F(x, y) = 0 \\
G(x, y) = 0
\end{cases}$$
(2.35)

Согласно методу Ньютона, последовательные приближения вычисляются по формулам

$$x_{n+1} = x_n - \frac{A_n}{J_n}, \ y_{n+1} = y_n - \frac{B_n}{J_n},$$
 (2.36)

где

$$A_{n} = \begin{vmatrix} F(x_{n}, y_{n}) & F'_{y}(x_{n}, y_{n}) \\ G(x_{n}, y_{n}) & G'_{y}(x_{n}, y_{n}) \end{vmatrix}, B_{n} = \begin{vmatrix} F'_{x}(x_{n}, y_{n}) & F(x_{n}, y_{n}) \\ G'_{x}(x_{n}, y_{n}) & G(x_{n}, y_{n}) \end{vmatrix},$$

$$J_{n} = \begin{vmatrix} F'_{x}(x_{n}, y_{n}) & F'_{y}(x_{n}, y_{n}) \\ G'_{x}(x_{n}, y_{n}) & G'_{y}(x_{n}, y_{n}) \end{vmatrix} \neq 0.$$

Метод Ньютона сходится, если начальное приближение выбрано удачно (при достаточной близости к решению системы) и матрица $J(x^*)$ невырожденная. На практике итерации обычно оканчивают, если $\|x^{(n+1)}-x^{(n)}\| \le \varepsilon$. Для выбора начального приближения применяют, чаще всего, графический метод.

Пример. Найти решение системы $\begin{cases} f(x,y) = x^3 - y^2 - 1 = 0 \\ g(x,y) = xy^3 - y - 4 = 0 \end{cases}$ с точностью $\varepsilon = 10^{-3}$.

Решение. Отделим корни системы графически (рисунок 2.6).

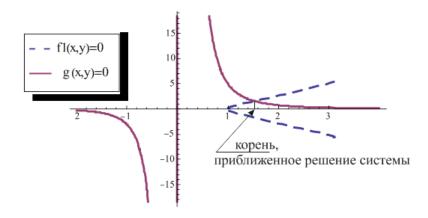


Рисунок 2.6 – Графический способ отделения корней

В качестве начального значения можно взять $x_0 = 1,5, y_0 = 1,5$. В дальнейшем итерации проводятся по формулам (2.36). Программа по методу Ньютона для нашей системы может иметь следующий вид.

```
program nyton_nel;
function f1(a,b: real): real;  //Функция 1
begin
Result := a*a*a-b*b-1;
end;
function g1(a,b: real): real;  //Функция 2
begin
Result := a*b*b*b-b-4;
end;
function f1px(a: real): real;  //Производная Функции 1 по a
begin
Result := 3*a*a;
end;
```

```
function flpy(b: real): real; //Производная Функции 1 по b
     begin
     Result := -2*b;
    function glpx(b: real): real; //Производная Функции 2 по а
     begin
     Result := b*b*b;
     end;
    function glpy(a,b: real): real; //Производная Функции 2 по b
     Result := 3*a*b*b-1;
     end;
    function det(a,b,c,d: real): real; //вычисление определителя
     begin
     Result := a*d-c*b;
     end;
        a,b,JJ:array[1..2,1..2] of real;
   var
        b0:array[1..2] of real;
         eps, x0, y0, x1, y1, detJJ, detA, detB: real;
         i,j,k,kol:integer;
   begin
     write ('введите начальное приближение- x0, y0: ');
     readln(b0[1],b0[2]);
      x0:=b0[1]; y0:=b0[2];
      writeln ('Ncxoдные данные: x=', x0:6:3,' y=', y0:6:3);
     A[1,1] := f1(x0,y0); A[1,2] := f1py(y0);
     A[2,1] := g1(x0,y0); A[2,2] := g1py(x0,y0);
     B[1,1] := f1px(x0); B[1,2] := f1(x0,y0);
     B[2,1] := g1px(y0); B[2,2] := g1(x0,y0);
     JJ[1,1] := f1px(x0); JJ[1,2] := f1py(y0);
     JJ[2,1] := g1px(y0); JJ[2,2] := g1py(x0,y0);
    eps:=0.001; //точность вычислений
     writeln ('Метод Ньютона');
     writeln (' для 1 приближения:');
     writeln (' матрица A матрица B Якобиан J вектор b');
       for i:=1 to 2 do
        begin
          write (A[i,1]:8:3, A[i,2]:8:3);
          write (B[i,1]:8:3, B[i,2]:8:3);
          write (JJ[i,1]:8:3,JJ[i,2]:8:3);
          write (' ', b0[1]:8:3, b0[2]:8:3);
          writeln;
         end;
detJJ:=det(f1px(x0), f1py(y0), g1px(y0), g1py(x0, y0));
           if abs(detJJ)<eps then</pre>
```

```
begin
          writeln ('Метод некорректен, Якобиан равен нулю');
            exit;
      kol:=0; //количество итераций
                 //Флаг счета: 0 - точность не выполняется
      k := 0:
    While (k=0) do
    begin
       detA:=det(f1(x0,y0),f1py(y0),g1(x0,y0),g1py(x0,y0));
       detB:=det(f1px(x0), f1(x0, y0), g1px(y0), g1(x0, y0));
       detJJ:=det(f1px(x0), f1py(y0), g1px(y0), g1py(x0, y0));
            x1:=x0-detA/detJJ; // новое приближение
            y1:=y0-detB/detJJ;
      {проверка на совпадение}
       if ((abs(x1-x0)) > eps) and (abs(y1-y0)) > eps))
            then
              begin
               x0:=x1; //обновление приближений
               y0 := y1;
              end
            else
              k := 1;
       kol:=kol+1;
    end;
  writeln ('Предпоследнее приближение');
    writeln (x0:8:4,y0:8:4);
  writeln ('Решение системы:');
    writeln ('x=',x1:8:4,' y=',y1:8:4);
    writeln ('Количество итераций = ', kol:3);
end.
```

Ниже приведены результаты работы программы.

```
введите начальное приближение- х0,у0: 1.5 1.5
Исходные данные: x= 1.500 y= 1.500
Метол Ньютона
   для 1 приближения:
   матрица А
                 матрица В
                                Якобиан Ј вектор b
  0.125 -3.000 6.750 0.125 6.750 -3.000
                                                1.500
 -0.438 9.125 3.375 -0.438 3.375 9.125
                                                1.500
Предпоследнее приближение
 1.5024 1.5471
Решение системы:
x = 1.5020 y = 1.5456
Количество итераций = : 2
```

Постановка индивидуальных заданий

Задание 2.1. Отделить корни уравнения графически и аналитически. Уточнить один из них методами итераций, хорд, Ньютона.

Варианты заданий:

1.
$$2x^{3} - 3x^{2} - 12x - 5 = 0$$
2. $x^{3} - 3x^{2} + 3 = 0$
3. $x^{3} + 3x^{2} - 24x - 10 = 0$
4. $2x^{3} + 9x^{2} - 21 = 0$
5. $x^{3} + 3x^{2} - 24x + 10 = 0$
6. $x^{3} + 3x^{2} - 24x + 10 = 0$
7. $2x^{3} + 9x^{2} - 10 = 0$
8. $x^{3} + 3x^{2} - 3 = 0$
9. $2x^{3} - 3x^{2} - 24x - 5 = 0$
11. $2x^{3} - 3x^{2} - 24x - 5 = 0$
12. $2x^{3} + 9x^{2} - 6 = 0$
13. $2x^{3} - 3x^{2} - 24x - 5 = 0$
14. $2x^{3} - 3x^{2} - 24x - 3 = 0$
15. $-2x^{3} + x^{2} - 12x + 1 = 0$
16. $x^{3} - 3x^{2} - 24x - 5 = 0$
18. $x^{3} - 4x^{2} + 2 = 0$
19. $x^{3} + 3x^{2} - 24x + 1 = 0$
20. $2x^{3} - 3x^{2} - 12x + 12 = 0$
21. $2x^{3} + 9x^{2} - 6 = 0$
22. $2x^{3} - 3x^{2} - 12x + 10 = 0$
23. $2x^{3} - 3x^{2} - 24x - 3 = 0$
24. $2x^{3} + 3x^{2} - 24x - 3 = 0$
25. $2x^{3} - 3x^{2} - 24x - 3 = 0$
26. $2x^{3} + 9x^{2} - 4 = 0$
27. $2x^{3} - 3x^{2} - 12x + 8 = 0$
28. $2x^{3} - 3x^{2} - 2x + 8 = 0$
29. $2x^{3} - 3x^{2} - 12x + 8 = 0$
29. $2x^{3} - 3x^{2} - 12x + 8 = 0$
29. $2x^{3} - 3x^{2} - 12x + 8 = 0$
20. $2x^{3} - 3x^{2} - 12x + 8 = 0$
21. $2x^{3} - 3x^{2} - 12x + 8 = 0$
22. $2x^{3} - 3x^{2} - 12x + 8 = 0$
23. $2x^{3} - 3x^{2} - 12x + 8 = 0$
24. $2x^{3} - 3x^{2} - 12x + 8 = 0$
25. $2x^{3} - 3x^{2} - 12x + 8 = 0$
27. $2x^{3} - 3x^{2} - 12x + 8 = 0$
28. $2x^{3} - 3x^{2} - 2 = 0$

Задание 2.2. Используя методы итераций и Ньютона, решить систему нелинейных уравнений с точностью до 0,001.

Варианты заданий:

Варианты заданий:

1.
$$\begin{cases} \sin(x+1) - y = 1, 2 \\ 2x + \cos y = 2 \end{cases}$$
2.
$$\begin{cases} \cos(x-1) + y = 0, 5 \\ x - \cos(y) = 3 \end{cases}$$
3.
$$\begin{cases} \cos(y-1) + x = 0, 7 \\ \sin x + 2y = 2 \end{cases}$$
4.
$$\begin{cases} \cos(x+y) = 1, 5 \\ 2x - \sin(y-0,5) = 1 \end{cases}$$
5.
$$\begin{cases} \sin(x+0,5) - y = 1 \\ x + \cos(y-2) = 0 \end{cases}$$
6.
$$\begin{cases} \cos(x+0,5) + y = 0, 8 \\ \sin(x+2) - y = 1, 5 \\ x + \cos(y-2) = 0, 5 \end{cases}$$
11.
$$\begin{cases} \sin(y+1) - x = 1, 2 \\ 2y + \cos x = 2 \end{cases}$$
12.
$$\begin{cases} \cos(y-1) + x = 0, 5 \\ y - \cos x = 3 \end{cases}$$
13.
$$\begin{cases} \sin(y+2) - y = 1, 5 \\ \sin(y+1) - x = 1, 2 \end{cases}$$
14.
$$\begin{cases} \sin(x+2) - y = 1, 5 \\ x + \cos(y-2) = 0, 5 \end{cases}$$
15.
$$\begin{cases} \sin(x+2) - y = 1, 5 \\ x + \cos(y-2) = 0, 5 \end{cases}$$
16.
$$\begin{cases} \sin(x+2) - y = 1, 5 \\ x + \cos(y-2) = 0, 5 \end{cases}$$
17.
$$\begin{cases} \sin(x+2) - y = 1, 5 \\ x + \cos(y-2) = 0, 5 \end{cases}$$
18.
$$\begin{cases} \sin(x+2) - y = 1, 5 \\ x + \cos(y-2) = 0, 5 \end{cases}$$
19.
$$\begin{cases} \sin(x+2) - y = 1, 5 \\ x + \cos(y-2) = 0, 5 \end{cases}$$
11.
$$\begin{cases} \sin(x+2) - y = 1, 5 \\ x + \cos(y-2) = 0, 5 \end{cases}$$
12.
$$\begin{cases} \cos(x+1) + y = 0, 5 \\ y - \cos x = 2 \end{cases}$$
13.
$$\begin{cases} \sin(x+2) - y = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
14.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
15.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
16.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
17.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
18.
$$\begin{cases} \cos(x+1) - y = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
19.
$$\begin{cases} \sin(x+2) - y = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
19.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
19.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
19.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
19.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
20.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
21.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
22.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
23.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
24.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
25.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
26.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
27.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
28.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
29.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
20.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
20.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
21.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
21.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1) - x = 1, 5 \end{cases}$$
21.
$$\begin{cases} \cos(x+1) - x = 1, 5 \\ \cos(x+1)$$

7.
$$\begin{cases} \sin(x-1) = 1, 3 - y \\ x - \sin(y+1) = 0, 8 \end{cases}$$
 14.
$$\begin{cases} \cos y + x = 1, 5 \\ 2y - \sin(y-0, 5) = 1 \end{cases}$$

Вопросы для самоконтроля

- 1. В чем состоит смысл нахождения корней уравнения?
- 2. Какова роль отделения корней?
- 3. Какие методы отделения корней вы знаете?
- 4. В чем состоит правило Декарта и Штурма?
- 5. Каков принцип метода итераций?
- 6. Алгоритм методов хорд и Ньютона.
- 7. Как определяется сходимость в методах итераций, хорд и Ньютона?
- 8. Как определяется оценка погрешности в методах итераций, хорд и Ньютона?
 - 9. Приведите схему вычислений в комбинированном методе.
 - 10. Опишите метод итераций для систем нелинейных уравнений.
 - 11. Опишите метод Ньютона для систем нелинейных уравнений.

ЛИТЕРАТУРА

- 1. Бахвалов, Н. С. Численные методы / Н. С. Бахвалов. М. : Наука, 1973. 632 с.
- 2. Бахвалов, Н. С. Численные методы: учеб. пособие / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков; под общ. ред. Н. И. Тихонова. 2-е изд. М.: Физмалит: Лаб. базовых данных; СПб.: Нев. диалект, 2002. 630 с.
- 3. Бахвалов, Н. С. Численные методы в задачах и упражнениях / Н. С. Бахвалов, А. В. Лапин, Е. В. Чижонков. М.: Высш. школа, 2000.-230 с.
- 4. Методы вычислений : в 2 т. / И. С. Березин, Н. П. Жидков. М. : Наука, 1966. Т.1. 630 с.
- 5. Березовская, Е. М. Методы вычислений: практ. пособие: в 2 ч. / Е. М. Березовская. Гомель: ГГУ им. Ф. Скорины, 2010. Ч. 1. 48 с.
- 6. Березовская, Е. М. Численные методы линейной алгебры: системы уравнений и собственные значения : практ. пособие / Е. М. Березовская, М. И. Жадан. Гомель : ГГУ им. Ф. Скорины, 2019. 47 с.
- 7. Воробьева, Г. Н. Практикум по вычислительной математике / Г. Н. Воробьева, А. Н. Данилова. М. : Высш. школа, 1990. 208 с.
- 8. Демидович, Б. П. Основы вычислительной математики / Б. П. Демидович, И. А. Марон. М. : Наука, 1970. 664 с.
- 9. Калиткин, Н. Н. Численные методы / Н. Н. Калиткин. М. : Наука, 1978. 512 с.
- 10. Крылов, В. И. Вычислительные методы : в 2 т. / В. И. Крылов, В. В. Бобков, П. И. Монастырный. М. : Наука, 1976. Т.1. 304 с.
- 11. Крылов, В. И. Вычислительные методы : в 2 т. / В. И. Крылов, В. В. Бобков, П. И. Монастырный. М. : Наука, 1977. Т. 2. 400 с.
- 12. Самарский, А. А. Введение в численные методы / А. А. Самарский. М.: Наука, 1972. 271 с.
- 13. Сборник задач по методам вычислений / под ред. П. И. Монастырного. Минск : БГУ, 1983. 287 с.

Производственно-практическое издание

Березовская Елена Михайловна

МЕТОДЫ ВЫЧИСЛЕНИЙ: СОБСТВЕННЫЕ ЗНАЧЕНИЯ И НЕЛИНЕЙНЫЕ УРАВНЕНИЯ

Практическое пособие

Редактор Е. С. Балашова Корректор В. В. Калугина

Подписано в печать 24.01.2024. Формат 60х84 1/16. Бумага офсетная. Ризография. Усл. печ. л. 2,79. Уч.-изд. л. 3,05. Тираж 10 экз. Заказ 37.

Издатель и полиграфическое исполнение: учреждение образования «Гомельский государственный университет имени Франциска Скорины». Специальное разрешение (лицензия) № 02330 / 450 от 18.12.2013 г. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий в качестве: издателя печатных изданий № 1/87 от 18.11.2013 г.; распространителя печатных изданий № 3/1452 от 17.04.2017 г. Ул. Советская, 104, 246028, Гомель.