УДК 621.37/.39:621.9.048.7 С. В. Шалупаев, А. Н. Сердюков, Ю. В. Никитюк, А. А. Середа

МОДЕЛИРОВАНИЕ УПРАВЛЯЕМОГО ЛАЗЕРНОГО ТЕРМОРАСКАЛЫВАНИЯ КРИСТАЛЛИЧЕСКОГО АРСЕНИДА ГАЛЛИЯ

УО «Гомельский государственный университет имени Франциска Скорины», ул. Советская, 104, 246019 Гомель, Беларусь shalupaev@gsu.by

Благодаря удачному сочетанию свойств арсенид галлия занимает важное место по своему значению в современной электронной технике. Важнейшей задачей при производстве приборов на основе арсенида галлия является качественное разделение пластин, вырезанных в какой либо кристаллографической плоскостях на элементы. Одним из наиболее эффективных методов высокоточного разделения хрупких неметаллических материалов является управляемое лазерное термораскалывание, отличительная особенность которого заключается в том, что разделение материала на части заданной формы происходит вследствие образования трещины, формируемой в результате поверхностного нагрева материала лазерным излучением и последующего охлаждения зоны нагрева хладагентом [1].

Выполнено численное моделирование процесса управляемого лазерного термораскалывания кристаллического арсенида галлия. Моделирование осуществлено в рамках несвязанной задачи термоупругости в квазистатической постановке с использованием метода конечных элементов. В качестве критерия, определяющего направление развития лазерно-индуцированной трещины, был использован критерий максимальных растягивающих напряжений [2]. Арсенид галлия относится к числу разлагающихся соединений. Начиная с 600 °С, разлагается с выделением мышьяка [3]. Поэтому режимы обработки были выбраны такими, чтобы температура материала не превышала 600 °С.

Расчеты были выполнены для дисков радиусом 15,5 мм и толщиной h=0,2 мм, h=0,4 мм и h=1 мм. Радиус пятна лазерного излучения R=1,5 мм, плотность мощности излучения 4·10⁶ Вт/м². В области подачи хладагента радиусом 3 мм задается теплоотдача с коэффициентом равным 6800 Вт/(м²·К). Скорость перемещения пластины относительно лазерного пучка и хладагента выбиралась равной v=10 мм/с и v=100 мм/с. В качестве источника излучения использован лазер с длиной волны 0,808 эффективно поглощается в поверхностных мкм энергия которого слоях. Теплофизические свойства материала были выбраны в соответствии с источниками [4, 5]. В соответствии с работой [6] для кристаллов, относящихся к кубической системе, учтены анизотропные упругие свойства пластины. Рассчитана матрица $\{C_{\mu}\}$ при следующих константах упругой жесткости: $C_{11}=1,176\cdot10^5$ МПа, $C_{12}=0,527\cdot10^5$ МПа, $C_{44}=0,596\cdot10^5$ МПа

Расчет термоупругих полей, формируемых в монокристаллической пластине из арсенида галлия в результате последовательного лазерного нагрева и воздействия хладагента, осуществлялся для шести различных вариантов: I а – анализ среза (100), при резке в направлении [001]; I b – анализ среза (100), при резке в направлении [011];

II а – анализ среза (110), при резке в направлении [1-10]; II b – анализ среза (110), при резке в направлении [001]; II с – анализ среза (110), при резке в направлении [1-11], III – анализ среза (111), при резке в направлении [1-10]. В таблице 1 приведены расчетные значения максимальных по величине напряжений растяжения σ_y в зоне обработки, действующие перпендикулярно линии обработки.

Таблица 1 – Расчетные значения максимальных по величине напряжений растяжения в зоне обработки в процессе управляемого лазерного термораскалывания

Максимальные растягивающие напряжения в зоне обработки σ_y , МПа						
	h=0,2 мм		h=0,4 мм		h=1 мм	
	v=10 мм/с	v=100 мм/с	v=10 MM/c	v=100 мм/с	v = 10 мм/c	v=100 мм/с
I a	38,9	20,7	18,2	11,3	6,2	5,7
Ιb	38,7	20,7	17,59	12,3	6	7,2
II a	39	20,7	18,5	11,1	6,1	5,4
II b	51,5	27,7	23,4	14,9	8,1	7,7
II c	44,6	23,8	19,8	13,7	6,8	7,85
III	47,6	24,9	21,8	14,6	7,4	8,24

Установлено, что максимум растягивающих напряжений наблюдается для режима Иb. При этом их величина превышает предел прочности арсенида галлия, что показывает возможность реализации процесса управляемого лазерного Разница в величинах растягивающих напряжений между термораскалывания. режимами IIa и IIb составляет от 21 до 30%; между режимами IIb и IIc составляет от 8 до 16%; между режимами III и IIb составляет от 4,5 до 9,2%; между срезами (100) и (110) составляет от 22 до 26%. Полученные результаты позволяют сделать вывод о необходимости учета анизотропии упругих свойств пластин из арсенида галлия при моделировании процессов лазерного термораскалывания. Указанная разница в величинах напряжений должна быть учтена при выборе параметров процесса разделения (например, за счет изменения скорости резки или мощности лазерного излучения).

- [1] Способ резки неметаллических материалов: пат. 2024441 Рос. Федерация, МПК5 С 03 В 33/02 №5030537/33 // Кондратенко В.С. заявл. 02.04.92; опубл. 15.12.94.
- [2] Сердюков, А.Н. Особенности управляемого лазерного термораскалывания кристаллического кремния / А.Н. Сердюков, С.В. Шалупаев, Ю. В. Никитюк // Кристаллография. 2010. Т. 55, № 6. С. 1180 1184.
- [3] Гольдаде, В.А. Материалы электронной техники: Курс лекций [Электронный / В.А.Гольдаде || Электронные документы «Гомельский pecvpc] УО государственный университет имени Φ. Скорины» URL: http://docs.gsu.by/DocLib8/Учебные%20пособия/Материалы%20электронной%20тех ники/13.%20Гл.11.Полупров АЗВ5.doc –Дата доступа: 25.03.2015.
- [4] GaAs Gallium Arsenide: Basic Parameters [Электронный ресурс] / Официальный сайт Федерального государственного бюджетного учреждения науки «Физикотехнический институт им. А.Ф.Иоффе PAH» – URL: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/basic.html – Дата доступа: 06.04.2015.
- [5] GaAs Gallium Arsenide: Thermal properties [Электронный ресурс] / Официальный сайт Федерального государственного бюджетного учреждения науки «Физикотехнический институт им. А.Ф.Иоффе РАН» – URL:http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/thermal.html – Дата доступа: 06.04.2015.