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Introduction 
Continuous media are described mainly by 

nonlinear partial differential equations. The choice 
of linear or nonlinear equations for describing a me-
dium depends on the role played by nonlinear effects 
and is determined by the specific physical situation. 
For example, when describing the propagation of 
laser pulses, it is necessary to take into account the 
dependence of the refractive index of the medium on 
the electromagnetic field intensity. The linearization 
of nonlinear equations of mathematical physics does 
not always lead to meaningful results. It may turn 
out that the linearized equations apply to the physi-
cal process in question only for some finite time. 
Moreover, from the viewpoint of physics, it is often 
“essentially nonlinear” solutions, qualitatively dif-
ferent from the solutions of linear equations, that are 
extremely important for nonlinear equations of 
mathematical physics. These can be stationary solu-
tions of the soliton type, localized in one or several 
dimensions, or solutions of the wave collapse type, 

which describe the spontaneous concentration of 
energy in small regions of space. Stationary solu-
tions of hydrodynamic equations are also essentially 
nonlinear [1]. 

Nonlinear partial differential equations are diffi-
cult to study: almost no general techniques exist that 
work for all such equations, and usually each individ-
ual equation has to be studied as a separate problem. 
A fundamental question for any partial differential 
equation is the existence and uniqueness of a solution 
for given boundary conditions. For nonlinear equa-
tions these questions are in general very hard [2]. 

For the existence and uniqueness of global 
classical solutions of mixed problems for linear hy-
perbolic1 PDEs, it is necessary and sufficient to sat-
isfy: 1) the smoothness conditions; 2) the matching 
conditions. 

                                                 
1 For non-hyperbolic equations, as a rule, it is neces-
sary to specify additional growth conditions on the 
initial data, e.g., see [5]. 
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However, this is not enough for non-linear hy-
perbolic PDEs. As a rule, we should impose addi-
tional conditions on the nonlinearity to establish the 
existence and uniqueness of global classical solu-
tions for non-linear PDEs. For example, we can take 
one of the following conditions: 

1. Constraint on the growth of the nonlinearity. 
It includes the Lipschitz condition, the Carathéodory 
condition, and other similar conditions [6, 7]. 

2. Sign condition, e.g., [13, p. 670–671]. 
3. Matching of nonlinearities and initial data, 

i.e., some classes of nonlinearities require small ini-
tial data, e.g., [26–30]. 

We also note that a global classical solution 
can exist even if the nonlinearity is a non-
differentiable function. In addition, the problem of 
the existence and uniqueness of global classical so-
lutions is more complicated than for weak ones be-
cause, in particular, classical solutions do not admit 
singularities. 

This paper deals with the question of the ab-
sence, non-uniqueness, and blow-up of global and 
local classical solutions of the telegraph equation 
with a nonlinear potential. This article contains our 
preliminarily announced results [3], [4]. 
 

1 Statement of the problem 
In the domain (0, )Q     of two independ-

ent variables 2( , ) (0, ,)t x       consider the 

one-dimensional nonlinear equation 

        
 

2 2 2 , , , , , ,

, ,

t xa u t x f t x u t x F t x

t x Q

    


 (1.1) 

where (0, ),a   F is a function given on the set ,Q  

and f is a function given on the set .Q  Equation 

(1.1) is equipped with the initial condition 
(0, ) ( ), (0, ) ( ), [0, ),tu x x u x x x        (1.2) 

and the boundary condition 
[ ]( ,0) ( ), [0, ).B u t t t               (1.3) 

where ϕ, ψ, and μ are functions given on the half-
line (0, )  and B is some operator (it can have vari-

ous forms, but in the present work we assume that 
B I  or ,xB    where I is the identity operator). 

 

2 Nonexistence of solutions 
2.1 Inhomogeneous matching conditions 
Assertion 2.1. Assume .B I  If the homogene-

ous matching conditions 

    
2

(0) (0), (0) (0),

1
(0) 0,0, (0) 0,0, (0)

2

(0,0) (0),

f f

F a

     

     

  

 

fail for given functions f, ϕ, ψ, μ, and F, then, for any 
smoothness of these functions, the first mixed prob-
lem (1.1)–(1.3) does not have a classical solution 
defined on .Q  

The proof follows from Theorem 1 from [6], [7]. 
Assertion 2.2. Assume .xB    If the homoge-

neous matching conditions  
(0) (0), (0) (0),         

fail for given functions f, ϕ, ψ, μ, and F, then, for any 
smoothness of these functions, the second mixed 
problem (1.1)–(1.3) does not have a classical solu-
tion defined on .Q  

The proof can be carried out by the method of 
characteristics by analogy with that of the preceding 
assertion. 

Remark 2.1. Violation of the matching condi-
tions specified in Assertions 1, 2 is not critical, since 
in this case we can consider the problem with the con-
jugation conditions on the characteristic 0x at   
and seek its classical solutions. This question is dis-
cussed in more detail in [8]–[11] (for linear equa-
tions) and [6], [7] (for nonlinear equations).  

2.2 Negative energy 
In this subsection we will use the energy 

method to show some conditions under which the 
mixed problem (1.1)–(1.3) does not have a global 
classical solution. This approach was developed by 
H. Levine, who used it to study a wide class of ini-
tial value problems for second-order nonlinear wave 
equations [12]. This method introduces appropriate 
integral quantities depending on the time variable t, 
for which we can then derive differential inequali-
ties, involving convexity, that lead to contradictions 
[13]. The general idea of the energy method is that 
the initial data with negative energy means that there 
is no global solution. For some classes of problems, 
the negative energy actually means that the initial 
data are quite “large” [14]. 

However, this method does not cover all possi-
ble cases of the mixed problem (1.1)–(1.3); this ap-
proach requires, for example, compactly supported 
initial data. So, we impose the following restrictions 
on the nonlinearity, the right side of the equation, the 
initial data, and the boundary data of the problems. 

Condition 2.1. The functions F and µ are iden-
tically equal to zero, the function f has the form 

( , , ) ( ),f t x z g z   where (0) 0,g   and the smooth-

ness conditions 2 ([0, )),cC   2 ([0, )),cC   and 
1( ),g C   are satisfied. 

Under condition 1, we introduce the notation 

0

( ) ( ) , .
z

G z g d z      

and define the energy of a solution u of the problem 
(1.1)–(1.3) 

   

   

  

2 2
2

0

: 0,

1
, ,

2

, .

E t E t

u u
t x a t x

t x

G u t x dx



 

                   


 









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Lemma 2.1. Assume that Condition 2.1 holds. 
Then classical solution u of the problem (1.1)–(1.3) 
has compact support in space for each time t, i. e., 
the function  ,x u t x  has compact support in 

space for each  0, .t   

Proof. Let x* be a real number such that 
) supp( ) [0, *]p( .sup x     It means that for any 

real number *x x  the equality ( ) ( ) 0x x     

holds. For real numbers t0 and x0 such that 

0 0 *,x at x   define 

     

  

0 0

0 0

( ) 2 2
2

( )

2

0

1
, ,

2

, , ].[0,

t t

x a t

x a

t

u u
e t t x a t x

t x

u t x dx t t









                


 


 

Then 

   

   

0 0

0 0

2 2
2

2
(

( )

)

,

, ,

t t

x a

x a

t t

u u u u
e t a t x

t x t xt

u
u t x t x dx

t









             


 

 


 

0 0 0 0( ) ( )( , ) ( , )a t t tx a xa t t ta        

   

   

0 0

0 0

( 2

2
( )

2
2

)

2

, ,

, ,

x a t t

x a t t

u u
t x t x

t t

u
a t x u t x dx

x



 

   
    


   


 

0 0 0 0( ) ( )( , ) ( , )a t t tx a xa t t ta        
2 2

0 0 0 0 0( , ) ( , ( )), [0,( ) ].a t t t a tx a tx a t t t       

where 

   

  

2 2
2

2

1
( , ) : , ,

2

, ,

u u
t x t x a t x

t x

u t x

                 




 

( , ) : ( , ) ( , ).
u u

t x t x t x
x t

 

 

  

By virtue of the Cauchy – Bunyakovsky – Schwarz 
inequality 

2 2

( , ) ( , ) ,
1

22
,( )

u u a u u
t x t x

a
t x

x t x x

                     



 

we have 

         
0 0

0 0

( )

( )

0

, , , ,

[0, ].

t t

x a

x

t

a

t

u
e t t x u t x g u t x dx

t

t t









     



  

Since (0) 0g   and 2 ( ),u C   where 

0 0 0 0 0 0Conv{( , ), (0, ), (0, )},t x x xat at    

      , , , ,g u t x C u t x t x   

for some constant C depending upon 
)(
.

L
u  

 By 

analogy with [13, p. 662], we conclude 

   ' .e t Ce t  As  0 0,e   Grönwall’s inequality 

[13, p. 708] implies 0.e   Therefore 0u   within 
the set Ω. By virtue of the arbitrariness of t0 and x0 
such that 0 0 *,x at x    , 0u t x   for any 

*x x at   and [0, ).t   The proof of the lemma 

is complete. 
Lemma 2.2 (Conservation of energy). Assume 

that Condition 2.1 holds and u is a classical solution of 
the problem (1.1)–(1.3). Then  t E t  is constant. 

Proof. We calculate 

   

    

2 2
2

2
0

,

, ,

u u u u
E t a t x

t x t xt

u
g u t x t x dx

t

              


 
 


 

   

    

, ) 2
2

2
( , 0) 0

2
2

2

(

, ,

, , 0.

t x

t x

u u u u
a t x t x

x t t t

u
a t x g u t x dx

x





      
      


   


 

The integration by parts in this proof is valid, 
since u has compact support in space for each time, 
according to Lemma 2.1. 

Assertion 2.3. Assume that Condition 2.1 holds, 
for some constant 2   we have the inequality 

( ) ( ), .zg z G z z    

Suppose also that the energy is negative 

 

         2 22

0

0

1
0.

2

E

x a x G x dx




        
 

 

Then the problem (1.1)–(1.3) does not have a classi-
cal solution defined on .Q  

The proof repeats word for word the proof of 
Theorem 1 in [13, §12.5.1].  

Note that similar results have been obtained for 
slightly other equations [23]–[25]. 

 
3 Nonuniqueness of solutions 
In this section, we consider the second mixed 

problem (1.1)–(1.3) in the following case 
( , , ) : , 0 1, ( , ) 0,

0, .x

f t x z z F t x

B

    
       

       (3.1) 

It is easy to see that the mixed problem (1.1)–(1.3) 
has the trivial solution 0.u   To find non-trivial 
solutions of the problem (1.1)–(1.3), consider the 
ansatz 

( , ) ( ) , ( , ) ,u t x u t t t x Q                  (3.2) 

where β and γ are some real numbers. Substituting 
ansatz (3.2) into Eq. (1.1), we obtain the relation  

2( 1) ,t t         

which leads to the system of equations 
2 , ( 1) ,           

which has the solution 
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 1/(1 )1/ ( 1)2 3 4 / ( 1) ,

2 / (1 ).

      

  
          (3.3) 

Substituting (3.3) into (3.2), we get the function 
1

1 2
1

1 1
2

1
( , ) 2 .

2 1pu t x t


         
         (3.4) 

It is easy to see that the function (3.4) satisfies the 
initial (1.2) and boundary conditions (1.3). Thus, we 
have constructed one nontrivial solution of the prob-
lem (1.1)–(1.3), (3.1), which is determined by the 
formula (3.4). Moreover, it can be easily shown that 
the ‘glued’ [15] solution 

;

0, [0, ),
( , )

( , ), [ , ),p s
p

t s
u t x

u t s x t s

    
 

with parameter 0s   also satisfies the problem 
(1.1)–(1.3), (3.1). Thus, we have constructed the 
infinite set of nontrivial classical solutions of the 
problem (1.1)–(1.3), (3.1). 

We note that in the problem (1.1)–(1.3), 
(3.1) the nonlinearity u u  is not a differenti-
able function on the set  . It is the fact that makes 
the construction of a unique local classical solution 
of the problem (1.1)–(1.3), (3.1) impossible, because 
in the case of continuously differentiable nonlinear-
ity, we can build a local classical solution (but the 
matching conditions have to be satisfied). We can do 
this using the methods proposed in the works [6], 
[7], [13], [16], [17]. We state the result as the fol-
lowing assertion. 

Assertion 3.1. The second mixed problem (1.1) –
(1.3) has an infinite number of global classical solu-
tions defined on Q  and no unique local classical 

solution. 
The proof follows from the above argument. 
We can use this approach to prove the non-

uniqueness of the classical solution of other prob-
lems [18], [19]. 

 
4 Blow-up of solutions 
4.1 Positive nonlinearities 
We consider the second mixed problem (1.1)–

(1.3) in the following case 
( , , ) : ( ), 0, ( , ) 0,

0, .x

f t x z g z g F t x

B

  
       

       (4.1) 

To find non-trivial solutions of the problem (1.1) – 
(1.3), (4.1), consider the ansatz 

( , ) ( ), ( , ) .u t x u t t x Q                    (4.2) 

It leads to the Cauchy problem for an ODE 
( ) ( ( )), (0) 0, (0) 0,u t g u t u u     

which can have the blow-up of non-trivial solutions [20]. 
For example, we can set  

2( ) 1, ,g z z z                     (4.3) 

and check the conditions specified in the paper [20]. 
It gives a result that a classical solution of the problem 
(1.1)–(1.3), (4.1), (4.3) has blow-up in a finite time. 
We formulate the result of this section as the 

following statement. 
Assertion 4.1. Assume 2 [0,( ),)g C   

( ) 0g x   for all 0,x   and the integral 
1 2

00

( ) dg s ds

  
  





  converges. The second mixed 

problem (1.1)–(1.3), (3.1) has a nontrivial solution, 
which blow-ups in a finite time, i. e., there exists 

*0 T    such that 
* 0

lim ( , ) .
t T

u t x
 

   

The proof follows from the paper [20] and the 
above argument.  

4.2 Power law nonlinearities 
We consider the second mixed problem (1.1)–

(1.3) in the following case 

0 0

( , , ) : , 0, 1, ( , ) 0,

0, 0, 0, .x

f t x z z F t x

B

      

           
 (4.4) 

To find non-trivial solutions of the problem (1.1)–
(1.3), (4.4), again consider the ansatz (4.2). It leads 
to the Cauchy problem for an ODE 

0 0( ) ( ) , (0) , (0) .u t u t u u
            (4.5) 

According to the Peano existence theorem 
there exists at least one solution to the problem (4.5) 
on the interval [0, ).T  On the other hand, the prob-

lem (4.5) satisfies conditions (F1) – (F4) of Theorem 
1.1 of the paper [21]. Therefore, the right maximum 
existence interval [0, *)T  of the solution u of the 

problem (4.5) is finite (i. e., * ),T    and 

* *0 0
lim ( , ) : lim ( ) ,

t T t T
u t x u t

   
     

* *0 0
lim ( , ) : lim ( ) .tt T t T

u t x u t
   

     

We can say the same for the nonlinearity of 

the form 
1

( , , ) : ,f t x z z z
   where 0   and 

1  .We can formulate a more general statement. 
Assertion 4.1. Assume the function 
2: ( , ) ( , )h t z h t z     satisfies the following 

conditions: 
1) For any bounded subset     the function  

h


 is bounded. 

2) There exist 1,   0 0c  , and 1 0c   such 

that 0 1( , )h t z c z c   for all t  and 0.z   

Let M0 be a number such that 0( , ) 0h t z     for all 

t  and 0.z M  The second mixed problem (1.1) –

(1.3) has a solution that blows up in a finite time 
(i. e., there exists *0 T    such that 

* 0
lim ( , ) ),tt T

u t x
 

    if the following conditions are 

satisfied: 
( , ) 0,F t x   ,xB    0 0const ,M     

0 const 0,     0,   ( , , ) ( , ).f t x u h t u  

Additionally, if there exists a continuous nonde-
creasing function : [0, ) [0, )    such that 
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 ( , )h t z z   for all t  and ,z  then we 

have 
* 0

lim ( , ) .
t T

u t x
 

   

Proof. We will look for a solution u having the 
form (9). It leads to the following Cauchy problem: 

0 0( ) ( , ( )), (0) , (0) .u t h t u t u u       

Using [21, Theorem 1.1] we conclude that there ex-
ists *0 T    such that 

* 0
lim ( ) ,

t T
u t

 
    i. e., 

* *0 0
lim ( , ) : lim ( ) .tt T t T

u t x u t
   

     From [21, Theo-

rem 1.1] it also follows 
* 0

lim ( ) ,
t T

u t
 

    i. e., 

* *0 0
lim ( , ) lim ( ) ,

t T t T
u t x u t

   
    if there exists a non-

decreasing function ([0, ))C   such that 

 ( , )h t z z   for all 2( , ) .t z   

To construct an explicit example, consider the 
following case of the second mixed problem: 

3( , , ) ,: 2f t x z z  0,F   1,   1,    and 0.   

In which the problem has an explicit classical solu-
tion 1 1

* ( , ) (1 )u t x t    on the set [0,1) [0, )   (we can 

strictly justify this by direct verification). We have  
1 1
* *

1 0 1 0

1 2
*

lim ( , ) , lim ( , ) ,

([0,1) [0, )).

t
t t

u t x u t x

u C

   
    

  
 

However, this solution can be analytically extended 
to the entire complex plane (with respect to the ar-
gument t), except for the line 1,t   where there will 
be a first-order pole.  
 

Conclusions 
In this article, we have shown that the fulfill-

ment of the smoothness conditions and the matching 
conditions is not enough for the existence of a global 
classical solution of boundary value problems for the 
telegraph equation with a nonlinear potential, unlike 
the linear telegraph equation. Also, these conditions 
do not lead to the uniqueness of solutions. For the 
existence and uniqueness of a global classical solu-
tion, the nonlinearity of the equation has to satisfy 
some additional conditions, e. g., the Lipschitz con-
dition. But on the other hand, the Lipschitz condition 
is not necessary for the existence of a unique global 
classical solution [22].  
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