Результаты реализации быстрого занесения цифровой стандартной информации с использованием речевого интерфейса. Оперативный ввод цифровой информации с помощью речевого интерфейса позволит пользователям быстро и точно вносить данные, что приведет к повышению эффективности работы и сокращению времени на обработку информации.

Использование речевого интерфейса для ввода данных уменьшит количество ошибок, связанных с ручным вводом информации. Это улучшит качество данных и повысит надежность системы.

Речевой интерфейс сделает ввод данных более доступным для разных категорий пользователей, включая людей с особыми потребностями или ограниченной подвижностью. Это приведет к более широкому применению системы и увеличению охвата аудитории.

Гибкая структура данных обеспечит быстрый и удобный доступ к цифровой информации (рисунок 2). Это позволит пользователям быстро находить необходимые данные и принимать оперативные решения на их основе.

Рисунок 2 – Пример записи данных в файл

Заключение. Реализация программных средств с речевым интерфейсом для структурирования и сохранения цифровых данных аудиопотока продемонстрировала значительный потенциал для повышения эффективности и удобства работы с данными.

Литература

1 Ронжин, А. Л. Речевой и многомодальный интерфейсы / А. Л. Ронжин, А. А. Карпов, И. В. Ли – Москва : Наука, 2006. - 173 с.

УДК 519.872.5:681.142.2

А. Г. Юн

ПРОЦЕДУРА ОПРЕДЕЛЕНИЯ СТАЦИОНАРНЫХ ВЕРОЯТНОСТЕЙ В КОЛЬЦЕВЫХ ЛОКАЛЬНЫХ СЕТЯХ С КОНЕЧНЫМИ БУФЕРАМИ И ОРДИНАРНЫМ ОБСЛУЖИВАНИЕМ

Статья посвящена исследованию кольцевых локальных сетей с конечными буферами и ординарной дисциплиной обслуживания. По имеющимся формулам рассчитаны элементы для матриц переходных вероятностей для частных случаев, когда маркер находится на первой абонентской станции (AC) (i=1), на второй абонентской станции (i=2) и матрица переходных вероятностей для сети с числом станций N=2 и числом мест для сообщений в буферах m=2. Матрицы представлены в виде таблиц, представлено описание определения элементов матриц переходных вероятностей.

1 Основные формулы для вероятностей состояний сети

Стационарные вероятности состояний сети в общем случае вычисляются из уравнений [1]:

$$P(j)P = P(1)\prod_{i=1}^{j-1} A_{i, i+1}; P(1)\left(I - \prod_{i=1}^{N} A_{i, i+1}\right) = 0;$$

$$P(1)\left(I - \sum_{k=1}^{N-1} \prod_{i=1}^{k} A_{i, i+1}\right) = 1,$$
(1)

где $j = \overline{2,N}$, 1 – вектор-столбец размера 2^N , составленный из единиц;

I – единичная $2^{N} * 2^{N}$ – матрица;

 $A_{i,\,i+1^-}(2^N*2^N)$ — матрица вероятностей переходов из состояний i-го периодического класса в состояние (i+1)-го класса, ненулевые элементы которой вычисляются по формуле

$$a(i,k;i+1;k) = \prod_{j \in J \setminus \overline{J}\{i\}} p_{\alpha_{j}}^{(j)}(t) p_{\alpha_{j}}^{(j)}(\delta)$$
 (2)

где
$$J = \{1, 2, ..., N\}; \bar{J} = \{j \in J \mid \alpha_j = 1\};$$

 α_j , α'_j – коэффициенты двоичных разложений состояний (i,k) и (I+1,k) соответственно, $0 \le k, k \le 2^N - 1$;

(i, k) - k-е состояние і-го класса;

 $p_{\alpha_i}^{(j)}(t)$ — вероятность того, что за время t на j-ю AC поступит α сообщений;

$$p_0^{(j)}(t) = e^{-\lambda jt};$$

$$p_1^{(j)}(t) = 1 - p_0^{(j)}(t)$$
;

 $t = \delta$, если $\alpha_i = 0$; $t = \delta + \Delta$, если $\alpha_i = 1$.

2 Построение матриц переходных вероятностей

Построим матрицу переходных вероятностей (таблица 1) в том случае, когда маркер находится на первой AC (i=1).

Таблица 1 – Матрица А₁₂ переходных вероятностей

	(0,0)	(0,1)	(1,0)	(1,1)
(0,0)	$p_0^{(1)}(\delta)p_0^{(2)}(\delta)$	$p_0^{(1)}(\delta)p_1^{(2)}(\delta)$	$p_1^{(1)}(\delta)p_0^{(2)}(\delta)$	$p_1^{(1)}(\delta)p_1^{(2)}(\delta)$
(0,1)	0	$p_0^{\scriptscriptstyle (1)}(\delta)$	0	$p_1^{\scriptscriptstyle (1)}(\delta)$
(1,0)	$p_0^{(1)}(\delta)p_0^{(2)}(\delta+\Delta)$	$p_0^{(1)}(\delta)p_1^{(2)}(\delta+\Delta)$	$p_1^{(1)}(\delta)p_0^{(2)}(\delta + \Delta)$	$p_1^{(1)}(\delta)p_1^{(2)}(\delta+\Delta)$
(1,1)	0	$p_0^{\scriptscriptstyle (1)}(\delta)$	0	$p_1^{\scriptscriptstyle (1)}(\delta)$

В матрице А₁₂ вероятности вычислялись следующим образом.

Элементы матрицы, заполненные нулями, говорят о том, что невозможно осуществить переход из состояния в состояние. Например, невозможно перейти из состояния (0,1) в состояние (0,0), из (0,1) в (1,0) и так далее. Символ δ – время, за которое маркер переходит от одной станции к другой. В первой строке матрицы всё время рано δ , так как ни на одной AC нет ни одного сообщения для передачи.

Так как в третьей строке матрицы в состоянии (1,0) на первой станции имеется одно сообщение, то по всей строке мы наблюдаем, что интервал времени для второй AC стал равен $\delta + \Delta$.

На второй и четвёртой строках матрицы наблюдается вероятность только для одной из станций – первой, это объясняется тем, что полная вероятность перехода маркера на вторую АС в данных случаях будет равна 1.

Разберём элементы первой строки матрицы A_{12} . Элемент a_{11} матрицы описывает переход из состояния (0,0) в состояние (0,0). $p_0^{(1)}(\delta)p_0^{(2)}(\delta)$ значит, что на какую-либо из АС может поступить 0 сообщений. Следующий элемент первой строки $-a_{12}$ – говорит нам, что в случае перехода из состояния (0,0) в состояние (0,1) вероятность перехода маркера на первую АС все еще $p_0^{(1)}(\delta)$, но вероятность перехода маркера на вторую АС уже равна $p_1^{(1)}(\delta)$, это говорит о том, что на вторую АС может поступить одно сообщение. То же и с переходом из состояния (0,0) в состояние (1,0), элемент a_{13} равен $p_1^{(1)}(\delta)p_0^{(2)}(\delta)$. Последний элемент первой строки матрицы представляет следующую вероятность — $p_1^{(1)}(\delta)p_1^{(2)}(\delta)$, что означает что на первую и вторую АС могут поступить по одному сообщению.

Аналогично построим матрицу переходных вероятностей (паблица 2) для случая, когда маркер находится на второй AC (i=2).

	(0.0)	(0.1)	(1.0)	(1.1)
	(0,0)	(0,1)	(1,0)	(1,1)
(0,0)	$p_0^{(1)}(\delta)p_0^{(2)}(\delta)$	$p_0^{(1)}(\delta)p_1^{(2)}(\delta)$	$p_1^{(1)}(\delta)p_0^{(2)}(\delta)$	$p_1^{(1)}(\delta)p_1^{(2)}(\delta)$
(0,1)	$p_0^{(1)}(\delta + \Delta)p_0^{(2)}(\delta)$	$p_1^{(1)}(\delta + \Delta)p_0^{(2)}(\delta)$	$p_0^{(1)}(\delta+\Delta)p_1^{(2)}(\delta)$	$p_0^{(1)}(\delta+\Delta)p_1^{(2)}(\delta)$
(1,0)	0	0	$p_0^{(2)}(\delta)$	$p_1^{(2)}(\delta)$
(1,1)	0	0	$p_0^{(2)}(\delta)$	$p_1^{(2)}(\delta)$

Таблица 2 – Матрица А21 переходных вероятностей

Также рассмотрим заполнение данной матрицы.

Как и в матрице A_{12} , элементы матрицы A_{21} , заполненные нулями, говорят о том, что невозможно осуществить переход из состояния в состояние.

Алгоритм заполнения других элементов матрицы хоть и схож с заполнением предыдущей матрицы, однако имеет отличия, так как в данном случае маркер находится на второй AC.

На третьей и четвёртой строках матрицы наблюдается вероятность только для одной из станций — первой, это объясняется тем, что полная вероятность перехода маркера в данных случаях будет равна 1.

Также из-за того, что во второй строке матрицы, в состоянии (0,1), на второй станции уже имеется одно сообщение, то по всей строке мы наблюдаем, что интервал времени равен $\delta + \Delta$. В других строках остаётся δ .

Разберём элементы первой строки матрицы A_{12} . Элемент a_{11} матрицы описывает переход из состояния (0,0) в состояние (0,0). $p_0^{(1)}(\delta)p_0^{(2)}(\delta)$ значит, что на какую-либо из АС может поступить 0 сообщений. Следующий элемент первой строки $-a_{12}$ – говорит нам, что в случае перехода из состояния (0,0) в состояние (0,1) вероятность перехода маркера на первую АС все еще $p_0^{(1)}(\delta)$, но вероятность перехода маркера на вторую АС уже равна $p_1^{(2)}(\delta)$. Это говорит о том, что на вторую АС может поступить одно сообщение. То же и с переходом из состояния (0,0) в состояние (1,0), элемент a_{13} равен $p_1^{(1)}(\delta)p_0^{(2)}(\delta)$. Последний элемент первой строки матрицы представляет следующую вероятность — $p_1^{(1)}(\delta+\Delta)p_1^{(2)}(\delta)$, что означает что на первую и вторую АС могут поступить по одному сообщению.

Частный случай при N=2, m=2 представлен в рисунке 1.

	00	10	20	01	11	21	02	12	22
00	$p_0^{(2)}(\delta)p_0^{(1)}(\delta)$	$p_0^{(2)}(\delta)p_1^{(1)}(\delta)$	$p_0^{(2)}(\delta)p_2^{(1)}(\delta)$	$p_1^{(2)}(\delta)p_0^{(1)}(\delta)$	$p_1^{(2)}(\delta)p_1^{(1)}(\delta)$	$p_1^{(2)}(\delta) \overline{p}_2^{(1)}(\delta)$	$\overline{p}_{2}^{(2)}(\delta)p_{0}^{(1)}(\delta)$	$\overline{p}_2^{(2)}(\delta)p_1^{(1)}(\delta)$	$\overline{p}_2^{(2)}(\delta)\overline{p}_2^{(1)}(\delta)$
01	0	0	0	$p_0^{(2)}(\delta)p_0^{(1)}(\delta)$	$p_0^{(2)}(\delta)p_1^{(1)}(\delta)$	$p_0^{(2)}(\delta)\overline{p}_2^{(1)}(\delta)$	$\overline{p}_1^{(2)}(\delta)p_0^{(1)}(\delta)$	$\overline{p}_1^{(2)}(\delta)p_1^{(1)}(\delta)$	$\overline{p}_1^{(2)}(\delta)\overline{p}_2^{(1)}(\delta)$
02	0	0	0	0	0	0	$p_0^{(1)}(\delta)$	$p_1^{(1)}(\delta)$	$\overline{p}_2^{(1)}(\delta)$
10	$p_0^{(2)}(\delta$	$p_0^{(2)}(\delta$	$p_{0}^{(2)}(\delta$	$p_{1}^{(2)}(\delta$	$p_{1}^{(2)}(\delta$	$p_{1}^{(2)}(\delta$	$\overline{p}_{2}^{(2)}(\delta$	$\overline{p}_{2}^{(2)}(\delta$	$\overline{p}_{2}^{(2)}(\delta$
	$+\Delta)p_0^{(1)}(\delta)$	$+\Delta)p_1^{(1)}(\delta)$	$+\Delta)\overline{p}_{2}^{(1)}(\delta)$	$+\Delta)p_0^{(1)}(\delta)$	$+\Delta)p_1^{(1)}(\delta)$	$+\Delta)\overline{p}_{2}^{(1)}(\delta)$	$+\Delta)p_0^{(1)}(\delta)$	$+\Delta)p_1^{(1)}(\delta)$	$+\Delta$) $\overline{p}_{2}^{(1)}(\delta)$
11	0	0	0	$p_{1}^{(2)}(\delta$	$p_{1}^{(2)}(\delta$	$p_{0}^{(2)}(\delta$	$\overline{p}_{1}^{(2)}(\delta$	$\overline{p}_{1}^{(2)}(\delta$	$\overline{p}_{1}^{(2)}(\delta$
				$+\Delta)p_0^{(1)}(\delta)$	$+\Delta)p_1^{(1)}(\delta)$	$+\Delta)\overline{p}_{2}^{(1)}(\delta)$	$+\Delta)p_0^{(1)}(\delta)$	$+\Delta)p_0^{(1)}(\delta)$	$+\Delta)\overline{p}_{2}^{(1)}(\delta)$
12	0	0	0	0	0	0	$p_0^{(1)}(\delta)$	$p_{1}^{(1)}(\delta)$	$\overline{p}_{2}^{(1)}(\delta)$
20	0	$p_{0}^{(2)}(\delta$	$p_{0}^{(2)}(\delta$	0	$p_{1}^{(2)}(\delta$	$p_{1}^{(2)}(\delta$	0	$\overline{p}_{2}^{(2)}(\delta$	$\overline{p}_{2}^{(2)}(\delta$
		$+\Delta)p_0^{(1)}(\delta)$	$+\Delta)\overline{p}_{1}^{(1)}(\delta)$		$+\Delta)p_0^{(1)}(\delta)$	$+\Delta)\overline{p}_{1}^{(1)}(\delta)$		$+\Delta p_0^{(1)}(\delta)$	$+\Delta)\overline{p}_{1}^{(1)}(\delta)$
21	0	0	0	0	$p_{0}^{(2)}(\delta$	$p_{0}^{(2)}(\delta$	0	$\overline{p}_{1}^{(2)}(\delta$	$\overline{p}_{1}^{(2)}(\delta$
					$+\Delta)p_0^{(1)}(\delta)$	$+\Delta)\overline{p}_{1}^{(1)}(\delta)$		$+\Delta)p_0^{(1)}(\delta)$	$+\Delta)\overline{p}_{1}^{(1)}(\delta)$
22	0	0	0	0	0	0	0	$p_0^{(1)}(\delta)$	$\overline{p}_1^{(1)}(\delta)$

Рисунок 1 — Матрица переходных вероятностей с N = 2, m = 2

Заключение.

Для определения стационарных вероятностей состояний рассматриваемой сети с ординарным обслуживанием составлена система векторно-матричных уравнений (1). Построенные матрицы переходных вероятностей для частных случаев при N=2 и m=1, m=2 дают возможность рассчитать стационарные вероятности из систем линейных уравнений, а также вывести общие формулы (2) для расчета элементов этих матриц. Приведено подробное описание процедуры составления элементов переходных матриц.

Литература

1 Бураковский, В. В. Локальные вычислительные сети: курс лекций по спецкурсу для студентов специальности 1-31 03 01 02 «Математика (научно-педагогическая деятельность)» специализации 1-31 03 01 02 06 «Теория вероятностей и математическая статистика» / В. В. Бураковский, В. О. Родченко. — Гомель: УО «ГГУ им. Ф. Скорины», 2008. — 76 с.

УДК 004.4'2:004.774.6:004.588:51

А. А. Юрова

РАЗРАБОТКА WEB-ПРИЛОЖЕНИЯ С ТЕСТАМИ ПО МАТЕМАТИКЕ ДЛЯ 5–6 КЛАССОВ

Статья посвящена вопросам разработки web-сайта, который предназначен для изучения математики учениками пятых и шестых классов и представляет собой инновационный инструмент для повышения эффективности обучения. В статье рассмотрены возможности данного сайта и приведены примеры его использования. Также описываются использованные в процессе разработки web-сайта технологии.

Математика, как одна из старейших наук, способствует развитию интеллекта и логического мышления. Её применение охватывает все области человеческой деятельности, начиная от покупки продуктов в магазине и заканчивая применением знаний по математике для профессиональной деятельности человека. Также математика обеспечивает инструментарий для понимания законов природы, разработки технологий и научных исследований.