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ABSTRACT

The structure functicns of hadrons in deep 1nelastic
scattering are calculated in the framework of the single
time formulation of QFT. The initial hadron is con-
sidered as a bound state of the quark-antiquark pair
and the structure functions are expressed through the
relativistic wave function of the bound state which
obeys the covariant quasipotential equation. A new
scaling variable is introduced and explicit expressions
for the scaling and prescaling parts of the structure
functions are derived., It is shown that the prescaling
and exclusive threshold asymptotics cf the structure
functions in the leading approximaticn contain only
logarithmic terms. The exact solution of the gquasgi-
potential equation for the relativistic potential with
QCD large Q2 behaviour is used in order to calculate
the structure functions.
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INTRODUCTION

Recent thecretical investigations of deep inelastic leptoh—hadron scattering
{see, for example, the reviewsl}nq)) show that the wave function of the hadron
turns out to be one of the main objects which determine scattering cross-sections.
In order to find the behaviour of the hadron wave function in QCD calculations,
different authors apply the light-cone operator product expansion which, however,
does not allow the construction of the exact expression for the wave functicn.

In this paper we continue the series of worksS)_lz) devoted to the descrip-

tion of elastic scattering, inclusive reactions, form factors, decays and other
processes with the participation of composite particles in the framework of the
single time formulation of QFT13)_17) where the explicit form of the wave func-
tion can be found as a solution of the dynamical equation for bound states. Here.

we shall consider the structure functions of hadrons in deep inelastic scattering.

For simplicity we assume that the initial hadron (meson) consists of the
bound scalar quark and antiquark. In the covariant formulation of the two-body
relativistic problem, the single time wave function of the bound state is defined

173,

(//5”(.4,(] chxe 5‘6{}3x)<0/"7"(<p{i&v)99—/0))/P> (1)

where ¥, 1s the quark momentum, P and M are the momentum and the mass of
the meson, AP = P/M and Ak = L;1k1 is the covariz?tly defined momentum of
the quark in the c.m.s. of the quark-antiquark pair . Figure 1 represents
this wave function graphically. Here both the gquark and the antiquafk are on
the mass shell (k2 = kz = m?) and since in the meson rest system we have to
suppose that the antiguark momentum i = L;lk2 = -Kk (E& = A&)- we come- to

the relationships:

Pr, = Pk, ;
iy = P R(PE)/M" (2)

Hence we conclude that there is no energy momentum conservation in the vertex

presented in Fig, 1 (k, + k, # P).
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It was shown in Ref. 17} that the single time wave function (1) satisfies
the three-dimensional covariant quasipotential equation of Kadyshevsky
'typel9J_

24 (1-24)4), () 5’;— Ly VUE B IM) s (),

where the kernel V 1is the so-called quasipotential. We can rewrite this equa-

tion in the symbolical form:

Varr = G, V%,, , (4)

where the following free Green's function corresponds to the operator G :

280 8(4, -4,
242 (M -4 +i0)

é;; (:dk:/ //M!J =

and the inverse Green's function is
6T B M) = 24L (M40 )aa B(As ~45). ©

-1

In Fig, 2 we show the diagrams corresponding to Eg. (3) where Ap = LP P,

Now following Ref. 15) we expand the wave function over the unitary repre-
sentation of the group of motions in Lobashevsky spaceZO) in order to trans-

form Eq. (3) into relativistic configurational space:

W, (5.) = [dT 7 (&, )ty (7). o

T P T P P T PR PR TR R T TP )
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In the case of the spherical symmetry, when wBM(Ek) = wBM(|Ek|) {5 statel,

we obtain:

or [ 14.1) =;£% ¢(a‘f)’ (8)

Cﬁ@) = f‘/‘z ¢ ¢dz‘/ /e)w»’:;»? (9)
o

and y = 4n (A& + |Ek|)/m is the rapidity of the guark., In this relativistic

co-ordinate r space Eq. (3) takes the following form:
A
/'2 (M-H,) ¢5M (z) = dm V/a)qbg,, (%) (10)

for the local quasipotential V(r) and ﬁo is the finite difference operator:

A . .
A= codh L2+ i ki 2, (11)
O ol TR pegipre

Thus, solving Eq. (10) for a given quasipotential V{r) we are able to find the

hadron wave function ¢BM(P).

In particular, in Refs 21) and 9} an exact solution of Eq. (10) has been

found for the "Coulomb" quasipotential

Vie) = ~69'Z/Z (12)

in the relativistic ; space. On the other hand, in Ref. 1l) it was shown

that if we identify the quasipotential (12) with one gluon exchange contribution,
then in momentum space it will have the same asymptotics at very large Q% as
that in QCD. It was smphasized that this is a result of using the proper rela-
tivistic transformation (7) and has nothing to do with the exotic dependence of

the coupling constant gz on Q@ (asymptotic freedom).
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In the present paper we shall try to express the structure functions of
deep inelastic lepton-=hadron scattering through the hadron wave function and
investigate scaling properties using soclutions of the guasipotential equation

(10).

STRUCTURE FUNCTIONS IN TWO-~-PARTICLE APPROXIMATION

L1 -
We start with the usual expression ! for the structure tenscor describing
the hadronic interactions with the virtual photon in deep inelastic electron-

hadron scattering:
‘ B , _ ‘
Wi (Rg) = ;j-;; @5) 8(P+g-B, ) x

(13)

. <P er’; ) Iv> <K % @IP>

where the "summation" goes over all intermediate states, PN is the momentum
of the N'th intermedizte state, q 1is the momentum of the virtuzsl photon

(g> = -Q%) and JU(O) is the hadron current operator.

In this paper we restrict ourselves to the consideration of a two-particle

intermediate state (the quark-antiquark pair). It means that instead of Eq. (13}

. _ ! P ’*;nfe df_d,f;/%§1}(9 é;e”A"‘{)
V\/I«o(P,C]J o?/imdf/k,éfk,)g/ﬁ )jk ( p
& (14)
XS(P+7’—*’rka)<k4,g/%/0)/}°>\/k,,ka,/q,’/a)/Pz
R AF, 3 _ B
\A//m(f??)—a?/ms LE g (W tbe - k) |

e,k /o (0)|PS <ty 1 /9DIP2,
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where the usual invariant mass of the final hadron system W2 = (P + g)% is _

introduced., Graphically the matrix element <k1,k2}Ju{O)iP> iz shown 1in

- 1
k2 qukl under the

integral (15} which is equivalent to the transition to the hadron rest system
—>
(P = O):

Fig. 3. Now we shall make a change of variables kl + A

g e (i g S ot ge -y )

' (16)
<881 Y, 0)IM3 <, b | (6)/M>)
where R )

“~ / -1
B =Llpk , 9'=Lp9

Mf,; (M, 9') = [L;)f W/p,?)] v

and

It is not difficult to see that the Lorentz transformation gives us

410 = /3? /M =), (17)

7= WGP g7 = e,

(18)

In order to express the hadronic current matrix element <A , Blip(O)IM>
through the single time quark-antiquark wave functicn introduced in Eq. (1),
we shall construct in analogy with Egq. (1) following Ref. 5) the [ive-point

function in momentum space:

;2 (;;; } ;Z. /f:)i) ) Ciﬂ {;h?g-+%ﬁz;b : 3 ) X
et < [dued ™ ol pplb)]

(19}

x <k, k| T '/0/¢9: {Me/};— () l0>,



where
Po__ o e
=Pt L

and

8 (o) = [u(ei) So)w(tp )] -

From the spectral representation for the functicn Ru near the bound state

pole P° M using Eq. (1) we obtain the following formula:

Fd
<AK,AK/ &/’q(O)/M> %M (Ap}
p—~H M [(P~M~:0)

(20}

In accordance with Ref. 5), the generalized vertex function T (3

.
ok Aplpo)

is introduced by the relationship:

k}u = /;f'6> (21)

where the operator product should be understood like that in Eq. {(4). Now mul-
tiplying Eq. (20) by G-leM and using the normalization condition for the

wave function:

2 -7
% p° G Gap | =M (22)
PEM

we get in the limit P° + M the following expression for the current matrix

element:

(Abﬁ;/ /0)/M)= 0-;525;"’— }:/A_‘;)A‘;/M)%M /A_,;J (23)
P

F

The vertex function Fu generally has a very complicated structure which
is illustrated in Fig. 3. However, we shall neglect the interaction between the
guark and antiquark in the final state, that is, we shall consider here the

impulse approximation for the virtual photon hadronic interaction. 1In this
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case, the two diagrams of Fig. 4 will define the vertex Tu and, for example,

the contribution of the diagram (a) equals

//-'a(mﬁ—:«.; M) = o08. 8(B, - 6//‘4 (AA»A ), (24)

where ju is the antiquark current. Substituting Eq. (24) into Eq. {23) we get

Lbe, A | a;’«/a}/Mﬁmz (/f./:/;,: ;A’;)%ﬂ /Ae), @

where EP z (&ﬁ, —Ak).

Then we notice that if we neglect the quark-antiquark interactiocn in the
final state, the two diagrams in Fig. 4 will contribute to the structure tensor
(16) incoherently and it is easy to show that their contributions will be equal.

Thus, substituting the expression (25) into Eq. (16} we have

‘/AF /W”g L (+MIAE + L A/

{25)

\/\/ [M f)_/a?ﬁ)s

XJ/" /Ak},dlp)/y/dﬁ/ y /%N/A.e}/

In the parton model, the special reference frame ]?| » o is usually in=-
troduced, which allows the separation of the parton momentum ﬁl into longitu-
dinal and transverse parts with respect to the momentum of the initial hadron
3. However, this decomposition is not invariant. In our scheme we can intro-

duce the covariant projections of the guark momentum Ek:

—y

— A# .
Ay~ /é"’/ )

(27)

_ val 4 2
Aps T I/Ak —m =By
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The covariance of these projections follews from the covariance of q'° 3

and |q'|
[see Egs (17) and (18):| and Aﬁ = PklfM; Finally, from Eg. (26) we obtain:

/ M g) = L fd’dz 5[;,\/4 L(D+MIAL +p2/___:ko

)

BB (B i (51"

3. NEW SCALING PROPERTIES OF THE STRUCTURE FUNCTIONS

To begin with we shall consider in this section the case of a scalar hadronic

current and take the antiquark current in Eqg. (28) in the following simplest

form:

(/'}'/EK-;A;)””V-

(29}
Then only one structure function will be equal to

()~ 25 [ st ] 1)

30)

where A =

Ak and we have'taken into account the spherical symmetry cof wBM
(S =state).

Performing the integration over angles due to the
we come to the structure function

§ function in Eg. (30)

{31)

- of
/o202 Waty) = W, fd’a ors (1&1)]

TR L T T R e R NI E TR TR UC R RN



where

aZA; =Y+ M2 & Yri09 5 (32)

Nemrmryos

(33)

Now it is convenient to introduce the rapidity of the quark y = &n (A® + |K|)/m

under the integral (31) (A° = m cosh y, \3| = m sinh y):

Ww/&)fu)_ ?i:;)/‘: foff(mhﬂf// Km{/n/zy)/ (34)
71

where

(% =7 In o = (35)
. G 7€) (VM -yoir@*)

Using the function ¢{y) introduced in Eqs (8) and (9), we get the following

7+

'/)J""-a‘-&“, W/CO )= yv /;/—j;?— /47.5/#}/ (36)
/y_/

expression:

Now we shall introduce the new scaling variable ¢ in the following way

Mé = V+M- VuR 1% = VM- /l)ﬁ‘f)“’_ W«

(37)

Then the structure function will take the form:

F(&, W""’)“WW{Q"UJ-“MJ .e,,,m,/ %/ééy)/ (38)
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Thus, in our approach we naturally come to the variables g and W? instead
of x = @%/2Mv and Q% which are usually introduced in the Bjorken limit. In
the deep inelastic region where W2 + o and z is fixed, we get the following

expression (g = 1):

W
o‘;;%;- /¢/GV)/

{39)

L
F &, wi) = f;i-"—”/
[en 5%/

and

P4
o?/@f);) g ¢i:/ — oo,

0= M"_*w (40)
Q r

so that x £ 1 -~ ¢ 1is fixed and we are actually in the usual deep inelastic

region, but in terms of the other variables [ and W2,

In Refs 22) and 23}, in the framewcrk cof the parton model, a scaling variable
£ taking into account non-zero quark masses was intreduced in the following

way:
IMz = /Jﬁ-f'/)/l/ﬂ‘zfﬁd “V,_); (41)

where B = /1+4m2/G2. It is easy toc find the connection between the two va-
riables (37) and (4l}:

ag(z.-_-/.}a-f-f)/f-éJ. (42)

Hence we see that for massless quarks (g = 1) we have § = 1 - .

The difference between the twe results probably arises from the different
treatment of the initial hadronic state, In particular, unlike the parton
model, all the constituents in the quasipotential approach always lie on the

mass shell and we have to come cut from the energy momentum shell according
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to Eq. (2) in the vertex drawn in Fig. 1. In the parton model only the struck
parton is laid up on the mass shell which is achieved by the transition to the
infinite momentum reference frame., What is most important is that in contrast

to Ref. 23), where the structure functions always depend only on i (except

for kinematical factors), we get the scaling vielation due to the explicit depen-

dence of the integral (39) on W? as well.

We can now represent the structure function (38) in the following form:
F I, W) = F(6) - FPl, w?) (43)
’ - - )

where FS(C) is the scaling part of the structure function depending only on

[

sl =2 [ 2 oG

m V’”‘d’/ (44)
o 5]

and Fp(g,wz) iz the prescaling part:

/ A {/ +€Jﬁd

e 19 o Ayl

w4 nle

describing the approach of the structure function to the scaling behavlour.

Using the representaticn

[dye¥ 1o = € els @)’

" el

146)

we can calculate the asymptotics of the expression (45) in the limit We >

in the leading power approximation:
FPla we) = 2mlt bye 1¢I5 ”‘-"/)/
T W g ) ik [Tn 2/

| ue s 5 5 e 14003551

(47)
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Thus, we have cbtained the explicit powerlike prescaling behaviour of the
structure function and all logarithmic corrections to iﬁ, which are determined
by the asymptotics of the wave function (9) and its derivatives at lJarge 'y. 1In
QCD it was shown that in the lowest orders, the corrections to the structure
functiohs contain only logarithmic terms, In the following sections we shall
consider the real case of vector hadronic currents (of scalar quarks}, and we
shall obtain z similar result but in terms of the explicit form of the initial

hadron wave function without using any perturbation theory.

4. LEADING LOG'S APPROXIMATION FOR THE STRUCTURE FUNCTIONS

For the case of the scalar quarks we shall choose the vector antiquark

current in Eq. (28) in the following form:

JV /41,_,, /3): /AP +ﬁl=)u (48)
and
,\f_ ~ ~ ~ ~
J/“ zy ?AP) = /AP ’LAK}" ' (49)

Therefore, from Eq. {28} we get

( ,4) == L

,;%/7)3

(3,74), /a';: ) | Yy (201

f A4, 5 / W Az/wM}A +2 «-c?"A,_,,,]

{50)

We introduce two invariant functions:
U (@% ) = j/wW (P q)= j/w /”f/ (51)

and

(84 0)= PP (B )M = W) (17.97)

(52)
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Since Ep = (a8, «Ek) and &= (v+ U -8l gt -3, it is not difficult to
calculate that
V, (% v)= - "/A 8 [ - pfosm)a® + /ot ]
17 é?rjﬁ /
{53)

| tlorria VIS [y (T

I (a%»)=~ %fj f 43 g [ WL oa)a 1:2V%0TA, ] %

x /(uﬁﬁ ﬂd_‘/)/é)

where A = Ak.

As in the previous section's calculations, by performing the integration
over angles we obtain the following expfessiOns:

U

V)J""+<Q°’V4/@’f.u‘)‘-/y§)—‘", fc/d [?(JJH‘UA Y5 W]/ AM/J/J/J (55)

poas U (0= - (orr)? /A /g/ //A/j/

(%‘7) (56)

where Ai were defined in Egs (32} and (33). After introducing the rapidity

y = in (A% + |K|)/m, the wave function (9} and the new scaling variable (37)

we find that
l (fwg/“’
o mst o
g v (@)= [ T A [P
/s //+¢g/‘/¢/ e (57)
)
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4, {rEw! &)™

ImMé,
ot I/ (@.e (w»f) /
/b (/+€}/f<$/

From the usual decomposition of the structure tensor

—éf— JBls)]*

MW (8) = V14w + L Uy 070 +

v 0 (B g )(B - e W (57

we derive the following expressions for the structure functions W1 and wZ:

UMW (&%) = =T (@7 v) s

U, (X

9)/

M{(ver@?) _ 207
WO Y, (@)=~ 0 (o9) + 22 1 (8),

Hence from Egs (57) and {58) we find
GeeJw?

4
OQMM/C?}D)E N p"v‘é?" f
/s (:f;i/fd/

x[ Y /J)f/'/}%éy —-Vm"m}/r?—-W'z-—

M;cm’

mady
‘9+é7"’ (CQ‘JLJ)_V ﬂ/})”*&d}f
/&f/ﬁé‘}ﬂé

of/ﬂ/l J

(otp) 0% / ).

berg €

Ay | ¢y

(58)

(59)

(60)

(61)

(62)
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x[?m /J)vw)aadﬁ/ - Vm‘?&hﬁ} _pi 3o )d “”Wﬂm_] (63)

pa g
In the limit W? - = using Eg. (40) we find
w"
e @)= [ bty =LY | 311/
[l /Vé/
wi (64)
- Wﬁwéf ﬂél{o"/nﬁ//¢(6§/)/ ;
[t £/

W
G o LA -J¢ )
N e
7o 24/

o
W (65)

- L/m/“/é/fé}/ % M/ /3]
/ﬁ«f,’f-‘/

The asymptcotics of the second set of integral when W2 » o in these formulae

can be estimated with the help of the representation (46). Leaving only leading

power terms we get

/q)m‘fé, o0
an aﬁwmﬁér/¢/g Q%Zo (ff% w-’) /¢/MM¢)/ (66)
L
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We can now separate the scaling and prescaling parts in the structure func-
tions as was done in the previous section and write down, for exanple, FI(Q,WZJ

in the form:
P
f‘} (dq, W'Z);‘ F}J/CLJ"'C; /@:WU) (67)

where

)= L[ dmifﬁfj’ﬁ/m//”

and in the leading log's approximation

£ P4, w2 ozz /u// Pz fﬁ%/@/y//“’

/’rﬂd Wa! (69)
&'ﬂﬂ"@

Thus we conclude that the leading corrections to the scaling part of the struc-
ture functions contain cnly leogarithmic terms and we are able to calculate all of

them if we know the asymptotics of the wave function ¢(y) as y » =,

From Eqs (64) and (65) we derive the following relationship between the

1 27 tz H/é
(c‘,H/‘z) (1-4) F@W"'j &fﬁé;__/ /¢/!//Q’

(70)
sy
> o
Egs(Ci):(f“UF!S@J" ﬁ%ﬂ f J /¢/ﬂ/ (71)

281
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Bola WY = (74) £, WY

in the leading log's approximation.

BEHAVIOUR OF THE STRUCTURE FUNCTIONS
ON THEE EXCLUSIVE THRESHOLD

In this section we shall consider the behaviour of the structure functions
in the case when W? = w§ is fixed and ¢ + 0 (the exclusive thresheld}., In

this regicn, instead of Eqs {40) we have

Ra

AMyv

I3
ok
1

;

(73)

&
X

R*=

O

and g, = «1-&m2/w§. From Egs (62} and (63) in the first non-vanishing appro-

ximation in ¢ + 0 we derive the following expression for the structure func-

tions:

(16, )M (1)

}

where fIn (2m/(l+go)Mg) + o,

T IR P e e T LT



e
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By replacing the variable y = &n (2m/{l+g )Mg) + y' we can rewrite Eq, (74)

&/1‘&
F & W)= F (8, 06%) 2 f o | (b w1 )%

in the form:

(75}

p [oz—//-me”-

Herice we obtain

(W) = £, (¢,u)=

u &
(&) ”/W&‘/?f%%")/’ (76)
n=e ( //+4],)/‘/¢)

l\’lz

where

%‘ / !
a, /‘f" f ”;V VOM /J #/f—&}@fjl (77)

Thus, the threshold behaviour of the structure functions is determined by
the asymptotics of the wave function $(y) as y + » and contains only loga-
rithmic terms. Ne#ertheless, the structure functions can vanish rather guickly
when ¢ - 0 1in accordance with experimental data because of a fast powerlike

decrease of the wave functicon.

Concluding this section we notice that the kinematic region of the changing

of the new scaling variable ; at fixed W? 1is defined as follows:

{78}

W
G min = Ipplarr)

s0 that we. can reach the exclusive threshold in the limit (v + M)} + o,
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RELATIVISTIC POTENTIAL WITH QCD, LARGE Q% BEHAVIOUR
AND THE STRUCTURE FUNCTIONS

In this section, we shall calculate the structure functions using the con-
crete relativistic quasipotential (12) which corresponds to the QCD cne-gluon

1 . .
2 l). The non-relativistic problem was discussed in

exchange at large Q
Refs 4) and 24) for some various choices of the wave function. In our approach,
we have the exact solution of equation (10) with the guasipotential (12} for

9).

the relativistic wave function of the initial hadron

—mry
qng(?J:Co@. 7 (79)

2

where the parameter yo is defined by the equation 2m cos ¥y, = M, and ¢,
is fixed by the normalization condition (22). It is easy to obtain from Eq. (9}
that

Co o _
. &Zi.;,,/j)-ﬁ (80)

¢(y)

Hence we derive the scaling parts of the structure functions (68) and (71):

ag ra (cushy —cop)”
Es[é’ = '[ 5% (M}/f’"?’f/v ) (81)
/&«Ja,codc;r/

s 28 (7-4) [CM",}’-@“JQ)MZOJZ_J
( ) 20 ,y // é Al _
/ﬁ,{d,cu(;% ‘””éqy(é{ +0$/, /V (82)

From Eqs (69) and (72) we can £ind the prescaling behaviour of the structure
functions in the leading log's approximation. For example, the main terms of

these asymptotics equal
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[

2= Lefn”
I _cp.i[ c@m

H/
M (83)

i Jcoaz 042/
B 7';:%— ﬁr/w‘ﬂ‘,

and

—c

L

e (o, w4) = £EEEE [ Gt

(84)

We shall now calculate the main contribution to the threshold behaviour

of the structure functions (76):

E/d,if‘/a"z/‘? é_:«:" _...;Z_/ﬁ,,’f;f )/ ﬂfa’)/fé N (85)

Coming back to the general case, it is not difficult to see that the asymp-

totics of the wave function ¢(y) at large y will always be defined by the
behaviour of ¢ y(r) in EBq. (9} at the origin because at fast oscillation

of  sin rmy. Therefore, in order to calculate the asymptotics of ¢fly}, it
is sufficient to know the behaviour of the wave function in co-ordinate space

as r + 0, If we assume that near the point r = O
¢3N (2] ~ el (86)
)
then oo ey -—M&'g
b(y) ~ fa/zz e J/nm?ay =
&f é/—*&%
o (87)

s Yo oty /8] /2 ;
o(/l +5n?)¢(/”£
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where the exponential exp{-mr§} 1is introduced for the regularization of the

integral. In the limit y + « we get

(] i (T /o2 )
| (/n/)“’

o #dn, (88)

o ly) ~

and

(eq)" ) S
Qé'é}{} ~ T (Cbﬂ;(}/°z”'*7

K=dn. (89)

Thus we obtain the powerlike decrease of the wave function and hence the
prescaling and threshold behaviour of the structure functions will contaln only
logarithmic terms in the leading approximation. In the above discussion we see
the connection between our approach and the light cone expansion widely used

in recent years.

CONCLUSIONS

Tn the present paper we have managed to express the hadron structure func-
tions of deep inelastic scattering in the two intermediate particle approximation
through the relativistic wave function of hadrons in the framework of the single
time formulation of QFT. In this approach the hadron is considered as a bound
state of quark-antiquark pairs and its single time wave function is found as a
solution of the covariant three-dimensional equation with a given quasipotential.
This solution could be obtained by applying the expansion over the unitary re-
presentation of the group of motions in Lobachevsky space and introducing

the relativistic configurational T space.

In our approach, a new scaling variable appears which differs from the ones
previocusly introduced. It is shown that in the leading approximation the pre-
scaling corrections to the structure functions contain only logarithmic terms
1ike QCD calculations. However, such behaviour has nothing to deo with the
exotic dependence of the coupling constant on Q?, and this is a result of using
the proper three-dimensional relativistic configurational space. The results
obtained are illustrated with the help of the simplest quasipotential which copr~
reaponds te the one-gluon exchange in QCD. In this case, the exact wave func-

tion is known and the structure functions can be calculated explicitly.

e o
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In our subsequent works we are going to study deep inelastic scattering,
taking account of many particle intermediate states, consider the spinor quark
case and carry out a more detailed comparison of our approach with QCD and ope-

rator product expansion results.

The authors are very grateful to J. Ellis for.useful discussions,
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