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Abstract. An exact solution of partial quasipotential equations for spin-0 and spin-½ particles 
with superposition of N δ-potentials is obtained. Based on this, a method for an approximate 
solution using a superposition of δ-potentials instead of an arbitrary smooth potential is 
presented. A smooth analytic potential allowing existence of resonant states is considered. 
Scattering cross section dependences on various potential parameters are investigated. 

1.  Introduction 
Quasipotential approach had proved highly successful as a transparent and sequential method for 
describing relativistic two-particle systems [1]. But the construction of the interaction quasipotential 
within the framework of quantum field theory is a complicated problem. For this reason 
phenomenological potentials are often used. The explicit analogy between the nonrelativistic (the 
Schrödinger and the Lippmann-Schwinger equations) and the relativistic quasipotential equations, 
thus, turns out to be very useful. In spite of this there are only a few potentials which allow exact 
analytical solution. 

We focus on the δ-potentials which have been well investigated in quantum mechanics [2-5], but 
have not been widely used in the quasipotential approach up to the present time.   

In this paper we present the solution of quasipotential equations for scattering states with nonzero 
orbital momentum. A system of two relativistic equal-mass particles with spin 0 and 1/2 is considered. 
We use a local spin-orbital quasipotential, which reduces the three-dimensional integral equation to 
partial equations – one-dimensional integral equations for a certain orbital momentum.  

2.  The local spin-orbital quasipotential case 
In the case of a spin-orbital quasipotential, which is local in the Lobachevski momentum space 

2 1/2( ; , ) ( ;( ( ) ) ) ( )q q kpV E p k V E p k D n   
   

, with D the Wigner rotation) [6], the quasipotential 

equation for scattering states of particles with spin 0 and 1/2 in the relativistic configuration 
representation takes the form 

 1/2
0( , ) ( , ) ( ; , ) ( ; ) ( , )q qq r q r G E r r V E r q r dr           

      
. (1) 

Here ( , )q r  
 is two-component wave function of the relative motion of two particles, p


 and k


 are 

the initial and final relative momenta of the particles in the center-of-inertia system, 2 22 2qE q m 


 

is the two-particle system’s energy, 1/2
  are the normalized eigenvectors of the spin. In this paper we 

limit ourselves to the Green’s function of Logunov-Tavkhelidze equation, which in momentum 

http://creativecommons.org/licenses/by/3.0


2

1234567890

Frontiers in Theoretical and Applied Physics/UAE 2017 (FTAPS 2017) IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 869 (2017) 012013  doi :10.1088/1742-6596/869/1/012013

 
 
 
 
 
 

representation is 2 2 1
0 ( , ) ( 0)q p q pG E E E E i    . Transformation between momentum representation 

and configuration representation is performed by functions ( , )q r  
, the “plane waves” in Lobachevsky 

space [7]. 
The local quasipotential allows to reduce three-dimensional integral equations to partial (one-

dimensional) equations. Expansion of wave function, “plane wave”, Green’s function on the basis of 

the spherical spinors – eigenfunctions of 2 2 2ˆˆ ˆˆ, , ,ZJ J L S
 

 operators [8, 9], yields: 

 1/2 1/2 1/2† 1/24
( , ) ( , ) ( ) ( )q jlM r jlM q

j M

q r i s w r n n
q r

     




   
 

 ; (2) 

 1/2 1/2† 1/24
( , ) ( , ) ( ) ( )q jlM r jlM q

j M

q r i w r n n
q r

    




   
 

  ; (3) 

 ( ) 1/2 1/2†
0 0

1
( ; , ) ( ; , ) ( ) ( )q q jlM r jlM r

j M

G E r r G E r r n n
r r

   
 





 
. (4) 

Нere we use the following parametrization: coshq qE m w , sinh qq m w ; where qw  is the rapidity. 

Partial Green’s functions of Logunov-Tavkhelidze equation [7] and their asymptotic behavior have the 
following form 

 

( )
0

(1) (1)* (2) (2)* (1) (2)* (2) (1)*

( ) ( ) ( ) ( )

1
( ; , )

sinh(2 )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
;

1 1 1 1

q
q

q q q q q q q q

m r r m r r m r r m r r

G E r r
i m w

e w r e w r e w r e w r e w r e w r e w r e w r

e e e e        

  

   
    

     



       

   

 (5) 

 
*

( /2 )( )
0

2 ( , )
( ; , ) .

sinh(2 )
qi mr wq

q r
q

s w r
G E r r e

m w





      (6) 

Explicit form of functions ( , )qs w r  and ( , )qe w r
  are given by Kadyshevsky et al. [7] in terms of 

Legendre functions of complex order. We have established that the partial functions can be expressed 
simply in terms of Legendre functions of integer order 

 ( 1)( , ) (coth )
( )

mr
i mre

s w r i Q w
i mr

 



 



;    (1,2) ( ) ( 1)
( , ) (coth )

( )
i m ri m r i m r

e w r i P w
i m r

    





 

  
.  

We will consider a simple spin-orbital potential without qE  dependence (I – identity matrix) 

  2 ˆ ˆ( ; ) ( ) 2( ) ( )qV E r V r I g s V r     

 . (7) 

Substituting Eqs. (2), (3), (4) and (7) into Eq. (1), we obtain the partial equations  

  ( ) 2
0

0

( , ) ( , ) ( ; , ) 1 (1 ) ( ) ( , )q q q qw r s w r G w r r g V r w r dr


       
     , (8) 

where the parameter  depends on the spin orientation and takes on all integer values except zero: 
( 1)   if 1 / 2j    and   if 1 / 2j   . 

3.  Superposition of δ-potentials 
Consider Eq. (8) with a finite, but varied, number of δ-potentials 

 
1

( ) ( )
N

n n
n

V r A r a


  . (9) 

Substituting Eq. (9) into Eq. (8), we obtain the following algebraic system of equations 
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  ( ) 2
0

1

( , ) ( , ) ( ; , ) 1 (1 ) ( , )
N

q q q n n q n
n

w r s w r G w r a g A w a  


    
   . (10) 

Using ( 1,2,..., )va v N instead of r , we obtain a system of linear equations with respect to ( , ) :q nw a   

  ( ) 2
0

1

( ; , ) 1 (1 ) ( , ) ( , )
N

vn q v n n q n q v
n

I G w a a g A w a s w a 


      
  . 

To obtain the quantities which characterize scattering states, we have to consider the wave function 
at large distance. Taking into account asymptotic behavior of the partial Green’s functions (6), 
equations (10) as r   yields 

  
*

( /2 )2

1

2 ( , )
( , ) ( , ) 1 (1 ) ( , )

sinh(2 )
q

N
i mr wq n

q q n q nr
n q

s w a
w r s w r g A w a e

m w
   




 
     

 
 

  
. (11) 

In quantum mechanics, the partial scattering amplitude is defined as the coefficient divided by 
momentum in front of the scattered wave. In our case, relativistic partial amplitudes have the form 

  
*

2
,

1

2 ( , )1
( ) 1 (1 ) ( , )

sinh sinh(2 )

N
q n

q n q n
nq q

s w a
f w g A w a

m w m w  



   

  . (12) 

If the initial state is not polarized, the total scattering cross section can be represented as the sum of the 
partial cross sections and can be expressed via the relativistic scattering amplitude [10] 

 
2 2

, ( 1) ,
0 0

4 ( 1) ( ) ( )q qf w f w  
 

 
 

           
 

  . (13) 

Substituting nA  and na  parameters into expression for determining the scattering amplitude (12) and 
producing calculation of the partial cross sections (13), we obtain exact solution of the two-particle 
equation with superposition of δ-potentials. Based on these results, we can also find numerical 
approximation to the solution for a wide class of potential fields, with the condition that the potential 
function tends to zero fast enough as r → ∞.  

4.  Numerical solution for smooth potential 
As an example, consider the following analytic potential [11] 

 2 cosh(( ) )
( )

cosh( )

mr
V r U r

mr




 


. (14) 

Range of the variable r (0 ≤ r ≤ ∞) should first be divided into two parts: semi-infinite Nr r , where 

potential field is assumed to be zero, and finite 0 Nr r  , where the superposition of δ-potentials (9) 
is used instead of the smooth potential (14). The last interval is divided into N sub-intervals of the 
form 1[ ; ]n nr r   with δ-potential in the middle and the parameters take the following form 

 1 1( ) ( ); ( ) / 2.n n n n n n nA r r V a a r r      
Accuracy of the numerical method can be improved by increasing the density of δ-functions near 
sharp variations of the potential field. Fig. 1a shows the dependence of partial cross section 0  on 

energy qE  for different numbers of δ-functions N at U = 30, / 3  . In the case of s-states ( 0 ) 

the partial cross section is independent of 2g . Clearly, with increasing number of δ-functions the result 
converges quickly to the constant (exact) solution.  

Figure 1b shows dependence of the total cross section on energy qE for 2 0.015g  at U = 4 and 

/ 3  . In order to obtain exact dependence, 7 first partial cross sections were summed. The partial 

cross sections with 7  give no contribution to the total cross section in shown energy range for 
considered parameters. The superposition of N = 100 δ-functions was used.  
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In contrast to the case of two spinless particles ( 2 0g  ), resonance energy can be divided 
depending on strength of the spin-orbital interaction, as shown in Fig. 1b. Just as in the case of two 
spinless particles, increased height of the barrier (increase parameter U and decrease  ) leads to an 
increased number of resonant states. Resonance energies can be calculated using the complex scaling 
method [11]. 
 

 

Figure 1. (a) The dependence of partial cross section 0  on energy qE  for different number of δ- 

functions. (b) The dependence of total cross section   on two-particle system’s energy qE . 

It should be mentioned that consideration of scattering states with 0  is important, as is clearly 
shown in Fig. 1b. In this case, when 0,1, 2,  there is no resonance, with a small imaginary part and 

partial cross sections show no narrow peaks, in contrast to the states with 2 .  

5.  Conclusion 
Exact solution of partial quasipotential equations for spin-0 and spin-½ particles with superposition of 
N δ-potentials was presented. The compact general expression for determining the partial scattering 
amplitudes was obtained. By changing coe�cients next to δ-functions, a numerical solution for a wide 
class of potential fields can be found out and more realistic systems can be considered. 
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