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Abstract

The covariant single-time equations of the quantum field theory are formulated in the
relativistic configurational representation. The explicit formulas for the Green functions cor-
responding to the scattering states are calculated in this representation. Using the derived
nonhomogeneous equations the scattering problem is solved exactly for certain potentials (com-
binations of zero-range potentials).
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In the momentum representation the quasipotential equations (1, 2] are analogous to
the nonrelativistic Lippman-Schwinger and Schrédinger integral equation (IE). As known in the
nonrelativistic theory the solution of the Schrodinger equation can easily be obtained in the
coordinate representation, not in the momentum one. In the coordinate representation this
equation is a differential one. However, for the relativistic equations the Fourier analysis is not
too useful, since the equations transform into differential equations 13, 4)].

The construction of the relativistic configurational representation (RCR) [5, 6], which
is introduced using the harmonic analysis for the Lorentz group, makes it possible to obtain
finite-difference equations for the wave function. However, in the general case, solutions of
the finite-difference equations contain arbitrary ”i - periodical multipliers”. The attractive RCR
construction gives a physically evident description of the local potentials V'(r) and wave functions
IIIE- (7). At the same time RCR have no ambiguity for IE [7].

In the present paper, with the help of the IE approach, we obtain the wave functions
corresponding to the scattering states and calculate the corresponding reflection and penetration
coeflicients.

'The nonhomogeneous integral equation in the RCR for the scattering state is

¥, (r) = e — fgj () V() ¥, (N dr', j=1,.4, (1)

where £ = coshq > 1 corresponds to the continuous spectrum. The Green functions for the
quasipotential equations are

olairs) = [ TIGE, Bydg, B, = coshg, ©

where G is the Green function in the momentum representation. In the present paper we
are going to consider four different relativistic equations: Logunov-Tavkhelidze, Kadyshevsky,
modified Logunov-Tavkhelidze and modified Kadyshevsky. The corresponding Green functions
in the momentum representations are given by:

1 1
_ E, . S
EZ_E? G2 (B, E) E,(E,—E)’ ®)

E, 1

G (Eq, E) = W; G4(Eq, E) = E,~ B

G1(E., E) =

(4)

respectively. The Green functions (2) can be calculated explicitly

3 — I - - _ f E .
alginr) = / exp (1)‘c(r2 ) iy = 2T sinh .[(r ) (% + iq)] |
(cosh x — i0)* — cosh? g sinh2g  sinh (3r — Z7/)

o exp (ix(r — r'))
g2(@inr) = f cosh)[ (cosh x — coshg — i0) dx

2r | 2isinh [(r — ') (7 + ig)] _ sinh ¢
sinh 2q

sinh (71 — 7r') cosh (§r — 27} |’ (5)

exp (ix(r — ') cosh im coshf(r—r}(Z +14
gs(q;r,r’) — p(X( ' 2)) 2de___ -71' [( . )(gr’ Q)],
(cosh x — 10)* — cosh*q sinhg  cosh (§r — Zr)

o lgrr) = ] exp (ix(r — ) dy — 2ni sinh [(r — ') (7r+'iq)]'

coshy —coshg—40 "  sinhg sinh (rr — wr’)



Our programme for the future includes the investigation of equation (1) for quasipotentials
derived on the basis of field theory. For example, we are planning to consider the potential

Vir) = %tanh (gr) (6)

{some superposition of potentials of one-boson exchange) for which the homogeneous integral
equation for bound state has been solved exactly. However, in the current paper, we decided to
confine our consideration to the "toy-model” potential

V{r} = Vié(r — a} + Vab(r + a}, (7)

which can be considered as an approximation of the potential (6).

The construction of IE in the RCR makes it possible to use zero radius potentials, which
are widely used in the nonrelativistic theory [8-10]. The one-dimensional differential Schrédinger
equation with - potentials [9, 10, 14] has attracted a lot of attention. In this connection it
is interesting to take a further look at the relativistic equations with such potentials. The
Dirac equation with point potentials has already been studied (11, 12, 13]. Therefore we are
going to study the Logunov-Tavkhelidze and Kadyshevsky equations only. It is obvious that the
investigation of the difference equations with the §-potentials is difficult, since it is impossible
to formulate boundary conditions for the difference equations similar to quantum-mechanical
boundary conditions for differential equations. And with it IE in the RCR, on the contrary, are
well suited for the study of §-potentials.

This model is characterized by three parameters Vi, Vi and 2a, the parameter 2a is
the width of hole (barrier). Substituting potential (7) into equation (1) we get the following
expression for the wave function

U (r) = €7 — Vig; (gir, a) 5 (a) — Vag; (g7, —a) ¥ (=a), (8}

where the constants ¥; (a) and ¥; (—a) should satisfy the algebraic system

1+Vigj(gia,a)  Vag;(ga,—a) Y;(a) | _ | exp(iqa) ()
Vigj (¢ —a,a) 1+ Vag;(g;—a,—a} | | ¥;(~a) exp(—iga) |’

The constants are given by

_Bu gy B
¥;(a) = z, ¥j(—a) = 2, (10)
where
A; = (14 Vigj(g.a,a))(1 + Vog;(q, —a, —a)) — ViVag;(g,a, —a)g;(a, —a, a);
Ay = 91+ Vagi(g,a,a)) — €™ Vag;(g, a, —a); (1)
AQj = (1 + Vlg](Q) a, a))e—iqa - Vlg.?(q: —4a, a‘)eiqa!j = 11 2’ 3’ 4.

Consider now the asymptotic behaviour of the wave function for r — +o0. We start from
the first equation. Using the following representation for the Green function

o1 (@i} = s {eoslg (- = )] icoth [1/2 (- = ) simnlg = )]} (1)
we derive
¥y (r) = oxp (ig7) — s a1 (@) {cos g (r — a)] + écoth /2 — o) sin g ~ )]} -
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- ZqVQ‘I’l (—a) {cos[g (r + a)] + icoth [7/2 (r + a)|sin[q (r + a)}}. (13)

By analogy we obtain explicit formulas for ¥;(r), = 2, 3,4 and in all four cases the following
asymptotic formulas are valid

T; (r) lr——co= exp (igr} + Bj -exp (—igr); ¥;(r) [r—co= Aj - exp (igr) . (14)
The constants B; and Aj;, amplitudes of the reflected and transmitted waves, are given by
B; = f}gy {Viexp (iga) ¥; (a) + Vaexp (—iga) ¥; (—a)}
= = {Viexp(2iga) + Va2 exp(~2iga) + 2V1V2 [g; (q) cos 2¢a — g; (¢: 2, —a)]},
J

(15)
Aj = 1+ If{_, {V1 exp (—iga) ¥, (a) + Vaexp (iga) ¥; (—a)}
= 1+ 32 {(Vi+ V2 + 20V g5 (q) - g5 (50, —a) cos 2qal},
3

where o - i .

7l - - -
~ Tsinh2g’ = T Gnnes = Ky=———. 16
sinh 2¢’ sinh 2q sinh ¢ 4 sinh g (16)

Using the explicit formulas for the Green function ¢;(¢; e, ), 9;(g; a, —a}, we calculate the am-
plitude coefficients A; and B;. For the Logunov-Tavkhelidze and Kadyshevsky equations we
obtain

27i
B = —Diz {(V1 exp (2tga) + V2 exp (—2iga)) sinh 2g + 4V| V; (7 sin 2ge cotham — 2gcos2¢a)},
1
2me . . . )
A = 1- o {(Vl + V3) sinh 2g + 2V V, (7 sindga cotham — 4¢} + 4wV Va sin 2qa} ,
1
(17)
where
inl 2iga)]?
Dy = [sinh 2q + (275 — 4¢) V3] [sinh 2q + (2mi — 4q) Va] + 472V1 V4 [S’“ b ar + “q“)J . (18)
sinh{am)
and
47i , . .
By, = N {{V1 exp (2iga) + Vaexp (—2iga)) sinh 2g+
+4 |27 sin 2qa coth 2an ~ (2¢ + 7 sinh g) cos 2¢ga + m sinh q] V]_Vg} ,
cosham
(19)
4mi . ) cos 2qa
Ay = 1 - — <4 |nsindgacoth2an 4 wsinhg —1) — 2q| i Va+
Dy cosham
(V1 + V,) sinh 2¢g + 87V, Va sin 22qa} ,
where
D, = ([sinh2g+ 2(27i — 29 — wsinhgq) V}] [sinh 2q + 2 (27i — 2¢ ~ wsinhq) V3] —
2isinh (2ax + 2iga) sinhg 12 (20)
—4n* WV, [ - ] :
TYiYa sinh(2am) cosh(aw)

For the modified Logunov-Tavkhelidze and modified Kadyshevsky equations the amplitudes are
given by

By = —-gl {(Viexp(2iga) + V2 exp (—2iqa)} sinh g + 27V, V, sin 2ga tanh an},
3
. (21)
Ay = 1- %z_ {(Vl + V) sinh g + 7 sin 4¢a tanh anV; V3 + 27V Vo sin 22(1(1},
3
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where

h 2iga)?
D3 = [sinh g + #iV3] [sinh g + 7iVa) + 72V V5 [COS (am + zqa)] . (22)
cosh{aw)
and
B, = —? { (V5 exp (2iga) + Vo exp (—2iga)}sinh g + 4V1 V5 (7 sin 2ga coth 2am — g cos 2ga)},
4
27 . . . 2
Ay = 1- Do {(V1 -+ Va) sinh g + 2 ( sin dga coth 2am — 2¢) V1 V2 + dniV1 Vasin 2qa} ,
4
(23)
where

sinh (2a7 + 2iga)
sinh({2a7)

2
Dy = [sinhg + (271 ~ 2¢) V1] [sinh g + (271 — 2¢) Va] + 472V Vy ] . (24)
From the asymptotic expressions for ¥;(r) (14) we define the reflection and transition
probabilities
Rj = |Bi*; Py= 14" (25)
The unitarity of the scattering matrix implies that

Rj-i-P_;i:l.

We have checked that the calculated reflection and penetration coeflicients satisfy the latter
equality. {The calculations have been carried out using the REDUCE programme.)

Let us consider now the results of the numerical calculations. In Fig.l1 and Fig.2 the
reflectivity R is given as a function of the rapidity ¢ for fixed parameters V1 Vo , a. The
reflectivity R; vanishes (total penetration) when Vi = V; provided that

2¢ (V1 + Vosinh2q)

2ga = |— — tanh ar. 26
tan 2ga - praATA anham (26)

As we can see this transcendental equation has infinite set of solutions.
A similar equation for R3 is given by

Vi+ W,

tan2qa = —
an<qa 27TV1V2

cothar sinh q. (27)

In just the same way it is possible to analyze the reflectivity as a function of the width a for fixed
W1, Va, q. Since the curves have a similar form for all four equations we plot in Fig.3 the curves
for R3. Solving equation {27) with respect to a we obtain again an infinite set of solutions.

Let us consider now in more detail the cases where V7 = V5 > 0 (two barriers) and
Vi = —V, (barrier-hole). The corresponding curves of the reflectivity R as a function of the
rapidity are given in Fig.4 and Fig.5.

A typical feature of these curves is the existence of points where the reflectivity is equal to
unit (total reflection) with the exception for R in the case of two barriers. Numerical analysis
does not, in principle, determine whether the unit is approached exactly. Naturally it is necessary
to analyze the reflectivity behaviour analytically and locate the points where the penetration
vanishes, that is, the potential becomes nonpenetrable. This analysis has been made. At first
sight it seems impossible that the penetration is equal to zero, since the amplitude A for all
cases is complex-valued and vanishes only if both the imaginary and real parts are equal to zero,
i.e. the following equalities hold

ReA =10
ImA=0 ("



But for all cases the imaginary part of the numerator of A4 is equal to zero identically. Therefore
it is necessary to consider the condition only for the real part of the numerator. The explicit
formulas for the conditions when the potential is nonpenetrable for all cases are as follows

sin® 2ga

=0
sinh? a7 '

1)  [sinh2g — 4gV ] [sinh 2¢ — 4¢V5] — 47° Vi V4

2)  [sinh2q —2(2¢ + 7 sinh g) V] [sinh 2¢ — 2 (2¢ + 7 sinh g) Vo] +

inh 2
+1672V, Vy sin ?2ga — 47*V1 V3 |2 coth 2ar sin 2ga + Simhg ] =0
cosharm (28)
2
. L2 2 sin“2¢ga
3) sinh“g+ = Vlvz_—cosh g = 0,
9 sin?2ga
4) [sinh g — 2¢V)] [sinh g — 2¢V4] — 472V Vo— =0.

sinh 2am

By the way, considering the "toy-model” potential we discovered the phenomenon of total re-
flection which is missing in the nonrelativistic model with the potential

V(z) = Vié(z ~ a) + Vab(z + a).
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Figure 1: Reflectivity as a function of rapidity ¢ at Vi = V2 = —~0.5: a) a = 0.15¢) e = 1.5.



Figure 2: Reflectivity as a function of rapidity ¢ at V) = Vo= —-3: a) a = 0.1; c)a=1.
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Figure 3: Reflectivity as a function of width e at Vi =V =3: a)g¢=2; b)g=4.
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Figure 4: Reflectivity as a function of particle momentum at a = 0.05, Vi =V, = Vi a)
Vg = 0.5;¢) Vp = 5.
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Figure 5: Reflectivity as a function of particle momentum at ¢« = 0.2, V) = -1
C) Vg = 10.
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