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Introduction 
Critically rethinking the mathematical methods 

and physical content of the general theory of relativ-
ity, Anatoly Logunov recalled in [1] a long-standing 
problem of breaking the strong equivalence principle 
arising at the intersection of gravity and electromag-
netism. The essence of this problem of principle 
raised by Bondi and Gold in [2] is that, unlike a 
massive electrically neutral point particle, a very 
similar but charged particle, freely falling in an arbi-
trary non-uniform gravitational field, emits electro-
magnetic radiation and appears therefore to be 
slowly accelerated in a coordinate frame falling with 
it, revealing thereby the presence of a local gravita-
tional field to a freely falling observer. The conclu-
sion regarding the emergence of electromagnetic 
self-action causing a non-geodesic free motion of a 
charged particle in a static gravitational field is sup-
ported by a number of theoretical calculations per-
formed within the gravitationally modified electro-
dynamics inspired by general relativity (see, for ex-
ample, the papers by Parrott [3] or Poisson et al. 
[4]). This indisputable violation by the electromag-
netic interaction of one of the conceptual conclu-
sions of Einstein’s theory of gravitation indicates the 
approximate nature of the strong principle of equiva-
lence laying in its basis.  

On the other hand, as argued Logunov in [1] 
starting from the Emmy Noether theorem [6] (see 
§6), the general theory of relativity with its Rieman-
nian geometry of space-time admits no the formula-
tion of energy conservation law (this fact was estab-
lished by David Hilbert immediately after the advent 

of this theory [5, pp. 16–17]), as well as of all other 
fundamental special relativistic conservation laws. 
This fact not only exposes the limited validity of 
Einstein’s theory of gravitation but also makes 
doubtful its suitability as a fundamental physical 
theory of one of the fourth existing fundamental 
interactions. It should be recalled that for this rea-
son, Logunov and his co-authors back in the 1980s 
proposed to abandon the general theory of relativity 
replacing it with a suitable special-relativistic theory 
of force field (see [1], [7]–[10]).  

Looking back in time at several decades of un-
successful attempts to reconcile the general theory of 
relativity and quantum theory, we do not find gravity 
in the short list of fundamental interactions unified 
within the modern Standard Model of particles and 
fields. Recall in this connection that this was the 
heroic time of the last century when quantum elec-
trodynamics, electro-weak unification, quantum 
chromodynamics, and finally the Standard Model of 
particles that joined together known fundamental 
interactions except gravitational, were successfully 
developed. Steven Weinberg is undoubtedly right in 
his asserting that “the geometrical approach has 
driven a wedge between general relativity and the 
theory of elementary particles” (quoted from the 
Preface in [11]). 

It should be added that the absence in general 
relativity of an unambiguous positive-definite ex-
pression of the energy density of the gravitational 
field significantly limits the effectiveness of this 
theory in specific physical applications and makes it 
unsuitable  for  solving  mass-energy  problems  
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presently accumulated in the modern cosmology. 
Today this circumstance is manifested in the disap-
pointing fact of the absolute helplessness of general 
relativity in explaining the role of the gravitational 
interaction in the appearance of so-called “Pioneer 
anomaly”, in solving the problem of “missing mass”, 
in clarification of the nature of “dark energy” which 
astronomers and cosmologists have encountered 
more than twenty years ago (a brief remark on the 
last subject see also in [12, pp. 83–84]).  

Physically ridiculous conclusions regarding the 
concept of mass-energy that arise within the frame-
work of general relativity but beyond the domain of 
its applicability, are fatal to the theory itself. A very 
striking example of this is a well-known speculation 
of Misner, Thorne, and Wheeler around the law of 
energy conservation in the presence of gravity. In 
their comprehensive book [13], hiding the failures of 
Einstein’s theory with the laws of energy-
momentum conservation under the invented for this 
case imaginary nonlocalizability of the energy of the 
gravitational field, we find the conclusion that, if 
spacetime is not flat at infinity, then, according to 
general relativity, “one must completely abandon 
<...> the total mass-energy of the gravitating 
source”, which in this case “is a limited concept” 
(see page 463). 

But authors of [13] themselves do not notice 
that if the energy of gravitational field is illusive in 
reality, then the general theory of relativity itself 
must be considered as a limited concept. Indeed, the 
hypothesis of equivalence of two masses, inertial 
and gravitational, is the starting point of any theo-
retical model of gravitation. Of course, both con-
cepts of these masses should have a clearly defined 
physical meaning, whereas in the stipulated case we 
“must completely abandon” [13] at least one of 
them. In above-mentioned work [7], Denisov and 
Logunov speak directly about this fact as an internal 
contradiction of Einstein’s theory ofgravitation. 
They noted the physically meaningless dependence 
of the result of calculating the inertial mass of the 
gravitating physical system on the choice of curvi-
linear three-dimensional coordinates, demonstrated, 
for example, in [13]–[17]. This fact surely excludes 
any reasoning about the relationship between the 
gravitational mass of any body and its inertial mass 
whose definition is indistinct or do not appear at all. 
The peak of this absurdity is a non-zero “energy 
density” of flat empty space resulting from the use 
of the metric tensor corresponding to the polar coor-
dinates (see original calculations in [18] that give an 
infinite total “energy”; their comments can be found 
in [14, Section 61]).  

The experience of the application of Einstein’s 
theory of gravitation to the universe led the modern 
cosmology to the unphysical domain of mythical 
concepts, such as exploding universe, inflaton, dark 
mass, dark energy, quintessence, and the creation of 

universes from nothing. It teaches us that the nature 
cannot be held hostage to any physical theory, even 
if it, similar to the general theory of relativity, pos-
sesses “the beauty and elegance”, according to Dirac 
[19], and their equations are considered “the greatest 
achievements of human genius” in words of Fock 
[20]. As Feynman reminded us in a different context 
that, “If we find that certain mathematical assump-
tions lead to a logically inconsistent description of 
Nature, we change the assumptions, not Nature” [21, 
Section 13.3].  

The unconventional skeptical opinion of Steven 
Weinberg on the role of geometric ideas in gravity, 
expressed by him in [11] (see Preface, pp. vii–viii 
and Section 6.9), stimulated our resolve, completely 
abandoning Einstein interpretation of the equiva-
lence principle, to try to construct a model of gravi-
tation capable of solving the dark energy problem in 
the universe and will allow us to take a fresh look at 
the other problems accumulated today in cosmology.  

In this paper, we propose one of the possible 
dynamical extensions of Newtonian static gravity 
developed within the constraints followed from the 
well-known fundamental principles underlying the 
majority of modern physical theories. This special-
relativistic gauge-invariant generalization of the the-
ory of static gravity coincides with the canonical 
linear theory of a spinless massive field, but it is 
characterized by a number of features emerged be-
yond the standard model of particles and fields, spe-
cific only of this, fourth type of fundamental interac-
tions. Fully trusting and relying in this way on the 
fundamental principles of modern theoretical phys-
ics, we will try in this paper again to answer the 
problem questioned 75 years ago by Hermann Weil: 
“How far can one get with a linear field theory of 
gravitation in flat space-time?” [22]. In order to do 
this without the risk of “throwing the baby out with 
the bath water”, we had first to overcome the doubts 
associated with very known experimental tests, and, 
above all, with the displacement of the Mercury’s 
perihelion and the gravitational deflection of the 
light beam as it was until now with respect to the 
scalar and other models of gravitation. We postpone 
the solution and interpretation of these tests until 
better times, when we can take into account the 
cosmological effects associated with the background 
gravitational field.  

In the subsequent parts of this work, relying 
solely on the proposed gauge-invariant model of a 
massive scalar gravitational field in combination 
with the cosmological principle, we arrive at an al-
ternative scenario of the universe evolution, which is 
in perfect agreement with the old and new astro-
nomical observations. We will also show that the 
proposed scalar model of gravity rejects the cosmo-
logical expansion and clears the science of the uni-
verse from the hundred-year layering of ad hoc hy-
potheses that are far from real physics. 
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1 Nordstroem’s mechanics 
In our hope to understand the real physics of 

evolutionary processes in the universe we are faced 
with a lack of necessary for this a consistent dy-
namic theory of a coupled to mass attractive field, 
which, similar to Maxwell’s electrodynamics, would 
be compatible with a clear formulation of the law of 
conservation of energy with a positive-definite en-
ergy density. As was explained in detail by Misner, 
Thorne, and Wheeler [13], the strong equivalence 
principle, or ultimately the Riemannian geometry of 
pseudo-Euclidean spacetime, prevents the existence 
in general relativity of a fully functional energy con-
servation law in any dynamical system where a 
gravitational field is taken into account. The disap-
pointing conclusion on the “nonlocalizability” of the 
energy of the gravitational field tell us that this the-
ory is quite useless to investigate the participation of 
all the gravitating matter in the universe in the for-
mation of the background energy associated with the 
collective gravitational field. For this reason, in or-
der to exclude the adjective “dark” from the terms 
“dark energy” and “dark matter” firmly entrenched 
in modern cosmology, the replacement of general 
relativity in future cosmological applications with a 
field theoretical model of gravity, which would con-
tain a clearly formulated law of energy conservation, 
and necessarily with positive-definite energy density 
of the gravitational field, seems to be the only pro-
ductive recommendation. It turns out that the only 
way to understand the energetic evolutionary proc-
esses of the universe is to develop the theory of the 
attractive field with a positive definite energy den-
sity is to use a scalar field. 

In order to prevent in what follows the troubles 
with the disappearance of the laws of conservation 
associated with the Poincaré group symmetry, we 
emphatically assume that the physical space-time is 
special-relativistic, that is a priori flat, both locally 
and globally. We will use in this case the Minkowski 
metric tensor   with signature ( )   There-

fore the line element ds  will be determined in terms 
of the four-dimensional coordinate differentials  

 ( ) ( )idx cdt dx cdt d     r              (1.1) 

corresponding to an infinitesimal displacement in 
space-time, by the expression  

 2 2 2 i j
ijds dx dx c dt dx dx 

          (1.2) 

We next proceed to derive the equation of mo-
tion of classical particles in the presence of a scalar 
field coupled to their mass. For this purpose we use the 
Poincare-invariant spatial density of the joined Lagran-
gian mattr 0 int . L L L  of gravitationally interacting 

particles (dustlike matter) given by the expression 
2

2 2 (3)
mattr 2

1 ( ),a
a a

a

v
c m

c
     r rL     (1.3) 

where the “nominal” mass am  of individual particle 

(its gravitational charge) and the primary field vari-

able   are “non-minimally” coupled. For a single 

particle in the presence of a gravitational field from 
the density (1.3), it follows the joined Lagrangian, 
which we shall write down in the form [23]:  

 
2

2 2
p. 2

1
v

L c m
c

                (1.4) 

It is to be noted here that the use by Einstein 
and Fokker in [24] of the conformally flat metric 

4(g     – in our notation) is not quite equiva-

lent to the Lagrangian formalism used below. This is 
because the metric approach fails when 0,  so 

that the Riemannian manifold of spacetime degener-
ates into a point, if we are talking, for example, 
about a background metric. 

The practice in manipulating a scalar field cou-
pled to the mass each time gave rise different au-
thors to a Lagrangian very similar to (1.4) with 
multiplicative inclusion of the interaction in the La-
grangian of a free particle. Naturally, in all these 
cases, the same form of the equation of motion of 
the test particle in the external gravitational field 
was reproduced. Thus, independently of the specific 
definition of the basic field variable and the form of 
the field equations (usually non-linear) proposed 
occasionally by different authors, which tried to de-
velop the theory of gravity within the scalar ap-
proach, the motion of a test particle in the scalar 
gravitational field obeys the equation that was ob-
tained for the first time by Nordström in [25]–[27]. 

Now we can derive Nordström’s equation of 
motion of every individual particle from the princi-
ple of least action by varying the appropriate action. 
Thus, as a result of the using of Lagrangian (1.4), we 
get a covariant four-dimensional form of the equa-
tion of motion of a particle in an arbitrary external 
gravitational field g    

 
2

2 2( )d m u
c m g

ds


 

                  (1.5) 

In this equation, u dx ds    represents the dimen-
sionless four-vector of the velocity of a particle. We 
have also introduced here the strength four-vector 
g  of the gravitational field, defined in terms of 

logarithmic derivatives of   with respect to the 

space-time coordinates by the connection  

 2 1
2g c    


                 (1.6) 

As a reminder of this circumstance, we will someti-
mes call the field variable   the logarithmic potential.  

Along with the initial field variable   it is 

convenient to introduce the another dynamical char-
acteristic of the field by means of the equality  

 
22 ce                             (1.7) 

Then the strength four-vector g   in agreement with 

its previous representation in form (1.6), may be 
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expressed as an ordinary gradient of this new scalar 
field variable:  

 g                         (1.8) 

So, this relation defines   as the usual potential of 
the vector force field g   which can be used instead 

of the logarithmic potential   of this field, deter-

mined by (1.6).  
The four-dimensional equation (1.5) covers 

both the Lagrange’s equation for momentum p  ca-

nonically conjugated to the radius vector r  and the 
equation for the energy E  of a particle:  

 p pL Ld d

dt dt t

 
    

 
p

r

E
               (1.9) 

where as usual,  

 andp p
p

L L
L

 
   

 
p v

v v
E         (1.10) 

From (1.5), it follows that we deal here with 
the field-dependent physical quantity  

 2m m                          (1.11) 

which appears in this equation simultaneously in two 
physical meanings: as the inertial mass of the particle 
(on the left) and as its passive gravitational mass (on 
the right). Thus, the actual inertial mass ,m  which, 
in accordance with (1.4) and the second equation in 
(1.10), determines the gravitationally dependent con-
tent of energy  

2c m E  
stored in a particle at rest, is a dynamical variable. 
Whereas its nominal mass m remains the constant 
which is the measure of as much as possible amount 
of energy that a given particle or body can accom-
modate. On the other hand, in the case of elementary 
particles, the constant parameter m represents the 
gravitational analogue of charge, which characteri-
zes the individual susceptibility of a certain sort of 
particles to the influence of the “mass-coupled” field   

The Lorentz-covariant equation of motion 
(1.5), expressed for the space and time components 
separately in the form   

2

2
2

2

1 ,
1

v

cv
c

d m
m

dt

 
    
  

v
g

            (1.12) 

2

2
2

2

2

1 ,
1

v

cv
c

d mc
cm Q

dt

 
    
  

           (1.13) 

was first postulated by Nordström in [25]. In these 
formulas we have introduced the notation  

 2 1
2c   g 


                    (1.14) 

 
1

2Q c
t


 





                     (1.15) 

for the two three-dimensional force characteristics of 
the gravitational field, its strengthes: vector g  and 

scalar Q. These two field observables  constitute  the 

four-vector (1.6) of a field strength:  
  g Q   g                      (1.16) 

We note in passing that, in connection with the dis-
cussion of the second Nordström’s theory of gravita-
tion, equation (1.12) was also obtained by Einstein 
in [28] from the principle of least action.  

After some simple transformations and elimi-
nation of potential by dividing by 2   the Nord-

ström’s equation (1.5) can be rewritten as the equa-
tion, containing the constant nominal mass m only. 
Indeed, having in mind (1.6), we get in this way the 
equation  

 2 ( )
du

c m m u u g
ds


  
         (1.17) 

where constant nominal mass m can be canceled. 
Thus, we arrive at an equation of motion that does 
not depend on the nominal mass of the particle, as it 
should.  

It must be emphasized that, since the transition 
from (1.5) to (1.17) is accompanied by the division 
of the original equation by 2   these equations are 

equivalent with the exception of the cases when   

passes through zero. It is clear that if 0   then 

the particle completely loses its inertial mass m  
and accelerates to the speed of light. In this case, 
similar to photon, the description of its motion by 
classical equations (1.5) or (1.17) loses the physical 
meaning.  

From (1.17) we see that the necessary condi-
tion of orthogonality  

 0
du

u
ds



                     (1.18) 

which arises by virtue of the equality  
 1u u                      (1.19) 

is satisfied identically.  
The spatial part of (1.17) reduces to the equa-

tion of motion in the form [23] 

2 2

2 2

2

1 1
,

1 1v v
c c

d m m
Q

dt cc

 
             

v
g v v g v (1.20) 

which can also be obtained directly from (1.12) by 
using (1.6) and (1.11). Inspection of this equation 
shows that, in favor of the principle of equivalence 
of gravitation and inertia, both the inertia of a mov-
ing particle and its susceptibility to the influence of 
gravitational field are determined by the same factor 

2 2/ 1m v c     
By means of some obvious transformations, the 

relativistic equation of motion (1.20) can be rewrit-
ten in the simpler equivalent form:  

 
2

2

1
1

d v
Q

dt cc

       
  

v
g v      (1.21) 

where the first factor in parentheses on the right-
hand side restricts the increase of the velocity of a 
particle making the light velocity insurmountable.  
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For velocities small compared with the velocity 
of light, both equations (1.20) and (1.21) go over 
into the simple Newton’s equation of motion of a 
particle in the external gravitational field, which 
looks like the equation of an ordinary mass-
independent free fall with the acceleration g   

d

dt
 

v
g  

Thus in the non-relativistic approximation, the three-
dimensional vector g  formed by the spatial compo-

nents of the four-vector (1.16) corresponds to the 
usual gravitational acceleration of free fall.  

It is useful to compare (1.21) with an analo-
gous equation of motion of a test particle in the vec-
tor model of gravitation, which reads  

 
2

2 2

1 1
1 ( )

d v

dt cc c
        
 

v
g v v g v h  (1.22) 

It can be obtained from the known equation of mo-
tion for a charged particle in electromagnetic field 
resolved with respect to acceleration (see, for example, 
the problem in the end of §17 in [29] ) after replac-
ing electric charge e  of a particle by its “gravita-
tional charge” m  and electromagnetic “six-vector” 
of strengthes ( )E H  by its gravitational analog 

( ) g h  The difference in relativistic free motion of a 

test particle in the static gravitational field g  in a 

scalar model of gravitation and in the Maxwellized 
gravity is striking. To see this, it suffices to compare 
two equations: the first, appeared in Nordström me-
chanics,  

2

2
1

d v

dt c

 
   
 

v
g  

and the second, associated with the supposed Max-
well – Lorentz-like gravitational force,  

2

2 2

1
1 ( )

d v

dt c c
     
 

v
g v v g  

that follow from (1.21) and (1.22) respectively, if we 
set 0Q   and 0 h  The similar characteristic differ-

ence between the conclusions of the scalar and vector 
models of gravity was noted earlier by Norton [30].  
 

2 Gauge invariance of the massive scalar field 
The equation of the motion of a test particle in 

an external variable gravitational field, especially 
expressed in the simple form (1.21), clearly shows 
that all the components of the four-dimensional 
strength vector  g Q  g  are the physical charac-

teristics of the field that are accessible to direct 
measurement. Ignoring almost insurmountable diffi-
culties of certain measurements due to the extreme 
weakness of the corresponding effects, we shall con-
tent ourselves here with the understanding that these 
measurements can be performed, at least in princi-
ple, by measuring the velocity and acceleration of 
the  test particle. This means that both the force 

characteristics of the field, its strengths g  and Q  
which directly affect the motion of massive parti-
cles, are the conditionally measurable, that is, 
uniquely determined physical quantities.  

Unlike the field observables ,g  the scalar 

function   which appeared in Lagrange formalism 

in (1.4) as original field variable, is not completely 
unique. This can be easily seen from (1.6), or, 
equivalently, from (1.14) and (1.15). Indeed, for a 
given gravitational field comprehensively deter-
mined by set of measurable quantities g  and Q  
their logarithmic potential   is determined with the 

help of these relations to within an arbitrary non-
zero coefficient. From (1.14) and (1.15) it follows 
that the generalized scale transformation  

                             (2.1) 

with an arbitrary non-zero, both positive or negative, 
constant   does not change both field observables 
g  and Q  and leaves unchanged the equation of par-

ticles motion. This important fact allows us to con-
sider the admissible transformation (2.1) of the field 
variable   as a special form of gauge transforma-

tions for the mass-coupled field of zero spin. 
Here it is useful to pay special attention to the 

fact that, in addition to the non-uniqueness of   the 

transformation (2.1) also corresponds to a non-
unique choice of the usual field potential   defined 
for a given strength four-vector g  by (1.8). Indeed, 

using (1.7), it is easy to see that the multiplicative 
transformation (2.1) of the field variable   corre-

sponds to the additive transformation of the potential,  
                        (2.2) 

with an arbitrary finite constant   as it should in 

view of equation (1.8). Here it is assumed that by 
virtue of the relation (1.7) two arbitrary constants,   

and   appearing in (2.1) and (2.2) are related to 

each other by the equality 2 2lnc      

We recall that a scale transformation of the 
field variable very closely analogous to (2.1) was 
established earlier as a special form of the gauge 
transformation of a scalar field in the refined second 
Nordström’s theory of gravitation [26], [27] by 
Dicke [31], and then by Wellner and Sandri [32]. 
But much early, this problem was treated in more 
detail by Bergmann [33], who also operated with a 
scalar potential, logarithmic in the sense of defini-
tion (1.6). The Lorentz-invariant equation for this 
field variable in [33] is not invariant with respect to 
its a simple, like (2.1), scale transformation. Berg-
mann eliminated this non-invariance by a suitable 
additional re-scaling of the four-dimensional coordi-
nates. Applied together, these two types of scale 
transformations mutually compensate each other 
leaving the field equation unchanged. As shown in 
[33], such joined transformation forms the gauge 



M.A. Serdyukova, A.N. Serdyukov 
 

                 Проблемы физики, математики и техники, № 2 (39), 2019 50 

group, with respect to which Nordström’s second 
theory of the gravitational field remains invariant. 
This fact means ultimately that, in accordance with 
such a combined solution of the gauge problem in 
Nordström’s theory, we need to stretch or shrink the 
time and distance scales appropriately to the shift in 
the origin of the ordinary gravitational potential   
similar to (2.2).  

In contrast to the foregoing approach to the 
problem, we will seek the field equations which are 
themselves invariant with respect to the scale trans-
formation (2.1) of field function   Consequently, 

they will be automatically invariant with respect to 
the admissible shift transformation (2.2) of the po-
tential   In this case, one would like to hope that 
there is a way to construct a much more preferable 
theory of gravity, which would be insensitive to our 
freedom to redefine the unit of mass. Of course, this 
possibility should also include changing the units of 
energy, momentum, force and other related physical 
quantities along with gravitational and Planck con-
stants. At the same time, unlike the method used by 
Bergmann in [33], we would not like to associate 
such transformations with the freedom to choose 
units of time and distance trying to avoid the geo-
metric interpretation of gravity leading to troubles 
with conservation laws.  

The case of a similar special relativistic scalar 
field theory, gauge-invariant in the stated sense, but 
only massless, was considered fairly in detail in 
[23]. It was established that the implementation of 
the intention to develop a viable minimal dynamical 
extension of Newton’s static gravity within the re-
strictions dictated by the standard principles and 
requirements of the classical field theory is indeed 
possible. Among them are the principle of least ac-
tion, the principle of simplicity, the Lorentz covari-
ance and the gauge invariance of the theory, the ex-
istence of a clear formulation of the special-
relativistic conservation laws of energy, momentum, 
angular momentum, and center-of-mass motion to-
gether with the Maxwell’s principle of positive defi-
niteness of field energy density, and finally the New-
ton’s principle of proportionality of the inertial and 
gravitational masses. Under the conditions, when 
direct crucial experiments are ineffective, the use of 
these principles, accumulated by modern theoretical 
physics beyond the limits of gravitational phenom-
ena themselves, is of decisive importance for con-
structing a self-consistent theoretical model of gravi-
tational interaction acceptable from the viewpoint of 
the existing physics of particles and fields.  

A characteristic feature of the variational prin-
ciple in the derivation of the equation of motion of a 
particle which mass is coupled to a spin-zero field   

is the scale transformation 2
mattr mattr mattr

      

of the action (1.3) under the gauge transformation 
(2.1) of the field. We recall that such transformation 
of an action is admissible in the general case as one 

of the manifestations of the non-uniqueness of the 
Lagrangian (see, e.g., [34, p. 291], or [35, Section 
6.3]). The Euler – Lagrange equations, being linear 
and uniform with respect to the Lagrangian, are, of 
course, invariant under this transformation. We also 
recall that such a non-uniqueness of the definition of 
the Lagrangian of a free particle corresponds to the 
natural freedom of choice of a unit of mass and, as a 
consequence, units of other physical quantities re-
lated to the mass (for more details, see [29, §27] and 
[36, pp. 4–8]).  

According to the principle of gauge invariance, 
the desired equations describing a total system of 
interacting matter and field must also be invariant 
with respect to the scale transformation (2.1). In or-
der to satisfy this condition, we must require the ful-
filment of the scale transformation of a total action,  

 2                            (2.3) 
under the admissible gauge transformation (2.1) of 
the logarithmic potential of the field.  

The gauge invariance of the action itself is of 
fundamental importance in the formulation of modern 
physical theories. Its fulfillment, for example, is the 
starting point in the proof of Noether’s theorem. The 
absence of this invariance, as shown by equation 
(2.3), should not be of particular concern, since in 
the present case this defect is easily eliminated. To 
do this, it suffices to rewrite the action in absolute 
units as a dimensionless quantity, dividing it by the 
Planck constant. (It is interesting that the very exis-
tence of a fundamental physical constant with the 
dimension of action guarantees the invariance of 
Lagrangian theories with respect to the scale trans-
formations of all physical quantities, thereby ensur-
ing the freedom of choice of their units.) 

This possibility becomes obvious if we note 
that the transformation (2.1) in addition to the 
change in the unit of measurement of the inertial 
mass 2m m   entails a change in the numerical 

values of other physical quantities, including energy, 
momentum, Lagrangian, and the Planck constant. In 
all these cases, because of (2.1), the square of the 
gauge parameter   plays the role of the conversion 
factor, so that for the transformation of the numeri-
cal value of Planck constat associated with gauge 
transformation (2.1), we can write  

 2                              (2.4) 
Nevertheless, the Planck’s quantum of action should 
be considered as a fundamental true physical con-
stant. But because this constant has a dimension of 
action, the substitution (2.4) should be considered no 
more than recalculation of its numerical value. Such 
a recalculation indeed is necessary, since, according 
to (1.11), the gauge transformation (2.1) causes the 
replacement  

2m m m       
that is, the transition to a new system of units of 
physical quantities with a new unit of the inertial 
mass.  
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3 Gauge-invariant model of a massive spin-
less gravitational field 

It is easy to see that the required property (2.3) 
of total action mattr field     will be satisfied if, 

obeying the principle of simplicity, we get the quad-
ratic in the field total Lagrangian density for a sys-
tem of interacting classical particles and a massive 
scalar field:  

 
4

2 2
mattr ( )

2 N

c

G


      


   L L   (3.1) 

Here the spatial density of the Lagrangian of gravita-
tionally interacting classical particles (dustlike mat-
ter) is given by the expression (1.3).  

We have introduced in (3.1) a coefficient con-
taining usual Newton’s gravitational coupling con-
stant NG   so that the field variable   remains di-

mensionless and the theory would lead to the New-
tonian static limit in conventional notation. These 
expressions are identical to those presented in [23], 
except that (3.1) contains a standard term associated 
with mass gm c   of a spinless graviton.  

The field equation obtained by varying the ac-
tion, corresponding to the expressions (3.1) and 
(1.3), with respect to the field variable ( )x  is linear 

and uniform:  

 2
2

2
0N

G

c

 
    

 
                 (3.2) 

Here 
2

2 2

2 1

c t

 
  

       is the D’Alembertian 

operator. The source density of the field, denoted in 
this equation by   is connected with the mass of 
gravitating particles by the relation  

  
2

(3)
2

1 a
a a

a

v
m

c
     r r          (3.3) 

This expression is a four-dimensional scalar, as it 
should. It is known as the trace (divided by 2 )c  of 

the energy-momentum tensor of a non-gravitating 
dustlike system of free particles (see, e.g., [29, §34]).  

As was to be expected, the field equation (3.2) 
remains unchanged with respect to the gauge (scale) 
transformation (2.1) of the field variable with con-
stant non-zero parameter   It should also be noted 
that the equation (3.2), being uniform and linear, 
satisfies the requirement of simplicity.  

Using (1.6), equation (3.2) can also be written 
directly for the field strength vector g   Expressing 

[in accordance with (1.6)] the four-dimensional gra-
dient of logarithmic potential   in (3.2) in terms of 

the field g  as 2(1 2 )c g        and then divid-

ing the resulting equality by   we obtain  

 2 2
2

1
2 4

2 Ng g g c G
c

 
             (3.4) 

Recall also that the vector field g  satisfies the 

potentiality condition (1.8). In view of this fact, we 

have additionally the homogeneous linear tensor 
equation  

 0g g                       (3.5) 

This equation, like the first pair of Maxwell equa-
tions in electrodynamics, is satisfied regardless of 
the nature of the field source, filtering out physically 
unacceptable solutions to the basic equation (3.4).  

The last two field equations together with 
equation (1.17) of the motion of a massive particle 
in a gravitational field constitute a complete system 
of Lorentz-covariant and gauge-invariant equations 
that are compatible with the laws of conservation of 
energy and momentum with a positive gravitational 
energy density [37]. We will use them in what fol-
lows to describe the gravitational field and its inter-
action with matter in the framework of the special 
theory of relativity, primarily for cosmological ap-
plications. Of course, the field equation (3.2) re-
tains its practical importance: to solve the nonlinear 
equation (3.4) satisfying the condition (3.5), it is 
convenient to first obtain a solution of a simpler lin-
ear equation (3.2), and then use the relation (1.6), or 
two relations (1.14) and (1.15) separately.  

In the case of resting gravitating masses dis-
tributed in space with density ( )r  the equation 

(3.4) reduces to the non-linear relativistic generaliza-
tion of the equation of Newtonian static gravity,  

 2 2 2
2

1
2 4

2 Nс G
c

     g g          (3.6) 

which differs from the equation obtained early in 
[23] by having the term 2 22c   associated with the 
mass gm  of graviton. This equation is accompanied 

by a supplementary condition, which follows from 
(3.5), that g  is a potential field, that is, “curl-free”:  

 0  g                          (3.7) 

We note, incidentally, that in the case of mass-
less field, the same as (3.6) nonlinear equation for 
the vector field strength g  outside the region where 

the masses producing this field are located, that is, in 
space where 0   was manufactured by Brillouin 
[38]. In four-dimensional form, like (3.4) but with-
out two last terms, similar equation with quadratic 
self-action was constructed by Deser and Halpern 
[39] (see Appendix in their paper). 

Somewhat later, almost this equation appeared 
also in Hooft’s lectures [40] (see page 13). (The 
Hooft’s equation is transformed into the Brillouin’s 
equation by a simple replacing .) g g  

Returning to the equation (3.4) it should be 
stressed that under the conditions of the evolving 
universe the restriction 0  is not necessary at all, 
in order to obtain the Newtonian behavior of static 
field at large distances from a gravitating body. Al-
though the search for solutions of the field equations 
presented here is beyond the scope of this paper, we 
note that in a homogeneous non-expanding universe 
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filled with gravitating dust matter and the back-
ground gravitational field created by it, the local 
post-Newtonian static field is described by equation 
(3.6) but without the mass term quadratic in ,� 
even when the mass of gravition does not vanish in 
the basic field equation (3.2) and (3.4), from which 
we start. In this case, a spherically symmetric solu-
tion of equation (3.6), (3.7) for a static field outside 
a central body, as shown in [38] and [23], for large 
distances has an asymptotic behavior corresponding 
to the Newtonian inverse square law. As for the role 
of the mass parameter   in general equtions (3.2) 
and (3.4), it participates in the formation of a slowly 
evolving spatially homogeneous background field Q.  

Finally, we also note that, in contrast to the La-
grangian formalism of scalar-tensor theories, where, 
along with the tensor gravitational field, a scalar 
field is often used to parameterize dark energy, as, 
for example, in [41]–[43], our total Lagrangian (3.1) 
is quadratic and homogeneous with respect to the 
dynamic variable   of the field and its four-

dimensional gradient    For this reason, our field 

equation (3.2) is linear and gauge-invariant in the 
sense of scale transformation (2.1), as it should. 
(This circumstance, by the way, makes the usual 
procedure for quantizing the gravitational field an 
almost trivial task.) Thus, Lagrangian (3.1) generates 
an initially linear field equation that clearly does not 
contain signs of any self-action, the fact that is usu-
ally considered self-evident for a gravitational field. 
Nevertheless, as seen from our considerations, the 
nonlinear terms quadratic in the components of the 
field strength ,g  which can be interpreted as a nec-

essary gravitational “self-action”, appear in the 
transformed post-Newtonian equation (3.4) (or (3.6) 
in the static limit), represented in terms of the field 
strengthes ( )g Q   g   
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