УДК 512.542

КОНЕЧНЫЕ ФАКТОРИЗУЕМЫЕ ГРУППЫ С РАЗРЕШИМЫМИ Ж -СУБНОРМАЛЬНЫМИ СОМНОЖИТЕЛЯМИ

В.Н. Княгина¹, И.К. Чирик²

 1 Гомельский государственный университет им. Ф. Скорины 2 Университет гражданской защиты МЧС Беларуси, Минск

FINITE FACTORED GROUPS WITH SOLUBLE X-SUBNORMAL FACTORS

V.N. Kniahina¹, I.K. Chirik²

¹F. Scorina Gomel State University

²University of Civil Protection of the Ministry for Emergency Situations of the Republic of Belarus, Minsk

Устанавливаются новые признаки частичной разрешимости конечной факторизуемой группы с ограничениями на индексы в цепях подгрупп от сомножителей до группы. В частности, доказана разрешимость конечной группы G = AB с разрешимыми сомножителями A и B при условии, что существуют цепи от подгрупп A и B до группы G, в которых индексы соседних ненормальных подгрупп либо нечетные, либо равны 2 или 4.

Ключевые слова: конечная группа, разрешимая группа, факторизуемая группа, обобщенно субнормальная подгруппа.

We establish new criteria of partial solubility of a finite factored group with restrictions on indices in chains of subgroups from factors to the group. In particular, it is proved that if A and B are soluble subgroups of a group G such that there exist chains from A and B to G in which indices of neighboring non-normal subgroups are either odd or equal to 2 or 4 and G = AB, then G is soluble.

Keywords: finite group, soluble group, factored group, generalized subnormal subgroup.

Введение

Пусть \mathbb{X} — некоторое множество натуральных чисел, замкнутое относительно делителей, т. е. если $x \in \mathbb{X}$ и натуральное число y делит x, то $y \in X$.

Подгруппа H называется $K\mathbb{X}$ -субнормальной подгруппой группы G, если существует цепочка подгрупп

$$H = H_0 \le H_1 \le \dots \le H_n = G$$
 (0.1)

такая, что для каждого i либо подгруппа H_{i-1} нормальна в H_i , либо $|H_i:H_{i-1}|\in X$, обозначается H К \mathbb{X} sn G. Цепь (0.1) будем называть К \mathbb{X} -субнормальной для подгруппы H.

Если исключить возможность нормальности H_{i-1} в H_i , то получаем понятие \mathbb{X} -субнормальности. Если $\mathbb{X}=\mathbb{P}$ — множество всех простых чисел, то возникает случай \mathbb{KP} -субнормальности.

Факторизуемые группы с \mathbb{X} -субнормальными и \mathbb{KP} -субнормальными сомножителями исследовались в работах [1]–[8]. В частности, В.Н. Княгина и В.Н. Тютянов [6] получили признаки разрешимости (r-разрешимости) группы G=AB с разрешимыми (r-разрешимыми) \mathbb{X} -субнормальными подгруппами A и B для некоторых конкретных значений множества \mathbb{X} .

В настоящей работе мы переносим результаты работы [6] на случай, когда сомножители $K\mathbb{X}$ -субнормальны.

1 Вспомогательные результаты

Рассматриваются только конечные группы. В отношении терминологии и обозначений будем придерживаться [9].

Множества всех натуральных и простых чисел обозначаются через $\mathbb N$ и $\mathbb P$ соответственно. Пусть $p\in\mathbb P$. Если порядок группы X не делится на p, то X называется p'-группой. Группа, у которой факторы главного ряда либо имеют порядок p^n , $n\in\mathbb N$, либо являются p'-группами, называется p-разрешимой. Запись $Y\leq X$ (Y< X) означает, что Y — подгруппа (собственная) группы X. Порядок и индекс подгруппы Y в группе X обозначаются через |Y| и |X:Y| соответственно. A_n и S_n — знакопеременная и симметрическая группы степени n соответственно.

Лемма 1.1. Пусть \mathbb{X} — некоторое множество натуральных чисел, замкнутое относительно делителей. Пусть H — подгруппа конечной группы G, N — нормальная в G подгруппа. Тогда справедливы следующие утверждения:

(1) если H K \mathbb{X} sn G, то $(H \cap N)$ K \mathbb{X} sn N и HN/N K \mathbb{X} sn G/N;

(2) если $N \le H$ и H/N K \mathbb{X} sn G/N, то H K \mathbb{X} sn G;

(3) если $H \le L \le G$, H K \mathbb{X} sn L, L K \mathbb{X} sn G, то H K \mathbb{X} sn G;

(4) если H K \mathbb{X} sn G, то H^g K \mathbb{X} sn G для любого $g \in G$.

Доказательство. 1. Пусть $H-\mathbb{K}\mathbb{X}$ -субнормальная подгруппа группы G. Тогда существует существует цепь (0.1) такая, что H_{i-1} нормальна в H_i , либо $|H_i:H_{i-1}| \in \mathbb{X}$ для всех i. Рассмотрим следующую цепь в подгруппе N:

 $H\cap N=(H_0\cap N)\leq (H_1\cap N)\leq ...\leq (H_n\cap N)=N.$ Если H_{i-1} нормальна в H_i , то $H_i\cap N$ нормальна в H_i и $H_i\cap N\cap H_{i-1}=H_{i-1}\cap N$ нормальна в H_i . Пусть $|H_i:H_{i-1}|\in \mathbb{X}$. Так как

 $\mid H_i \cap N : H_{i-1} \cap N \mid = \mid (H_i \cap N)H_{i-1} : H_{i-1} \mid,$ то по лемме об индексах

$$|H_{i}:H_{i-1}|=$$

 $=\mid H_{i}:(H_{i}\cap N)H_{i-1}\mid\mid (H_{i}\cap N)H_{i-1}:H_{i-1}\mid.$ Поэтому $\mid H_{i}\cap N:H_{i-1}\cap N\mid$ делит $\mid H_{i}:H_{i-1}\mid\in\mathbb{X}.$ Поскольку \mathbb{X} — множество натуральных чисел, замкнутое относительно делителей, то $\mid H_{i}\cap N:H_{i-1}\cap N\mid\in\mathbb{X}$ и $H\cap N$ К \mathbb{X} sn N.

В фактор-группе G/N рассмотрим цепь подгрупп:

$$HN/N =$$

$$= H_{0}N \, / \, N \leq H_{1}N \, / \, N \leq \ldots \leq H_{n}N \, / \, N = G \, / \, N.$$

Если H_{i-1} нормальна в H_i , то $H_{i-1}N/N$ нормальна в H_iN/N . Пусть $|H_i:H_{i-1}|\in\mathbb{X}$. Поскольку

$$\begin{split} \mid H_{i}N \, / \, N : & H_{i-1}N \, / \, N \mid = \mid H_{i}N : H_{i-1}N \mid = \\ & = \frac{\mid H_{i} : H_{i-1} \mid}{\mid H_{i} \cap N : H_{i-1} \cap N \mid}, \end{split}$$

то HN/N то $K\mathbb{X}$ sn G/N. Здесь опять использовалось условие, что множество натуральных чисел \mathbb{X} замкнуто относительно делителей.

2. Пусть $N \le H$ и H / N — KX -субнормальная подгруппа группы G / N.

Тогда существует К \mathbb{X} -субнормальная цепь $H/N = H_0/N \le H_1/N \le ... \le H_n/N = G/N$.

Следующая цепь будет $\mathbb{K}\mathbb{X}$ -субнормальной цепочкой для подгруппы H:

$$H = H_0 \le H_1 \le \ldots \le H_n = G.$$

Аналогично проверяются утверждения (3) и (4).

Лемма 1.2. Пусть \mathbb{X} — некоторое множество натуральных чисел, замкнутое относительно делителей. Пусть A и B — $K\mathbb{X}$ -субнормальные подгруппы конечной группы G и G = AB. Если

$$A = A_0 \le A_1 \le \dots \le A_{n-1} \le A_n = G -$$

KX -субнормальная цепь, то $A_i \cap B$ KX -субнормальная подгруппа в A_i для каждого t.

Доказательство. Поскольку подгруппа B- К \mathbb{X} -субнормальна в G, то существует К \mathbb{X} -субнормальная цепь

$$B = B_0 \le B_1 \le \dots \le B_{m-1} \le B_m = G.$$

По условию G = AB, а по тождеству Дедекинда

 $A_i=A(A_i\cap B), A_i\cap B_j=(A\cap B_j)(A_i\cap B), \, orall i,j.$ Понятно, что $A\cap B_i\cap A_i\cap B=A\cap B, \, orall i,j.$ Теперь

$$\begin{split} |A_i \cap B_j : A_i \cap B_{j-1}| &= \frac{|A_i \cap B_j|}{|A_i \cap B_{j-1}|} = \\ &= \frac{|A \cap B_j| |A_i \cap B|}{|A \cap B_j \cap A_i \cap B|} : \frac{|A \cap B_{j-1}| |A_i \cap B|}{|A \cap B_{j-1} \cap A_i \cap B|} = \\ &= |A \cap B_j : A \cap B_{j-1}|. \end{split}$$

Зафиксируем полученное равенство:

 $\mid A\cap B_j:A\cap B_{j-1}\mid=\mid A_i\cap B_j:A_i\cap B_{j-1}\mid.\eqno(1.1)$ По условию G=AB, а по тождеству Дедекинда

$$B_{j} = (A \cap B_{j})B, |B_{j}| = |A \cap B_{j}| |B| |A \cap B|, \forall j,$$
$$|B_{i}: B_{i-1}| = |A \cap B_{i}: A \cap B_{i-1}|. \tag{1}$$

Из (1.1) и (1.2) получаем:

$$|A_i \cap B_j : A_i \cap B_{j-1}| = |B_j : B_{j-1}|, \forall i, j.$$
 (1.3)

Рассмотрим цепь подгрупп для $A_{\iota} \cap B$ в подгруппе A_{ι} :

$$A_t \cap B =$$

$$= (A_t \cap B_0) \le (A_t \cap B_1) \le \dots \le (A_t \cap B_m) = A_t.$$
(1.4)

Если B_{j-1} нормальна в B_j , то $A_i \cap B_{j-1} \cap B_j = A_i \cap B_{j-1}$ нормальна в $A_i \cap B_j$. Если B_{j-1} не нормальна в B_j , то $|B_j:B_{j-1}| \in \mathbb{X}$, а из (1.3) при i=t следует, что

$$|A_t \cap B_i : A_t \cap B_{i-1}| \in \mathbb{X},$$

т. е. цепь (1.4) является $\mathbb{K}\mathbb{X}$ -субнормальной цепочкой для подгруппы $A_i \cap B$ в A_i .

Лемма 1.3. Если $U \le V \le G$ и K — субнормальная подгруппа в конечной группе G, то $|V \cap K: U \cap K|$ делит |V:U|.

Доказательство. По условию существует цепочка подгрупп

$$G = K_0 \ge K_1 \ge ... \ge K_m = K$$
,

в которой подгруппа K_{i+1} нормальна в K_i для всех i. Так как K_1 — нормальная подгруппа группы G, то $UK_1 \leq VK_1 \leq G$ и

$$U/U \cap K_1 \simeq UK_1/K_1 \leq VK_1/K_1 \simeq V/V \cap K_1$$
.

По теореме Лагранжа существует натуральное число d такое, что

$$d \cdot \frac{|U|}{|U \cap K_1|} = \frac{|V|}{|V \cap K_1|},$$

$$d \cdot |V \cap K_1 : U \cap K_1| = |V : U|.$$

Таким образом, в случае, когда $K = K_1$ нормальна в G, лемма верна. Теперь можно применить индукцию к подгруппам $U \cap K_1 \leq V \cap K_1$ и субнормальной в $V \cap K_1$ подгруппе $V \cap K$. По индукции $|V \cap K: U \cap K|$ делит $|V \cap K_1: U \cap K_1|$, поэтому $|V \cap K: U \cap K|$ делит |V: U|.

2 Признак r -разрешимости при $X = \mathbb{P}_2^2$

Зафиксируем натуральное число t и простое число p. Пусть

$$\mathbb{P}_r^i = \left\{ p^i \mid p \in \mathbb{P} \setminus \{r\}, i \in \{0\} \cup \mathbb{N} \right\} \cup \left\{ r^j \mid j \in \{0\} \cup \mathbb{N}, j \le t \right\}.$$

При r = t = 2 получаем множество

$$\mathbb{P}_2^2 = \left\{ p^i \mid p \in \mathbb{P} \setminus \{r\}, i \in \{0\} \cup \mathbb{N} \right\} \cup \left\{ 2^j \mid j \in \{0\} \cup \mathbb{N}, j \le 2 \right\},$$

которое состоит из чисел 1, 2, 4 и всех натуральных степеней нечетных простых чисел.

Поскольку множество \mathbb{P}_2^2 замкнуто относительно делителей, то при $\mathbb{X} = \mathbb{P}_2^2$ мы можем применять леммы 1.1, 1.2. Нам потребуется еще следующий результат.

Лемма 2.1. [10, теорема 1]. Пусть $G - \kappa o$ нечная простая неабелева группа, H < G и $|G:H| = p^a$, где p – простое число. Тогда имеет место одно из следующих утверждений:

- (1) $G \simeq A_n$, $H \simeq A_{n-1}$, $\partial e \ n = p^a$;
- (2) $G \simeq PSL(r,q)$, H параболическая подгруппа в G,

$$|G:H|=\frac{q^r-1}{q-1}=p^a$$
 и r – простое число;

- (3) $G \simeq PSL(2,11)$, $H \simeq A_5$;
- (4) $G \simeq M_{23}$, $H \simeq M_{22}$ unu $G \simeq M_{11}$, $H \simeq M_{10}$;
- (5) $G \simeq PSU_4(2) \simeq PSp_4(3)$, H параболическая подгруппа индекса 27.

B частности, только группа PSL(2,7) имеет подгруппы двух различных примарных индексов, их индексы равны 7 и 8.

Теорема 2.2. Пусть G — конечная группа и $r \in \pi(G)$. Если A и B — \mathbb{KP}_2^2 -субнормальные r-разрешимые подгруппы G и G = AB, то G является r-разрешимой группой.

Доказательство. Пусть G — группа наименьшего порядка такая, что G = AB, где A и B — r-разрешимые \mathbb{KP}_2^2 -субнормальные подгруппы, но группа G не является r-разрешимой. Ясно, что $A \neq G \neq B$.

Согласно условию существуют \mathbb{KP}_2^2 -субнормальные цепи

$$A = A_0 < A_1 < \dots < A_{n-1} < A_n = G;$$

 $B = B_0 < B_1 < \dots < B_{m-1} < B_m = G.$

Подгруппа A \mathbb{KP}_2^2 -субнормальна в A_{n-1} по определению. По тождеству Дедекинда

$$A_{n-1} = A(A_{n-1} \cap B).$$

По лемме 1.2 подгруппа $A_{n-1} \cap B$ является \mathbb{KP}_2^2 -субнормальной в A_{n-1} . Так как $|A_{n-1}| < |G|$, то по индукции A_{n-1} r-разрешима. Если A_{n-1} нормальна в $A_n = G = A_{n-1}B$, то G r-разрешима, противоречие. Значит, $|G:A_{n-1}| \in \mathbb{P}_2^2$. Точно также, используя индукцию, заключаем, что B_{m-1} r-разрешима и $|G:B_{m-1}| \in \mathbb{P}_2^2$. Следовательно, $G = A_{n-1}B_{m-1}$ и подгруппы A и B можно считать максимальными в группе G, т. е. можно считать, что $A = A_{n-1}$ и $B = B_{m-1}$. Из определения \mathbb{P}_2^2 -субнормальности следует, что

$$|G:A|=p^l, |G:B|=q^s,$$

 $\{p,q\}\subseteq \pi(G), l,s\in\mathbb{N}.$

Заметим, что $l \le 2$ при p = 2.

Рассмотрим случай, когда $p \neq q$. Предположим, что G – простая неабелева группа. Ввиду леммы 2.1 группа $G \approx PSL(2,7)$. Но в этой группе примарные индексы максимальных подгрупп могут быть равными только 7 или 8. Это противоречит определению \mathbb{KP}_2^2 -субнормальной подгруппы. Получили противоречие. Поэтому в группе G имеется собственная минимальная нормальная подгруппа N. В силу леммы 1.1 (1) условия теоремы наследуются фактор-группами группы G, поэтому N не является r-разрешимой группой. Следовательно, N не содержится в A и N не содержится в A и A максимальны в A то A полученных факторизаций имеем:

$$p^{l} = |G:A| = |N:(A \cap N)|,$$

 $q^{s} = |G:B| = |N:(B \cap N)|.$

Так как

$$(|N:A\cap N|, |N:B\cap N|) = 1,$$

то $N = (A \cap N)(B \cap N)$. По лемме 1.1 (1) подгруппы $(A \cap N)$ и $(B \cap N)$ К \mathbb{P}_2^2 -субнормальны в N. По индукции N r-разрешима, противоречие.

Следовательно, p = q. Заметим

$$p^{l} = |G:A| = |B:A \cap B| > 1,$$

 $p^{s} = |G:B| = |A:A \cap B| > 1.$

Используя лемму об индексах получаем:

$$|G:A\cap B| = |G:A||A:A\cap B| = p^{l+s} > p^{l}$$
.

В силу леммы 2.1 группа G не простая. Пусть N- минимальная нормальная подгруппа в G. Тогда N не является r-разрешимой и

$$N = N_1 \times \cdots \times N_k$$
,

где N_i — изоморфные простые неабелевы группы. N не содержится в A и N не содержится в B. Применяем лемму 1.3 к цепочке подгрупп $A \cap B \leq A \leq G$.

При $V=G,\ U=A$ и $K=N_1$ получаем, что $1\neq \mid N_1:A\cap N_1\mid$ делит $\mid G:A\mid =p^l.$ Аналогично, $1\neq \mid N_1:B\cap N_1\mid$ делит $\mid G:B\mid =p^s.$ При

$$V = G$$
, $U = A \cap B$, $K = N_1$

получаем, что $1 \neq |N_1:A \cap B \cap N_1|$ делит $|G:A \cap B| = p^{l+s}$. Итак, в простой группе N_1 содержатся подгруппы

$$A \cap N_1$$
, $B \cap N_1$, $A \cap B \cap N_1$,

индексы которых являются степенями простого числа *p*. Согласно лемме 2.1

$$\begin{split} \mid N_1:A \cap N_1 \mid = \mid N_1:B \cap N_1 \mid = \mid N_1:A \cap B \cap N_1 \mid, \\ A \cap N_1 = A \cap B \cap N_1 = B \cap N_1. \end{split}$$

Подгруппа $A \cap N_1$ субнормальна в A и $A \cap N_1 = B \cap N_1$ субнормальна в B. Согласно [11] подгруппа $A \cap N_1$ субнормальна в G и p-разрешима. Если $A \cap N_1 \neq 1$, то $(A \cap N_1)^G$ — неединичная нормальная p-разрешимая подгруппа в G, противоречие. Поэтому $A \cap N_1 = 1$. Поскольку $|N_1| = |N_1:A \cap N_1|$ делит $|G:A| = p^I$, то $N_1 - p$ -группа, что невозможно.

3 Множество X состоит из примарных чисел

Множество

$$\mathbb{P}^{\infty} = \left\{ p^t \mid p \in \mathbb{P}, t \in \{0\} \cup \mathbb{N} \right\}$$

состоит из всех примарных чисел. Напомним, что примарным называют число, которое является неотрицательной целой степенью простого числа. Для \mathbb{KP}^{∞} -субнормальных подгрупп выполняются утверждения лемм 1.1 и 1.2, поскольку \mathbb{P}^{∞} замкнуто относительно делителей.

Теорема 3.1. Пусть G — конечная группа и $r \in \pi(G) \setminus \{2,3,7\}$. Если A и B — \mathbb{KP}^{∞} -субнормальные r-разрешимые подгруппы G и G = AB, то G является r-разрешимой группой.

Доказательство. Предположим, что теорема неверна и G — минимальный контрпример. Аналогично доказательству теоремы 2.2 можно доказать, что подгруппы A и B максимальны в G. Если A_{n-1} нормальна в $A_n = G = A_{n-1}B$, или B_{n-1} нормальна в B_n то G r-разрешима, противоречие. Значит, $|G:A|=p^l$, $|G:B|=q^s$, где $\{p,q\}\subseteq \pi(G)$.

Сначала рассмотрим случай, когда $p \neq q$. Если G — простая неабелева группа, то в силу леммы 2.1 она изоморфна PSL(2,7). Тогда, G — r' -группа. Противоречие с предположением, что

G — контрпример минимального порядка. Поэтому минимальная нормальная подгруппа N в G отлична от G. Подгруппа N не является r-разрешимой и $N=N_1\times\dots\times N_k$, где N_i — изоморфные простые неабелевы группы. Поэтому $N\nsubseteq A$ и $N\nsubseteq B$. Из полученного условия максимальности подгрупп A и B в G заключаем, что G=AN=BN. Из равенств $|G:A|=p^l$, $|G:B|=q^s$ следует, что G=AP=BQ для $P\in \mathrm{Syl}_p(G)$, $Q\in \mathrm{Syl}_q(G)$. Поэтому

$$\frac{\mid A \mid\mid N \mid}{\mid A \cap N \mid} = \frac{\mid A \mid\mid P \mid}{\mid A \cap P \mid}$$

или

$$\frac{\mid N \mid}{\mid A \cap N \mid} = \frac{\mid P \mid}{\mid A \cap P \mid} = p^{l}, \mid N : A \cap N \mid = p^{l}.$$

Аналогично можно показать, что $\mid N: B \cap N \mid = q^s$. Так как

$$(|N:A\cap N|, |N:B\cap N|) = 1,$$

то $N = (A \cap N)(B \cap N)$. По лемме 1.1 (1) подгруппы $(A \cap N)$ и $(B \cap N)$ К \mathbb{P}^{∞} -субнормальны в N. По индукции N r-разрешима, противоречие.

Поэтому p=q. Повторяя соответствующую часть доказательства теоремы 2.2, получаем противоречие с тем, что N не является r-разрешимой подгруппой.

4 Множество $\, \mathbb{X} \,$ состоит из всех нечетных чисел и чисел 2 и 4

Множество

$$\mathbb{L} = \{2, 4\} \cup \{2n - 1 \mid n \in \mathbb{N}\}\$$

состоит из всех нечетных чисел и чисел 2 и 4.

Нам потребуется следующий результат.

Лемма 4.1. [12, теорема 3]. Если A и B – разрешимые подгруппы нечетных индексов в конечной группе G и G = AB, то G разрешима.

Теорема 4.2. Пусть A и B — $K\mathbb{L}$ -субнормальные подгруппы конечной группы G и G = AB. Если A и B разрешимы, то G разрешима.

Доказательство. Предположим, что утверждение неверно и пусть группа G — минимальный контрпример к теореме. По условию существует $K\mathbb{L}$ -субнормальная цепь подгрупп

$$A = A_0 < A_1 < \dots < A_{n-1} < A_n = G$$
.

Подгруппа A К $\mathbb L$ -субнормальна в A_{n-1} и $A_{n-1}=A(A_{n-1}\cap B)$ по тождеству Дедекинда. По лемме 1.2 подгруппа $A_{n-1}\cap B$ К $\mathbb L$ -субнормальна в A_{n-1} . По индукции подгруппа A_{n-1} разрешима. Поэтому в факторизации G=AB можно считать, что подгруппа $A=A_{n-1}$ максимальна. Аналогично, без ущерба для доказательства можно считать, что подгруппа B максимальна в G.

Из определения $K\mathbb{L}$ -субнормальности следует, что подгруппа A либо нормальна в G, либо

|G:A| \in \mathbb{L} . Если A нормальна в G, то |G:A| — простое число и G разрешима, противоречие. Если индекс подгруппы A равен 2 или 4, то фактор-группа G/M_G изоморфна подгруппе симметрической группы S_4 степени 4. Здесь $M_G = \bigcap_{x \in G} M^x$ — ядро подгруппы M в группе G. Поскольку $|S_4|$ = 4! = 24, то G разрешима. Опять получили противоречие. Следовательно, индекс подгруппы A в группе G нечетный. Аналогично, G — подгруппа нечетного индекса в G. По лемме 4.1 группа G разрешима.

Отметим, что теоремы 2.2, 3.1 и 4.2 поглощают результаты работ [1], [4]–[6], [8].

ЛИТЕРАТУРА

- 1. *Монахов*, *В.С.* Факторизуемые группы с разрешимыми факторами нечетных индексов / В.С. Монахов // В кн.: Исследование нормального и подгруппового строения конечных групп. Минск. Наука и техника. 1984. С. 105–111.
- 2. *Monakhov*, *V.S.* Finite group with P-subnormal subgroups / V.S. Monakhov, V.N. Kniahina // Ricerche di Matematica. 2013. Vol. 62, № 2. P. 307–323.
- 3. *Kniahina*, *V.N.* On supersolvability of finite groups with \mathbb{P} -subnormal subgroups / V.N. Kniahina, V.S. Monakhov // International Journal of Group Theory. 2013. Vol. 2, N_2 4. P. 21–29.
- 4. *Княгина*, *В.Н.* Конечные факторизуемые группы с разрешимыми \mathbb{P}^2 -субнормальными подгруппами / В.Н. Княгина, В.С. Монахов //

- Сибирский математический журнал. 2013. Т. 54, № 1. – С. 77–85.
- 5. Васильев, А.Ф. О К \mathbb{P} -субнормальных подгруппах конечных группах / А.Ф. Васильев, Т.И. Васильева, В.Н. Тютянов // Математические заметки. 2014. Т. 95, № 4. С. 517—528.
- 6. *Тюмянов*, *В.Н.* Факторизации конечных групп r-разрешимыми подгруппами с заданными вложениями / В.Н. Тютянов, В.Н. Княгина // Укр. мат. журн. 2014. T. 55, № 10. C. 1431–1435.
- 7. *Monakhov*, *V*. Finite factorised groups with partially solvable ℙ-subnormal subgroups / V. Monakhov, V. Kniahina // Lobachevskii Journal of Mathematics. 2015. Vol. 36, № 4. P. 441–445.
- 8. Чирик, И.К. Конечные факторизуемые группы с разрешимыми \mathbb{KP}^2 -субнормальными подгруппами / И.К. Чирик // Математические заметки. Москва. 2016. Т. 99, № 1. С. 97–101.
- 9. *Монахов*, *В.С.* Введение в теорию конечных групп и их классов / В.С. Монахов. Минск: Вышэйшая школа, 2006. 207 с.
- 10. *Guralnick*, *R.M.* Subgroups of prime power index in a simple group / R.M. Guralnick // J. Algebra. 1983. Vol. 81, № 2. P. 304–311.
- 11. *Wielandt*, *H*. Subnormalitat in faktorisierten endlichen Gruppen / H. Wielandt // J. Algebra. 1981. Vol. 69. P. 305–311.
- 12. *Казарин*, *Л.С.* Факторизации конечных групп разрешимыми подгруппами / Л.С. Казарин // Укр. мат. журн. -1991. T. 43, 7-8. C. 947-950.

Поступила в редакцию 20.01.19.