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Koneunas rpynma G HassiBaetcs m -cneyuanshoi, ecmn G =0, (G)x---x 0, (G)xO,(G), rae n={p,,..,p,}. Mbl roopnm,
4TO KOHE4Has rpynna G sSBISIETCS nOay- T -CHeyuaibHOl, eCIM HOPMAIM3aTop JIF0OOH HEHOPMATIbHON T -CHELHAIbHOM Mo/-
rpymmsl Tpynnbl G ABAAeTCsA T -crienuanbHoi. JlokasaHo, uto ecnu G He SBIAETCS T -CHENMANTbHON TpyNmoi, Ho N (A4) sB-
JSIETCSL T -CIICNUATBHBIM JUTS KXol moArpynisl 4 B G TaKOM, 4To A sBisieTcst 60 1T’ -TPyIIIoi, Tubo p-rpyIIoit AIst HEKO-
TOpPOH p €m, TOrja ChpaBeIuBbl cieaytomue yreepxaenus: (i) G/ F(G) saemsemca T -cneyuanvhou epynnou. Credosa-
menvHo, G umeem xonnogy ' -noozpynny H u paspewumyio xonnogy m-nooepynny E. (ii) Eciu G ne siensemcs p-3aMKHymou

onsi Kkascooeo p ew, mo: (1) H nopmanvna 6 G u E nunbnomenmnua. (2) 0, (G)x---x0, (G)xH sersemcs makcumanshou

T -cneyuanvbrou nooepynnoti 8 G u Kaxcoas MUHUMAanbHas HOpManbHas nooepynna epynnvl G cooepacumces 6 F(G).
Knrouesvie cnosa: xoneunas epynna, T -CHeyuaibHas epynna, T -paspeiiumas epynna, Cuiosa no02pynna, Xoai08a noozpynnd.

A finite group G is called w-special if G=0,(G)x---x0, (G)xO0,(G), where n={p,,..,p,}. We say that a finite group G
is semi- 1w -special if the normalizer of every non-normal 7 -special subgroup of G is w -special. We prove that if G is not
n-special but N, (A4) is m-special for every subgroup 4 of G such that A4 is either a ©’ -group or a p-group for some p emx,
then the following statements hold: (i) G/ F(G) is = -special. Hence G has a Hall 7' -subgroup H and a soluble Hall r -sub-
group E. (ii) If G is not p-closed for each p e, then: (1) H is normal in G and E is nilpotent. (2) O, (G)x---x0, (G)xH is

a maximal T -special subgroup of G and every minimal normal subgroup of G is contained in F(G).

Keywords: finite group, n -soluble group, w -special group, Sylow subgroup, Hall subgroup.

Introduction

Throughout this paper, all groups are finite and
G always denotes a finite group. Moreover, P is the
set of all primes, penc P and n' =P\ n. Ifnis an
integer, the symbol m(n) denotes the set of all
primes dividing n; as usual, ©(G)=n( G|), the set
of all primes dividing the order of G. Throughout
this paper, all groups

A group G is called w-special [1]-[3] if

G=0, (G)x-x0, (G)xO0,(G),

where n={p,,... p,}.

Recall that the group G is called semi-nilpotent
[4] if the normalizer of every non-normal nilpotent
subgroup of G is nilpotent. We say, by analogy with
it, that G is semi- m-special if the normalizer of
every non-normal m-special subgroup of G is
7 -special.

Remark 0.1. We show that G is semi- 7 -special
if and only if the normalizer of every non-normal
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subgroup 4 of G which is either a p-group for some
pemn ora w -group is 7 -special. Since every such

a subgroup is 7-special, it is enough to show that if
the normalizer of every non-normal subgroup 4 of
G which is either a p-group for some pemn or a

n' -group is 7 -special, then G is semi- 1t -special.

Let H be any non-normal = -special subgroup
of G. Then

H=0,(H)x:-x0, (H)xO,(H),
where ©={p,,...,p,}, and
NG (H)=
=Ng(O . (H))NN4(O, (H)yn---NN(O, (H)).

Moreover, since H is non-normal in G, at least one
of the subgroups O.(H),0, (H),...O, (H) is not
normal in G. But then at least one of the subgroups
N;(O,(H)),N;(O, (H)),...N;(O, (H)) is m-spe-

cial and so N.(H) is m-special.
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The structure of semi-nilpotent groups is well-
known (see [4] or [5, Chapter 4, Section 7]). In this
paper we prove the following

Theorem 0.2. Suppose that G is not w-special

but N;(A) is m-special for every subgroup A of G
such that A is either a ©' -group or a p-group for
some p € m. Then the following statements hold:

(i) G/ F(G) is m-special. Hence G has a Hall
' -subgroup H and a soluble Hall 1 -subgroup E.

(i) If G is not p-closed for each p € =, then:

(1) H is normal in G and E is nilpotent.

(2) 0,(G)x--x0, (G)xH is a maximal
n -special subgroup of G and every minimal normal
subgroup of G is contained in F(G).

In the case when =P we get from Theorem
0.2 the following known result.

Corollary 1.3 (Sah [4]). If G is semi-nilpotent,
then G/ F(G) is nilpotent.

In the case when n={p} we get from Theo-

rem 1.2 the following known result.

Corollary 0.4 (Adarchenko, Blisnets, Rizhik
[6]). Suppose that N, (A) is p-decomposable for
every subgroup A of G such that either A is either a
p-group or a p' -group. If a Sylow p-subgroup P of G
is not normal in G, then the following conditions hold.

(i) G is p-soluble and G has a normal Hall
p' -subgroup H.

(i) G/ F(G) is p-decomposable.

1 Preliminaries

The first lemma can be proved by direct calcu-
lations.

Lemma 1.1. Let § be the class of all ww-spe-

cial groups. Then:
() If GeF§, then G/ N e§ for every normal

subgroup N of G.

Q) If Ge3§, then E e for every subgroup E
of G.

B3)IfG/N, G/Leg, then G/INNLeZF.

DIfG/DeF, then GEF.

Lemma 1.2. Suppose that a group G is m-so-
luble and let P be a Sylow p, -subgroup of G for all
pen={p,...p,} and C a Hall ' -subgroup of G.
If N.(C) and N_(P) are w-special for all i, then
G is m-special.

Proof- Let R be a minimal normal subgroup of
G. Then R is either a p-group for some prime p en
or a n' -group since G is m-soluble by hypothesis.
Moreover, PR/ R is a Sylow p,-subgroup of G for
all pen, CR/R is a Hall r'-subgroup of G/R

and
Ny(PRI/R)=N,()R/R=Ny(B)/(N,(B)"P)
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and
N,(CR/R)=N,(C)R/R=N_(C)/ (N ,(C)nC)
are m-special by Lemma 1.1 (1). Hence the hy-
pothesis holds for G/ R. Therefore
G/R=0,(G/R)x0,(G/R)x:-x0, (G/R)
is m-special by induction.

Suppose that R is a p, -group for some p, € .

Then

0,(G/R)=0,(G)/R=PF/R
is normal in G/R, so P is normal in G. But then
G=N,(P) is m-special by hypothesis. Similarly
one can show that G=N,(C) is m-special in the
case when R isa 1’ -group. O

Lemma 1.3 (See [8, Chapter V, Theorem 26.1]).
If G is a Schmidt group, then G =PxQ, where
P=G" =G’ is a Sylow p-subgroup of G and Q is a
Sylow q-subgroup of G for some primes p # q.

Lemma 2.4. If G is a minimal non- 1t -special
group, then G is a Schmidt group.

Proof. Assume that this is false and let G be a
counterexample of minimal order. Then for some
pen we have pen(G). Moreover, G is p-nilpo-
tent for all p e n. Indeed, if G is not p-nilpotent,
then G is a minimal non-p-nilpotent group and so G
is a Schmidt group by [9, IV, Satz 5.4], contrary to
our assumption on G. Thus G =V x H, where Vis a
normal Hall " -subgroup of G and H is a nilpotent
Hall w-subgroup of G. Moreover, | t(G)[>2 since
otherwise, every proper subgroup of G is nilpotent
and so G is a Schmidt group.

Now let gen(V), pen(H) and let O be a
Sylow g-subgroup of V and P the Sylow p-subgroup
of H. Then G=VN_.(Q) by the Frattini argument,
so for some xe€ G we have P< N (Q"). But then
O"XP=0"xP since 2=n(Q"xP)|<|n(G)| and
every proper subgroup of G is w-special. Therefore
|G:C.(P)| is a ¢’ -number for every ¢ en(V).
Hence G =V xH is m-special, a contradiction. O

2 Proof of Theorem 0.2
Assume that this theorem is false and let G be a
counter example of minimal order. Then G is not

n-special. Hence D :=G® #1, where § is the class
of all m-special groups.

(1) Every proper subgroup E of G is semi-T -
special. Hence Statement (i) holds for E.

Let 7 be a non-normal T -special subgroup of

E. Then V is not normal in G, so N, (V) is m-spe-
cial by hypothesis. Hence N, (V)=N,(V)NE is
n-special by Lamma 1.1 (2). Hence E is semi- -
special. Hence we have (1) by the choice of G.
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(2) Every proper quotient G/ N of G (that is,
N #1) is semi- w-special. Hence Statement (i) holds
for G/ N.

In view of Remark 0.1 and the choice of G, it is
enough to show that if U/N is any non-normal
subgroup of G/N such that U/N is either a
p-group for some prime pen ora n'-group, then
N; y(U/N) is m-special. We can assume without
loss of generality that N is a minimal normal sub-
group of G.

Since U/ N is not normal in

U/N<G/NU/N<G/N
and U is not normal in G. Hence U is a proper sub-
group of G, which implies that U is m-soluble by
Claim (1). Hence N is either a p-group for some
prime pemn ora p'-group. First suppose that N is
a ©' -group.

If U/N isa ' —group, then U is a ©t’ -group

and so N, (U) is m-special by hypothesis. Hence
Ngy(U/N)=Ng(U)/N=NgU)/(NgU)NN)
is m-special by Lemma 1.1 (1). Now suppose that
U/N is a p-group for some pemn. Then N has a
complement ¥ in U and every two complements to N
in U are conjugate in U since U is m-soluble.
Therefore N, (U)=N,(NV)=NN;(V). Since
U =NV is not normal in G, V is not normal in G
and so N;(V) is m-special. Hence N, (U/N)=
=N, (U)/N is m-special.

(3) If A is a minimal non- 1t -special subgroup
of G, then A=RxQ, where R=A" =A4' is a Sy-
low r-subgroup of A and Q is a Sylow g-subgroup of
A for some different primes r and q. Moreover, R is
normal in G and so R <O, (G).

The first assertion of the claim directly follows
from Lemmas 1.3. Since 4 is not w-special, R is
normal in G by hypothesis. Therefore R < O (G).

(4) G is m-soluble. Hence G has a Hall ©' -
subgroup H and a soluble Hall w-subgroup E.

First we show that G is m-soluble. Suppose
that this is false. Then G is a non-abelian simple
group since every proper section of G is m-soluble
by Claims (1) and (2). Moreover, G is not 7 -special
and so it has a minimal non- 7t -special subgroup A.
Claim (3) implies that for some prime r and for
some Sylow r-subgroup R of 4 we have
1<R<0,(G)<G. This contradiction shows that G
is m-soluble. Hence G has a Hall «'-subgroup H
and a soluble Hall = -subgroup E.

(5) Statement (i) holds for G.

In view of Lemma 1.1 (1), it is enough to show
that D =G? is nilpotent. Assume that this is false.
Then D #1, and for any minimal normal subgroup
R of G we have that
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(G/R" =RD/R=D/DNR

is nilpotent by Claim (2) and Lemma 1.1 (1). More-
over, R is the unique minimal normal subgroup of G,

R<D and R £ ®(G) by Lemma 1.1 (3, 4).

Since G is not 7 -special, Claim (3) and [7, Ch.
A, 15.6] imply that R=C,(R)=0,.(G) = F(G) for
some prime 7.

Then R<D and G =RxM, where M is not

n-special, so M has a minimal non- «t -special sub-
group 4. Claim (3) implies that for some prime g
dividing | 4| and for a Sylow g-subgroup Q of 4 we

have 1<Q<F(G)NnM =RnNnM =1. This contra-

diction completes the proof of (5).
In what follows, we assume that G is not p-clo-
sed for each p e m.

(6) A Hall 1’ -subgroup H of G is normal in G
and a Hall w-subgroup E of G is nilpotent. Hence
G/ H is nilpotent.

Since P is not normal in G for all i by hy-
pothesis, N;(P) is m-special for all i. Therefore,
since G is not m-special, Lemma 1.2 implies that H
is normal in G. By hypothesis, N, (P) is m-special
for every Sylow p-subgroup of E and every pen

by our assumption of G. Therefore E is nilpotent.
Hence we have (6).

() HXO, (G)x- %0, (G)=HXO, (1)x-x0, ()
for every subgroup V of G containing

Hx0, (G)x--x0, (G).
Hence O, (G)x---x0, (G)xH isa maximal T -spe-
cial subgroup of G.

Indeed, since H=0_,(G) and G/H =F is
nilpotent by Claim (6), every subgroup of G contain-
ing HxO, (G)x:-x0, (G) is subnormal in G.
Therefore V' is subnormal in G, so

0.(G)x0, (G)x---x0, (G)=
=Hx0, (G)x---x0, (G) <

<0, (V)x0,(V)x---x0, (V)<
<0.(G)x0, (G)x---x0, (G).

Thus we have (7).
(8) Every minimal normal subgroup of G is
contained in F(G).

Let R be any minimal normal subgroup of G.
Assume that R & F(G). From Claim (5) it follows

that D=G® < F(G), so R % D and hence from the
G-isomorphism RD/D =R it follows that R is a
non-abelian 7’ -group. Let R, be a Sylow p-sub-

group of R, where pem(R). Then R, is not nor-
mal in G and so G =RN;(R,) by the Frattini argu-

ment. But then
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G/R=N;(R,)/(N;(R,)NR)
is m-special and hence R=D. This contradiction
completes the proof of Claim (8)

Final contradiction. From Claims (5)—(8) it
follows that that the conclusion of the theorem holds
for G, contrary to the choice of G. This final contra-
diction completes the proof of the theorem. O
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