УДК 512.542

- МАТЕМАТИКА

О КОНЕЧНЫХ ПОЛУ- л-СПЕЦИАЛЬНЫХ ГРУППАХ

Н.С. Косенок¹, В.М. Селькин², В.Н. Мыцик², В.Н. Рыжик³

¹Белорусский торгово-экономический университет потребительской кооперации ²Гомельский государственный университет им. Ф. Скорины ³Брянский государственный аграрный университет

ON FINITE SEMI- π -SPECIAL GROUPS

N.S. Kosenok¹, V.M. Selkin², V.N. Mitsik², V.N. Rizhik³

¹Belarusian Trade and Economic University of Consumer Cooperatives ²F. Scorina Gomel State University ³Bryansk State Agrarian University

Конечная группа G называется π -специальной, если $G = O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times O_{\pi}(G)$, где $\pi = \{p_1, ..., p_n\}$. Мы говорим, что конечная группа G является полу- π -специальной, если нормализатор любой ненормальной π -специальной подгруппы группы G является π -специальной. Доказано, что если G не является π -специальной группой, но $N_G(A)$ является π -специальным для каждой подгруппы A в G такой, что A является либо π' -группой, либо p-группой для некоторой $p \in \pi$, тогда справедливы следующие утверждения: (i) G/F(G) является π -специальной группой. Следовательно, G имеет холлову π' -подгруппу H и разрешимую холлову π -подгруппу E. (ii) Если G не является p-замкнутой для каждого $p \in \pi$, то: (1) H нормальна в G и E нильпотентна. (2) $O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times H$ является максимальной π -специальной подгруппой в G и каждая минимальная нормальная подгруппа группы G содержится в F(G).

Ключевые слова: конечная группа, π-специальная группа, π-разрешимая группа, силова подгруппа, холлова подгруппа.

A finite group G is called π -special if $G = O_{p_i}(G) \times \cdots \times O_{p_n}(G) \times O_{\pi'}(G)$, where $\pi = \{p_1, \dots, p_n\}$. We say that a finite group G is semi- π -special if the normalizer of every non-normal π -special subgroup of G is π -special. We prove that if G is not π -special but $N_G(A)$ is π -special for every subgroup A of G such that A is either a π' -group or a p-group for some $p \in \pi$, then the following statements hold: (i) G / F(G) is π -special. Hence G has a Hall π' -subgroup H and a soluble Hall π -subgroup E. (ii) If G is not p-closed for each $p \in \pi$, then: (1) H is normal in G and E is nilpotent. (2) $O_{p_i}(G) \times \cdots \times O_{p_n}(G) \times H$ is a maximal π -special subgroup of G and every minimal normal subgroup of G is contained in F(G).

Keywords: finite group, π -soluble group, π -special group, Sylow subgroup, Hall subgroup.

Introduction

Throughout this paper, all groups are finite and *G* always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $p \in \pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If *n* is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing *n*; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of *G*. Throughout this paper, all groups

A group G is called π -special [1]–[3] if

$$G = O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times O_{\pi'}(G)$$

where $\pi = \{p_1, ..., p_n\}.$

Recall that the group G is called *semi-nilpotent* [4] if the normalizer of every non-normal nilpotent subgroup of G is nilpotent. We say, by analogy with it, that G is *semi-* π *-special* if the normalizer of every non-normal π *-special* subgroup of G is π *-special*.

Remark 0.1. We show that G is semi- π -special if and only if the normalizer of every non-normal

subgroup A of G which is either a p-group for some $p \in \pi$ or a π' -group is π -special. Since every such a subgroup is π -special, it is enough to show that if the normalizer of every non-normal subgroup A of G which is either a p-group for some $p \in \pi$ or a π' -group is π -special, then G is semi- π -special.

Let *H* be any non-normal π -special subgroup of *G*. Then

$$H = O_{p_1}(H) \times \cdots \times O_{p_n}(H) \times O_{\pi'}(H),$$

where $\pi = \{p_1, ..., p_n\}$, and

$$N_G(H) =$$

= $N_G(O_{\pi'}(H)) \cap N_G(O_{p_1}(H) \cap \dots \cap N_G(O_{p_n}(H))).$

Moreover, since *H* is non-normal in *G*, at least one of the subgroups $O_{\pi'}(H), O_{p_1}(H), ..., O_{p_n}(H)$ is not normal in *G*. But then at least one of the subgroups $N_G(O_{\pi'}(H)), N_G(O_{p_1}(H)), ..., N_G(O_{p_n}(H))$ is π -special and so $N_G(H)$ is π -special.

[©] Косенок Н.С., Селькин В.М., Мыцик В.Н., Рыжик В.Н., 2019 88

and

The structure of semi-nilpotent groups is wellknown (see [4] or [5, Chapter 4, Section 7]). In this paper we prove the following

Theorem 0.2. Suppose that G is not π -special but $N_G(A)$ is π -special for every subgroup A of G such that A is either a π' -group or a p-group for some $p \in \pi$. Then the following statements hold:

(i) G/F(G) is π -special. Hence G has a Hall

 π' -subgroup H and a soluble Hall π -subgroup E. (ii) If G is not p-closed for each $p \in \pi$, then:

(1) H is normal in G and E is nilpotent.

(2) $O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times H$ is a maximal π -special subgroup of G and every minimal normal subgroup of G is contained in F(G).

In the case when $\pi = \mathbb{P}$ we get from Theorem 0.2 the following known result.

Corollary 1.3 (Sah [4]). If G is semi-nilpotent, then G/F(G) is nilpotent.

In the case when $\pi = \{p\}$ we get from Theorem 1.2 the following known result.

Corollary 0.4 (Adarchenko, Blisnets, Rizhik [6]). Suppose that $N_G(A)$ is p-decomposable for every subgroup A of G such that either A is either a p-group or a p'-group. If a Sylow p-subgroup P of G is not normal in G, then the following conditions hold:

(i) G is p-soluble and G has a normal Hall p'-subgroup H.

(ii) G/F(G) is p-decomposable.

1 Preliminaries

The first lemma can be proved by direct calculations.

Lemma 1.1. Let \mathfrak{F} be the class of all π -special groups. Then:

(1) If $G \in \mathfrak{F}$, then $G / N \in \mathfrak{F}$ for every normal subgroup N of G.

(2) If $G \in \mathfrak{F}$, then $E \in \mathfrak{F}$ for every subgroup E of G.

(3) If G/N, $G/L \in \mathfrak{F}$, then $G/N \cap L \in \mathfrak{F}$.

(4) If $G / \Phi \in \mathfrak{F}$, then $G \in \mathfrak{F}$.

Lemma 1.2. Suppose that a group G is π -soluble and let P_i be a Sylow p_i -subgroup of G for all $p \in \pi = \{p_1, ..., p_n\}$ and C a Hall π' -subgroup of G. If $N_G(C)$ and $N_G(P_i)$ are π -special for all i, then G is π -special.

Proof. Let *R* be a minimal normal subgroup of *G*. Then *R* is either a *p*-group for some prime $p \in \pi$ or a π' -group since *G* is π -soluble by hypothesis. Moreover, P_iR/R is a Sylow p_i -subgroup of *G* for all $p \in \pi$, CR/R is a Hall π' -subgroup of G/R and

$$N_G(P_i R / R) = N_G(i) R / R \simeq N_G(P_i) / (N_G(P_i) \cap P_i)$$

 $N_G(CR/R) = N_G(C)R/R \simeq N_G(C)/(N_G(C) \cap C)$ are π -special by Lemma 1.1 (1). Hence the hypothesis holds for G/R. Therefore

 $G / R = O_{\pi'}(G / R) \times O_{p_1}(G / R) \times \cdots \times O_{p_n}(G / R)$

is π -special by induction.

Suppose that *R* is a p_i -group for some $p_i \in \pi$. Then

$$O_{p_i}(G / R) = O_{p_i}(G) / R = P_i / R$$

is normal in G/R, so P_i is normal in G. But then $G = N_G(P_i)$ is π -special by hypothesis. Similarly one can show that $G = N_G(C)$ is π -special in the case when R is a π' -group.

Lemma **1.3** (See [8, Chapter V, Theorem 26.1]). If G is a Schmidt group, then $G = P \rtimes Q$, where $P = G^{\mathfrak{N}} = G'$ is a Sylow p-subgroup of G and Q is a Sylow q-subgroup of G for some primes $p \neq q$.

Lemma 2.4. If G is a minimal non- π -special group, then G is a Schmidt group.

Proof. Assume that this is false and let G be a counterexample of minimal order. Then for some $p \in \pi$ we have $p \in \pi(G)$. Moreover, G is p-nilpotent for all $p \in \pi$. Indeed, if G is not p-nilpotent, then G is a minimal non-p-nilpotent group and so G is a Schmidt group by [9, IV, Satz 5.4], contrary to our assumption on G. Thus $G = V \rtimes H$, where V is a normal Hall π' -subgroup of G and H is a nilpotent Hall π -subgroup of G. Moreover, $|\pi(G)| > 2$ since otherwise, every proper subgroup of G is nilpotent and so G is a Schmidt group.

Now let $q \in \pi(V)$, $p \in \pi(H)$ and let Q be a Sylow q-subgroup of V and P the Sylow p-subgroup of H. Then $G = VN_G(Q)$ by the Frattini argument, so for some $x \in G$ we have $P \leq N_G(Q^x)$. But then $Q^x \rtimes P = Q^x \times P$ since $2 = |\pi(Q^x \rtimes P)| < |\pi(G)|$ and every proper subgroup of G is π -special. Therefore $|G: C_G(P)|$ is a q'-number for every $q \in \pi(V)$. Hence $G = V \times H$ is π -special, a contradiction. \Box

2 Proof of Theorem 0.2

Assume that this theorem is false and let G be a counter example of minimal order. Then G is not π -special. Hence $D := G^{\mathfrak{F}} \neq 1$, where \mathfrak{F} is the class of all π -special groups.

(1) Every proper subgroup E of G is semi- π -special. Hence Statement (i) holds for E.

Let V be a non-normal π -special subgroup of E. Then V is not normal in G, so $N_G(V)$ is π -special by hypothesis. Hence $N_E(V) = N_G(V) \cap E$ is π -special by Lamma 1.1 (2). Hence E is semi- π -special. Hence we have (1) by the choice of G. (2) Every proper quotient G/N of G (that is, $N \neq 1$) is semi- π -special. Hence Statement (i) holds for G/N.

In view of Remark 0.1 and the choice of G, it is enough to show that if U/N is any non-normal subgroup of G/N such that U/N is either a *p*-group for some prime $p \in \pi$ or a π' -group, then $N_{G/N}(U/N)$ is π -special. We can assume without loss of generality that N is a minimal normal subgroup of G.

Since U/N is not normal in

U/N < G/NU/N < G/N

and U is not normal in G. Hence U is a proper subgroup of G, which implies that U is π -soluble by Claim (1). Hence N is either a p-group for some prime $p \in \pi$ or a p'-group. First suppose that N is a π' -group.

If U/N is a π' -group, then U is a π' -group and so $N_G(U)$ is π -special by hypothesis. Hence

 $N_{G/N}(U/N) = N_G(U)/N \simeq N_G(U)/(N_G(U) \cap N)$

is π -special by Lemma 1.1 (1). Now suppose that U/N is a *p*-group for some $p \in \pi$. Then N has a complement V in U and every two complements to N in U are conjugate in U since U is π -soluble. Therefore $N_G(U) = N_G(NV) = NN_G(V)$. Since U = NV is not normal in G, V is not normal in G and so $N_G(V)$ is π -special. Hence $N_{G/N}(U/N) = N_G(U)/N$ is π -special.

(3) If A is a minimal non- π -special subgroup of G, then $A = R \rtimes Q$, where $R = A^{\mathfrak{N}} = A'$ is a Sylow r-subgroup of A and Q is a Sylow q-subgroup of A for some different primes r and q. Moreover, R is normal in G and so $R \leq O_{\alpha}(G)$.

The first assertion of the claim directly follows from Lemmas 1.3. Since A is not π -special, R is normal in G by hypothesis. Therefore $R \leq O_r(G)$.

(4) *G* is π -soluble. Hence *G* has a Hall π' -subgroup *H* and a soluble Hall π -subgroup *E*.

First we show that *G* is π -soluble. Suppose that this is false. Then *G* is a non-abelian simple group since every proper section of *G* is π -soluble by Claims (1) and (2). Moreover, *G* is not π -special and so it has a minimal non- π -special subgroup *A*. Claim (3) implies that for some prime *r* and for some Sylow *r*-subgroup *R* of *A* we have $1 < R \le O_r(G) < G$. This contradiction shows that *G* is π -soluble. Hence *G* has a Hall π' -subgroup *H* and a soluble Hall π -subgroup *E*.

(5) Statement (i) holds for G.

In view of Lemma 1.1 (1), it is enough to show that $D = G^{\tilde{s}}$ is nilpotent. Assume that this is false. Then $D \neq 1$, and for any minimal normal subgroup *R* of *G* we have that

$$(G / R)^F = RD / R \simeq D / D \cap R$$

is nilpotent by Claim (2) and Lemma 1.1 (1). Moreover, *R* is the unique minimal normal subgroup of *G*, $R \le D$ and $R \nleq \Phi(G)$ by Lemma 1.1 (3, 4).

Since G is not π -special, Claim (3) and [7, Ch. A, 15.6] imply that $R = C_G(R) = O_r(G) = F(G)$ for some prime r.

Then R < D and $G = R \rtimes M$, where *M* is not π -special, so *M* has a minimal non- π -special subgroup *A*. Claim (3) implies that for some prime *q* dividing |A| and for a Sylow *q*-subgroup *Q* of *A* we have $1 < Q \le F(G) \cap M = R \cap M = 1$. This contradiction completes the proof of (5).

In what follows, we assume that G is not p-closed for each $p \in \pi$.

(6) A Hall π' -subgroup H of G is normal in G and a Hall π -subgroup E of G is nilpotent. Hence G/H is nilpotent.

Since P_i is not normal in G for all *i* by hypothesis, $N_G(P_i)$ is π -special for all *i*. Therefore, since G is not π -special, Lemma 1.2 implies that H is normal in G. By hypothesis, $N_E(P)$ is π -special for every Sylow p-subgroup of E and every $p \in \pi$ by our assumption of G. Therefore E is nilpotent. Hence we have (6).

(7) $H \times O_{p_1}(G) \times \cdots \times O_{p_n}(G) = H \times O_{p_1}(V) \times \cdots \times O_{p_n}(V)$ for every subgroup V of G containing $H \times O_{p_1}(G) \times \cdots \times O_{p_n}(G).$

Hence $O_{p_1}(G) \times \cdots \times O_{p_n}(G) \times H$ is a maximal π -special subgroup of G.

Indeed, since $H = O_{\pi'}(G)$ and $G/H \simeq E$ is nilpotent by Claim (6), every subgroup of G containing $H \times O_{p_1}(G) \times \cdots \times O_{p_n}(G)$ is subnormal in G. Therefore V is subnormal in G, so

 $O_{\pi'}(G) \times O_{p_1}(G) \times \dots \times O_{p_n}(G) =$ = $H \times O_{p_1}(G) \times \dots \times O_{p_n}(G) \leq$ $\leq O_{\pi'}(V) \times O_{p_1}(V) \times \dots \times O_{p_n}(V) \leq$ $\leq O_{\pi'}(G) \times O_{p_1}(G) \times \dots \times O_{p_n}(G).$

Thus we have (7).

(8) Every minimal normal subgroup of G is contained in F(G).

Let *R* be any minimal normal subgroup of *G*. Assume that $R \nleq F(G)$. From Claim (5) it follows that $D = G^{\tilde{s}} \leq F(G)$, so $R \nleq D$ and hence from the *G*-isomorphism $RD/D \simeq R$ it follows that *R* is a non-abelian π' -group. Let R_p be a Sylow *p*-subgroup of *R*, where $p \in \pi(R)$. Then R_p is not normal in *G* and so $G = RN_G(R_p)$ by the Frattini argument. But then

$$G/R \simeq N_G(R_p)/(N_G(R_p) \cap R)$$

is π -special and hence R = D. This contradiction completes the proof of Claim (8)

Final contradiction. From Claims (5)–(8) it follows that that the conclusion of the theorem holds for *G*, contrary to the choice of *G*. This final contradiction completes the proof of the theorem.

ЛИТЕРАТУРА

1. Skiba, A.N. On σ -subnormal and σ -permutable subgroups of finite groups / A.N. Skiba // J. Algebra. - 2015. - No 436. - P. 1-16.

2. *Skiba*, *A.N.* On some results in the theory of finite partially soluble groups / A.N. Skiba // Comm. Math. Stat. $-2016. - N \ge 4. - P. 281-309.$

3. *Skiba*, *A.N.* Some characterizations of finite σ -soluble $P\sigma T$ -groups / A.N. Skiba // J. Algebra. – 2018. – N 495. – P. 114–129.

4. *Sah*, *Chih-Han*. On a generalization of finite nilpotent groups / Chih-Han Sah // Math. Z. – 1957. – Vol. 68, №1. – P. 189–204.

5. Between Nilpotent and Solvable / M. Weinstein ed. – Polygonal Publishing House, 1982.

6. Adarchenko, N.M. On finite semi-*p*-decomposable groups / N.M. Adarchenko, I.G. Blistets, V.N. Rizhik // Problems of Physics, Mathematics and Technics. $-2018. - N \ge 1$ (34). -P. 41–44.

7. *Doerk*, *K*. Finite Soluble Groups / K. Doerk, T. Hawkes. – Walter de Gruyter, Berlin, New York, 1992.

8. *Shemetkov, L.A.* Formations of finite groups / L.A. Shemetkov. – Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978.

9. *Huppert*, *B*. Endliche Gruppen I / B. Huppert. – Springer-Verlag, Berlin – Heidelberg – New York, 1967.

Поступила в редакцию 12.04.19.