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Abstract

Let o be a partition of the set of all primes and § be a hereditary formation. We
described all formations § for which the §-hypercenter and the intersection of weak K-§-
subnormalizers of all Sylow subgroups coincide in every group. In particular the formation
of all g-nilpotent groups has this property. With the help of our results we solve a par-
ticular case of L.A. Shemetkov’s problem about the intersection of §-maximal subgroups
and the §-hypercenter. As corollaries we obtained P. Hall’s and R. Baer’s classical results
about the hypercenter. We proved that the non-o-nilpotent graph of a group is connected
and its diameter is at most 3.
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1 Introduction

Throughout this paper, all groups are finite; G and p always denote a finite group and a prime
respectively. The notion of the hypercenter of a group naturally appears with the definition
of nilpotency of a group through upper central series. R. Baer [4] introduced and studied the
analogue of hypercenter for the class of all supersoluble groups. B. Huppert [I8] considered
the §-hypercenter where § is a hereditary saturated formation. L.A. Shemetkov [28] extended
the notion of F-hypercenter for graduated formations. The §-hypercenter for formations of
algebraic systems (including finite groups) was suggested in [31].

Recall that a chief factor H/K of G is called X-central (see [31], p. 127-128]) in G provided
(H/K) x (G/Cs(H/K)) € X. A normal subgroup N of G is said to be X-hypercentral in G if
N =1or N # 1 and every chief factor of G below N is X-central. The symbol Zx(G) denotes
the X-hypercenter of GG, that is, the product of all normal X-hypercentral in G' subgroups.
According to [31, Lemma 14.1] Zx(G) is the largest normal X-hypercentral subgroup of G. If
X = M is the class of all nilpotent groups, then Zy(G) is the hypercenter Z..(G) of G.

One of the first characterizations of the hypercenter was obtained by P. Hall [I6]. He
proved that the hypercenter of a group coincides with the intersection of normalizers of all
its Sylow subgroups. P. Schmid [27] proved the analogue of Hall’s result in profinite groups.
There were generalizations of P. Hall’s theorem in terms of intersections of normalizers of ;-
maximal subgroups [23] or Hall m;-subgroups [17] where m; belongs to some partition o of P
(see Corollaries and [L3)).

These results are the part of research project in which the §-hypercenter and its generaliza-
tions are used as descriptors for characterising some structural properties of the group. A useful
tool that provides a suitable language in this direction is the theory of formations. Nowadays
this project is actively developing by many researchers (for example [2] [5, [I7] and [I5] Chapter
1]). As part of the above mentioned project, the aim of our paper is to describe all hereditary
(not necessary saturated) formations § for which the analogue of Hall’s result holds for the
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S-hypercenter and find the applications of this result. To formulate our results we need the
following definitions.

Let § be a formation. O.H. Kegel [20] introduced the formation generalization of subnor-
mality. Recall [8, Definition 6.1.4] that a subgroup H of G is called K-§-subnormal in G if there
is a chain of subgroups H = Hy C H; C --- C H, = G with H; 1 < H; or H;/Corey,(H;_1) € §
for all e = 1,...,n. Denoted by H K-§-snG. If § = 0N, then the notions of K-F-subnormal
and subnormal subgroups coincide.

R.W. Carter [11] and C.J. Graddon [I3] studied subnormalizers and F-subnormalizers re-
spectively. Note that the subnormalizer of a Sylow subgroup always exists and coincides with
its normalizer. For an arbitrary subgroup a subnormalizer or §-subnormalizer may not exist.
A. Mann [22] suggested the concept of a weak subnormalizer that always exists but may be
not unique. A subgroup T of G is called a weak subnormalizer of H in G if H is subnormal
in T" and if H is subnormal in M < G and T' < M, then T' = M. Here we introduced its
generalization.

Definition 1. Let § be a formation. We shall call a subgroup T" of G a weak K-§-subnormalizer
of H in G if H is K-§-subnormal in 7" and if H is K-§-subnormal in M < G and T' < M, then
T=M.

It is clear that a weak K-F-subnormalizer always exists. Note that the notions of weak
subnormalizer and K-9-subnormalizer coincide. See [12, A, Example 14.12] for an example of
a group that has a subgroup without an unique weak subnormalizer.

Let 0 = {m; | i € I} be a partition of the set P of all primes. According to A.N. Skiba
[33], a group G is called o-nilpotent if G has a normal Hall 7;-subgroup for every ¢ € I with
7(G) Nm; # 0. The class of all o-nilpotent groups is denoted by M,. This class is a very
interesting generalization of the class of nilpotent groups and widely studied, applied and are
part of the actively developing nowadays o-method, i.e. the studying the properties of a group
that depends on the given partition o (for example, see [6], 10, 17, 19, 29, 33]). The class 91 of
all nilpotent groups coincides with the class M, for o = {{p} | p € P}.

Recall [8, Example 2.2.12] that x§,, = (G = X O (GQ) | O4(G) € §r,) is a
el €l mnNm(G)#£D

hereditary formation where §,, is a hereditary formation with 7 (§,,) = m; for all i € I. The
main result of this paper is

Theorem 1. Let § be a hereditary formation. The following statements are equivalent:

(1) The intersection of all weak K-F-subnormalizers of all cyclic primary subgroups coincides
with the §-hypercenter in every group.

(2) The intersection of all weak K-F-subnormalizers of all Sylow subgroups coincides with the
S-hypercenter in every group.

(3) There is a partition o = {m; | i € I} of P such that the §-hypercenter coincides with the
o-nilpotent-hypercenter in every group.

(4) There is a partition o = {m; | i € I} of P such that § = X;c18x, where Fr, is a hereditary
formation with ©(§,,) = m and §r, coincides with the class of all m;-groups for all i € I
with |m;| > 2.

Remark 1. As follows from [36, Theorem| formations from (4) of Theorem [ are lattice for-
mations.

Corollary 1.1. Let o = {m; | i € I} be a partition P, G be a group and M be a set of mazrimal
m;-subgroups of G, m; € o, such that



(a) if HE M, then H* € M for every x € G;
(b) for every Sylow subgroup P of G there is H € M with P < H.

Then the intersection of normalizers in G of all subgroups from M is Zg, (G).

Corollary 1.2 ([23] Corollary 3.7)). Let 0 = {m; | i € I} be a partition P. The intersection of
normalizers of all w;-mazimal subgroups of G, m; € o, is Zg, (G).

Corollary 1.3 ([I7, Theorem B(ii)]). Let 0 = {m; | i € I} be a partition P. Assume that a
group G posses a set H of Hall subgroups such that H contains exactly one Hall 7;-subgroup of
G with m; N 7(G) # 0. Then

() () Na(H") = Zor, (G).

r€G HEH

Corollary 1.4 (P. Hall [16]). The intersection of all normalizers of Sylow subgroups is the
hypercenter in every group.

Corollary 1.5. The intersection of all weak subnormalizers of cyclic primary subgroups is the
hypercenter in every group.

Corollary 1.6 (|23, Theorem 3.1(2)]). Let 0 = {m; | i € I} be a partition P. A m;-element
belongs to Zy, (G) iff its permutes with all 7w,-elements of a group G.

Corollary 1.7 (R. Baer [3, 5, Theorem 1(ii)]). Let p be a prime. A p-element belongs to Zoo(G)
iff its permutes with all p’'-elements of a group G.

2 Preliminaries

The notation and terminology agree with [8] and [12]. We refer the reader to these books for
the results about formations.

Recall that a formation is a class of groups which is closed under taking epimorphic images
and subdirect products. A formation § is called hereditary if H € § whenever H < G € §;
saturated if G € § whenever G/®(N) € § for some normal subgroup N of G.

Lemma 1 ([33, Lemma 2.5]). The class of all o-nilpotent groups is a hereditary saturated
formation.

The following two lemmas follow from [8, Lemmas 6.1.6 and 6.1.7].
Lemma 2. Let § be a formation, H and R be subgroups of G and N < G.
(1) If H K-§-snG, then HN/N K-§F-snG/N.

(2) If HIN K-§-snG/N, then H K-§-snG.

(3) If H K-§-sn R and R K-§-snG, then H K-§-snG.

Lemma 3. Let § be a hereditary formation, H and R be subgroups of G.
(1) If H K-§-snG, then HN R K-§-sn R.

(2) If HK-F-snG and RK-§-snG, then HN RK-§-snG.

The following lemma directly follows from Lemma



Lemma 4. Let § be a formation, H and R be subgroups of G and N I G. If H K-§-sn R,
then HN K-§-sn RN.

Recall that [F, denotes a field with p elements. The following result directly follows from
[12, B, Theorem 10.3].

Lemma 5. If O,(G) =1 and G has a unique minimal normal subgroup, then G has a faithful
irreducible module over IF,,.

In [30] L.A. Shemetkov possed the problem to describe the set of formations § having the
following property

§ = (G | every chief factor of G is F-central) = (G | G = Zz(G)).

This class of formations contains saturated (local) and solubly saturated (composition or Baer-
local) formations and other. Shortly we shall call formations from this class Z-saturated. In [7]
A. Ballester-Bolinches and M. Pérez-Ramos showed that for a formation § the class

7§ = (G| G =75G))

is a formation and § C Z§ C Es5§.

Let § be a hereditary formation. In [24] and [34] the classes w§ and v*§ of all groups all
whose Sylow and cyclic primary subgroups respectively are K-§-subnormal were studied. From
the results of these papers follows

Proposition 1. If § is a hereditary formation, then W§ and v*§ are hereditary formations and
NUF Cw§ Cou's.

Recall that a Schmidt group G is a non-nilpotent group all whose proper subgroups are
nilpotent. It is well known that 7(G) = {p, ¢} and G has a unique normal Sylow subgroup.
Recall [35] that a Schmidt (p, g)-group is a Schmidt group with a normal Sylow p-subgroup.
An N-critical graph T'n.(G) of a group G [35 Definition 1.3] is a directed graph on the vertex
set m(G) of all prime divisors of |G| and (p, q) is an edge of I'y.(G) iff G has a Schmidt (p, q)-
subgroup. An N-critical graph I'n.(X) of a class of groups X [35, Definition 3.1] is a directed
graph on the vertex set m(X) = Ugexm(G) such that ['yo(X) = Ugex'ne(G).

Proposition 2 ([35, Theorem 5.4|). Let 0 = {m; | i € I} be a partition of the vertex set
V(Tne(X)) such that fori # j there are no edges between m; and w;. Then every X-group is the
direct product of its Hall m-subgroups, where k € {i € I | m(G) Ny, # 0},

3 The proof of Theorem (1] and its corollaries

The proof of Theorem [ is rather complicated and require various preliminary results and
definitions. A subgroup U of G is called X-mazimal in G provided that (a) U € X, and (b) if
U<V <GandV € X, then U =V [12] III, Definition 3.1]. The symbol Intx(G) denotes the
intersection of all X-maximal subgroups of G [32].

Proposition 3. Let § be a hereditary formation. Then
(1) [2, Lemma 2.4] Z35(G) N H < Zz(H) for every subgroup H of a group G.
(2) Z3(G) = Z3(Z5(G)) for every group G.

(3) Assume that H is an §-subgroup of a group G. If § is Z-saturated, then HZ3(G) € §. In
particular Z3(G) < Intz(G) for every group G.

4



Proof. (2) From (1) it follows that Zz(G) = Zz(G) N Zz(G) < Zz(Z3(G)) < Zz(G). Thus
25(G) = Z5(25(G)).

(3) From (1) it follows that Zz(G) < Zz(G) N HZz(G) < Zz(HZz(G)). Since the group
H73(G)/7z(G) € §, we see that HZ3(G)/Z5(HZz(G)) € §. Hence HZ35(G) = Z5(HZ3z(G)) €
75 =75.

Let M be an §-maximal subgroup of G. Then MZ3(G) € §. It means that MZz(G) = M.
Thus Zz(G) < Intz(G). O

The following result plays the key role in the proof of Theorem [Il
Proposition 4. Let § be a formation.
(1) Zz3(G) = Zz(G) holds for every group G.

(2) Assume that § is hereditary. A subgroup H is K-§-subnormal in a group G iff it is K-ZF-
subnormal in G.

Proof. (1) Let H/K be a chief factor of a group G. Now (H/K) x G/Ce(H/K) is a primitive
group. It means that the §-hypercenter is defined by the set of all primitive §-groups. According
to [7] § C ZF C EeF. It means that every Z§-group G with ®(G) = 1 belongs §. Thus the
sets of all primitive §-groups and ZF-groups coincide. Hence Zz5(G) = Zz(G).

(2) Note that ZF is a hereditary formation by Statement (1) of Proposition Since §
is a hereditary formation, we see that H is a K-§-subnormal subgroup of a group G if and
only if there is a chain of subgroups H = Hy € H; C --- C H, = G with H;_; < H; or
H;/Corey,(H;_1) € § and H;_; is a maximal subgroup of H; for all i = 1,...,n. It means that
K-§-subnormality is defined by the set of all primitive §-groups for a hereditary formation §.
As we have already mentioned the sets of all primitive §-groups and Z§-groups coincide. Thus
a subgroup is K-F-subnormal in a group G iff it is K-Z§-subnormal in G. O

The next step in the proof of Theorem [lis to characterize the intersections S3(G) and C3(G)
of all weak K-§-subnormalizers of all Sylow and all cyclic primary subgroups of G respectively.

Proposition 5. Let § be a hereditary formation.

(1) Sz(Q) is the largest subgroup among normal subgroups N of G with P K-§-sn PN for every
Sylow subgroup P of G.

(2) C3(G) is the largest subgroup among normal subgroups N of G with C K-§-sn CN for
every cyclic primary subgroup C of G.

Proof. (1) Let N < G with P K-§-sn PN for every Sylow subgroup P of G. If S is a weak
K-F-subnormalizer of P in G, then PN K-F-sn SN by Lemmaldl Hence P K-F-sn SN by (3)
of Lemma 2l Now SN = S by the definition of a weak K-F-subnormalizer. Thus N < S3(G).

From the other hand, since § is a hereditary formation and PS3(G) lies in every weak
K-F-subnormalizer of every Sylow subgroup P of G, we see that P K-§-sn PS3(G) for every
Sylow subgroup P of G by Lemma B Thus S3(G) is the largest normal subgroup N of G with
P K-§-sn PN for every Sylow subgroup P of G.

The proof of (2) is the same. O

The connections between the previous steps are shown in the following proposition:

Proposition 6. Let § be a hereditary formation. Then w§ and v*§ are hereditary Z-saturated
formations and Intzz(G) = S5(G) < C3(G) = Int5(G) holds for every group G.



Proof. Note that v*§ and wg are hereditary formations by Proposition [Il Assume that wg
is not a Z-saturated formation. Let chose a minimal order group G from Z(wg) \ w§. From
Proposition [3it follows that Zwg is a hereditary formation. So G is w§-critical. Now |7(G)| > 1
by Proposition [l From w§ C Zw§ C Eqwsg it follows that (G) # 1 and G/P(G) € w§. Let
P be a Sylow subgroup of G. Then P®(G) < G and P®(G) € w§. Hence P K-§-sn PO(G).
From G/®(G) € wyg it follows that P®(G)/®(G) K-§-snG/®(G). Therefore PO(G) K-F-
snG. Thus P K-F-snG. It means that G € wg§, a contradiction. Thus w§ is a Z-saturated
formation. The proof for v*§F is the same.

Note that 9t C v*§ by Proposition [l Hence Clnt,«5(G) € v*§ for every cyclic primary
subgroup C' of G. Therefore C' K-F-sn Clnt,5(G) for every cyclic primary subgroup C of G.
Thus Int,5(G) < C3(G) by (2) of Proposition Bl

From the other hand let M be a v*§-maximal subgroup of G and C' be a cyclic pri-
mary subgroup of MC3(G). Since MC3(G)/C3:(G) € v*§, we see that C5(G)C/C3(G) K-
§-sn MC5(G)/C5(G). Hence C3(G)C K-F-sn MC3(G) by (2) of Lemma Note that C
K-F-sn C5(G)C by PropositionBl So C' K-§-sn MC5(G) by (3) of Lemmal2 Thus MC5(G) €
v*§ by the definition of v*§. Hence MC5;(G) = M. Therefore C3(G) < Int,-35(G). Thus
Int,«5(G) = C3(G). The proof of that equality Intyz(G) = Sz(G) holds in every group is the
same.

Since every cyclic primary subgroup is subnormal in some Sylow subgroup, we see that P
K-F-sn PS3(G) for every cyclic primary subgroup P of G. So S3(G) < C5(G) holds for every
group G by Proposition Bl O

Proof of Theorem[l. (1) = (2). Since § C wg by Proposition [l we see that Zz(G) < Zzz(G)
for every group G. Note that Zzz(G) < Intgz(G) for every group G by (3) of Proposition Bl and
Proposition Bl According to Proposition [f Sz(G) = Intzz(G) and S3(G) < C3(G) for every
group G. From these and (1) it follows that

Z3(G) < Zagy(G) < Intgz(G) = S3(G) < C3(G) = Zz(G)

for every group G. Thus Zz(G) = S5(G) for every group G.

(2) = (3). The proof consists of the following steps:

(a) We may assume that N C § is Z-saturated.

According to Proposition ] Statements (2) and (3) mean the same for § and Z§. Note that
ZF = Z(Z§) by Proposition @l Therefore without lose of generality we may assume
that § is Z-saturated in the proof of (2) = (3). Since in every nilpotent group every
Sylow subgroup is subnormal and Z§ = § we see that 7(§) =P and M C §.

(b) Assume that a group G has faithful irreducible module L over F,, T = L x G and
L < Sy(T). Then G € §.

Note that L < Sz(G) = Zz(T). Hence L x (T/Cr(L)) € §. Thus G ~T/Cr(L) € §, the
contradiction.

(c) Let m(p) = {q € P|(p,q) € T'ne(F)} U{p}. Then § contains every q-closed {p, q}-group

for every q € w(p).
Assume the contrary. Let G be a minimal order counterexample. Since § and the class

of all g-closed groups are hereditary formations, we see that G is an §-critical group, G has
a unique minimal normal subgroup N and G/N € §. Let P be a Sylow p-subgroup of G. If
NP < @, then NP € §. Hence P K-§-sn PN and PN/N K-§-snG/N. From Lemma [ it
follows that P K-§-sn G. Since G is a g-closed {p, ¢}-group, we see that every Sylow subgroup
of G is K-§-subnormal. So G € Z§ = §, a contradiction.

Now N is a Sylow ¢-subgroup and O,(G) = 1. By Lemma [ G has a faithful irreducible
module L over F,. Let T"= L x G. Therefore for every chief factor H/K of NL a group



(H/K) x Cyr(H/K) is isomorphic to one of the following groups Z,, Z, and a Schmidt (p, q)-
group with the trivial Frattini subgroup. Note that all these groups belong §. So NL € ZF = §.
Note that L < O,(T"). Hence L < Sz(T") by Proposition[fl Thus G € § by (b), a contradiction.

From (c) it follows that

(d) T'ne(F) is undirected, i.e (p,q) € T'ne(F) iff (¢,p) € I'ne(F).

(e) Let p,q and r be different primes. If (p,r), (q,7) € T'ne(F), then (p,q) € T'ne(F).

Note that the cyclic group Z, of order ¢ has a faithful irreducible module P over F, by
Lemma[il Let G = P x Z,. Then G has a faithful irreducible module R over I, by Lemma [l
Let T'= Rx G. From (c) it follows that §-contains all r-closed {p, r}-groups and {g¢, r }-groups.
Hence R < Sz(T') by Proposition[Bl Thus G € § by (b). Note that G is a Schmidt (p, ¢)-group.
It means that (p, q) € T'n.(F) by the definition of N-critical graph.

(f) § =N, for some partition o of P.

From (d) and (e) it follows that I'y.(F) is a disjoint union of complete (directed) graphs I';,
i€ l. Let m; = V(I[;). Then o = {m;|i € I} is a partition of P. From Proposition [ it follows
that every §-group G has normal Hall 7;-subgroups for every i € I with m; N 7(G) # 0. So G
is o-nilpotent. Hence § C I1,.

Let show that the class &, of all m;-groups is a subset of § for every ¢ € I. It is true if
|m;| = 1. Assume now |m;| > 1. Suppose the contrary and let a group G be a minimal order
group from &, \§. Then G has a unique minimal normal subgroup, 7(G) C 7; and |7 (G)| > 1.
Note that O,(G) = 1 for some ¢ € 7(G). Hence G has a faithful irreducible module N over F,
by Lemma[Bl Let T'= N x G. Hence NP € § for every Sylow subgroup P of T by (¢). Now
N < S3(T) by Proposition Bl So G € § by (b), the contradiction.

Since a formation is closed under taking direct products, we see that 9, C §. Thus § = N,.

(3) = (1). Recall that the class of all o-nilpotent groups is saturated. Hence it is Z-
saturated. According to Proposition ] Statements (3) and (1) mean the same for § and Z§.
Hence we may assume that § = 9, for some partition ¢ = {m; | ¢ € I} of P. Then N, has
the lattice property for K-F-subnormal subgroups (see [33, Lemma 2.6(3)] or [8, Chapter 3]).
According to [24, Theorem B and Corollary E.2] v*F = §. By [32, Theorem A and Proposition
4.2] Intz(G) = Zz(G) holds for every group G. By Proposition @, C3(G) = Int,-3(G) for every
group G. Thus C3(G) = Int5(G) = Intz(G) = Zz(G) for every group G.

(3) = (4) Statement (3) means that ZF = N, and 7(F) = 7(ZF) = P. From § C ZF it
follows that § = X;e;8x, where F, is a hereditary formation with 7(§,,) = m;.

Assume that m; € o and |m;| > 2. Let choose a minimal order m-group G from Z§ \ Fr,.
Since Z§ =N, and §,, = § N B,, are formations, we see that G has a unique minimal normal
subgroup N. From |m;| > 2 it follows that there exists p € m; such that N is not a p-group.
Therefore G has a faithful irreducible module V' over [, by Lemmafbl Let T'=V x G. Since T
is a mi-group, T' € N, = ZF. Hence R =V x (T/Cr(V)) €e §N&,, = Fr, and T/Cr(V) ~ G.
Now G € §,, as a quotient group of R, a contradiction. It means that §N&,. = Z§NG,. = &,

(4) = (3) Assume that Zz(G) # Zy, (G) for some group G. It means that there exists
a primitive M,-group H with H ¢ §. Since H is a primitive M,-group, we see that H is a
mi-group for some ¢ € I. If |m;| > 2, then H € &,, C §, a contradiction. Hence |m;| = 1. So H
is a p-group for some p € P. Therefore H is a cyclic group of order p. Thus H € §, the final
contradiction. O

Proof of Corollary[1.1l. Let D be the intersection of normalizers in G of all subgroups from M.
From (a) it follows that D < G. Let P be a Sylow subgroup of G and H be a subgroup from
M with P < H. Note that H € 91,. Now P K-0N,-sn H < HD. So P K-N,-sn HD. Hence
P K-N,-sn PD by Lemma[3l It means that D K-91,-subnormalizes all Sylow subgroups of G.
Thus D < Sy, (G) by Proposition

From the proof of Theorem [l it follows that Sy, (G) = Zn,(G) = Inty, (G). Let H € M.
Now HSy, (G) € M,. Since H is a m;-maximal subgroup of G, H is a m;-maximal subgroup of
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HSn, (G). It means that H < H Sy, (G). So Sy, (G) normalizes all subgroups from M. Hence
Sor, (G) < D. Thus D = Sy (G) = Zy, (G) by Theorem [II O

Proof of Corollary[1.0. From Corollary [[L2it follows that every m;-element of Zy_ (G) permutes
with every 7/-element of G.

Let A be the set of all m;-elements of G that permute with all 7-elements of G and H = (A).
So all elements of H permute with all 7j-elements of G. Since O™ (H) is generated by all -
elements of H, we see that O™ (H) < Z(H). Hence all 7/-elements of O™ (H) form a subgroup.
So O™ (H) is a m-group. Let K be a &, -projector of H. Then KO™(H) = H. So K < H. It
means that m;-elements of H form a subgroup. Thus H = A.

Now A is a normal m;-subgroup of GG. Hence it lies in every m;-maximal subgroup of G.
Note that A lies in the normalizer of every m/-subgroup by its definition. Thus A < Zyn_(G) by
Corollary O

4 Applications

R. Baer [3] proved that the hypercenter of a group coincides with the intersection of all its
maximal nilpotent subgroups. L.A. Shemetkov possed a question at the Gomel Algebraic
Seminar in 1995 that can be formulated in the following way: For what non-empty (normally)
hereditary (solubly) saturated formations § does the intersection of all F-maximal subgroups
coincides with the F-hypercenter in every group? A.N. Skiba [32] answered on this question
for hereditary saturated formations § (for the soluble case, see also J.C. Beidleman and H.
Heineken [9]). From Theorem [I] follows a solution of this question for a family of hereditary
not necessary saturated formations.

Theorem 2. Let § be a hereditary formation.
(1) § =wgF if and only if S3(G) = Intz(G) holds for every group.
(2) § =v*F if and only if C3(G) = Intz(G) holds for every group.

(3) Assume that § = wF or § = v*§. Then Zz(G) = Intz(G) holds for every group if and only
if there is a partition o of P such that § is the class of all o-nilpotent groups.

Proof. From Proposition [f] it follows that S3(G) = Intzz(G). Now (1) follows from the fact
that Intz(G) = Intzz(G) holds for every group if and only if § = w§. The proof of (2) is the
same.

(3) Assume that § = w§. Now § is Z-saturated by Proposition [ and Intz(G) = Intgz(G)
holds for every group G. From Proposition [fl it follows that Sz(G) = Intgzz(G) holds for every
group G. Now Intz(G) = Zz(G) holds for every group if and only if S3(G) = Zz(G) holds for
every group G. From (3) of Theorem [Ilit follows that the last equality holds for every group if
and only if there is a partition o of P such that ZF = 91,. Hence § = N,. From this theorem
is also follows that 9%, = wMN, .

The proof of (3) for § = v*§ is the same. O

Remark 2. There is a rather important family of not necessary saturated hereditary formations
§ with v*§ = § and wF = §. Recall that a formation § has the Shemetkov property if every
$-critical group is either a Schmidt group of a cyclic group of prime order. The family of
hereditary formations with the Shemetkov property contains non-saturated formations (see [8),
Chapter 6.4]). For example let § be a class of groups all whose Schmidt subgroups are Schmidt
(p, q)-groups for (p,q) € {(2,3),(3,2),(5,2)}. Then § has the Shemetkov property by [35],
Theorem 3.5] and 7(§) = P. Let G be the alternating group of degree 5. Hence G € F.
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According to [I4] there is a Frattini F3G-module 7" which is faithful for G. By the Gaschiitz
theorem (see [12, Appendix f]), there exists a Frattini extension 7" — R — G such that

T ®(R) and R/P(R) ~ G. Let K/®(R) be a cyclic subgroup of G/®(G) of order 5. Since
T is faithful for G, we see that K is a non-nilpotent group with a normal Sylow 3-subgroup.
Hence its contains a Schmidt (5, 3)-subgroup. It means that G ¢ §, i.e. § is not saturated.

As follows from [24, 34] and [25, Corollaries 3.9 and 3.10] v*F = § and wF = § for every
hereditary formation § with the Shemetkov property and 7 (§) = P.

Let give another application of Theorem [l Recall that a formation § is called regular [26],
if for every group G holds

I:(G) ={z € G| (z,y) € § Yy € G} = Intz(G).

The regular formations of soluble groups were studied in [26]. Here we give examples of such
formations of non-necessary soluble groups.

Recall (see [26]) that the non-F-graph I'z(G) of a group G is the graph whose vertex set
is G \ Z3(G) and two vertices x and y are connected if (z,y) ¢ §. This type of graphs can
be traced back to P. Erdés who considered non-commuting (non-abelian) graph. A. Abdollahi
and M. Zarrin [I] asked to find the bounds for diameters of non-nilpotent graphs. The final
answer on this question was obtained by A. Lucchini and D. Nemmi [21].

Theorem 3. The formation of all o-nilpotent groups is reqular and Iy, (G) = Zy,(G) holds
for every group G. Moreover the graph I's, (G) is connected and diam(I'y, (G)) < 3 for every
group G.

Proof. Let * € G. Denote by G, and z, a Sylow p-subgroup of G and z/%/I! respectively.
Note that if (z,,y) € N,, then (z,y) &€ N,.

(1) M, is regular and Iy, (G) = Zn, (G) holds for every group G

Let y € G. Then (y) € M,. It means that (y)Zyn, (G) € N,. Hence (x,y) € N, for all
x € Zy,(G) and y € G. Tt means that Zy, (G) C Iy, (G).

Let z € Z3(G). Note that @ = [[,c @) zp- From (z,,y) < (z,y) € N, it follows that
x, € Iy, (G) for all p € ©(G).

Let ¢ € 7(G). Since o is a partition of P, there exists a unique m; € o with ¢ € m;. Let y be
a m-element of G. Now (z,,y) € M,. It means that z,y = yz,. So a m-element z, permutes
with all w/-elements of G. Thus x, € Zn, (G) by Corollary Therefore © € Zyn, (G). So
I, (G) C Zy, (G). Hence Iy, (G) = Zn, (G) = Inty, (G). Thus N, is regular.

(2) ', (G) is connected and diam(I'y, (G)) < 3 for every group G.

If |G\ Zn,(G)| < 2, then there is nothing to prove. So we may assume that |G\ Zy, (G)| > 2.
Assume that G is a counterexample to (2). Hence there are elements z,y € G such that they
are not connected or the lengths of all paths connecting them are greater than 3.

If 2, € In, (G) for all p € 7(G), then x = [] . () p € Zn,(G) = Iy, (G), a contradiction.
It means that there exist p,q € 7(G) with z,,y, € Zn,(G). Hence there exist m;, m; € o,
m;i-element w and mj-element z with p € m;, ¢ & 75, (xp, w) € N, and (y,, 2) € N,

If (w,z) € N,, then (x,w, z,y) is the path connecting = and y and its length is not greater
than 3, a contradiction. Now (w, z) € M,. Assume that i # j. So wz = zw and (zw) = (z,w).
Now (z,wz,y) is the path connecting = and y of length 2, a contradiction. So ¢ = j. If
(xp, 2) € Ny, then (x, z,y) is the path connecting = and y of length 2, a contradiction. Hence
(xp, z) € N,. Since p ¢ m; = m;, we see that x,z = zx, and (zx,) = (2, 2,). Now (z,w,z,2,7)
is the path connecting x and y and its length is not greater than 3, the final contradiction. [
Corollary 3.1 ([21, Theorem 1.1]). Ty (G) is connected and diam(T'n(G)) < 3 for every group
G.

Corollary 3.2 ([I, Theorem 5.1]). T'n(G) is connected and diam(T'y(G)) < 6 for every group
G.
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