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Abstract

For a wide family of formations F it is proved that the F-residual of a permutation
finite group can be computed in a polynomial time. Moreover, if in the previous case F is
hereditary, then an F-subnormality of a subgroup can be checked in a polynomial time.
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Introduction and the Main Results

All groups considered here are finite. One of the central directions in the modern algebra is
the study of different classes of algebraic systems (groups, semigroups, rings, Lie algebras and
other). The main problems of it are to construct classes of algebraic systems, to study the
structure of a given system in such class and to find wether a given system belongs to a given
class or not.

This direction is well illustrated in the rather developed theory of classes of finite groups
(formations, Schunk and Fitting classes). The main results in this direction are presented in
monographs of Shemetkov [29], Doerk and Hawkes [8], Ballester-Bolinches and Ezquerro [7],
Wenbin Guo [11] and others. According to zbMATH Open [1] (formerly known as Zentralblatt
MATH) there are more than 5000 papers in this direction (20D10).

The computational theory of classes of finite groups is not as developed as its theoretical
part. The main results of this theory are presented in the papers [10] by Eick and Wright and
[16] by Höfling and in the corresponding to them GAP packages “FORMAT” [9] and “CRISP”
[15] respectively. These papers are dedicated to finding F-projectors, F-injectors, F-residuals
and F-radicals of soluble groups. Also algorithms for classes of groups where permutability
(or one of its generalizations) of subgroups is a transitive relation are studied in the paper [4]
by Ballester-Bolinches, Cosme-Llópez and Esteban-Romero and in corresponding to it GAP
package “permut” [5]. The principal novelty of this paper is our ability to deal with non-
saturated (non-local) classes of not necessary soluble groups.

A finite group can be defined in the different ways. The most known of them are defining
group by presentation, permutations or matrices. One of the main results in the foundation
of the theory of formations of finite groups is Sylow’s theorems. In [18] Kantor proved that a
Sylow subgroup of a permutation group of degree n can be found in polynomial time of n (mod
CSFG). So it is natural to ask the following question:

Problem 1. For a given class of groups X and a permutation group G of degree n is there a
polynomial-type algorithm that checks wether G belongs to X?

That is why we introduce the following definition:

Definition 1. We shall call a class of groups X P -recognizable if for every K E G ≤ Sn there
is a polynomial-time algorithm that tests wether G/K belongs X or not.
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Recall that a formation is a class of groups closed under taking homomorphic images and
subdirect products. One of the classical ways to study the structure of a group is to find the
action of a group on its chief series. For example, formations of nilpotent, supersoluble and
quasinilpotent groups; rank [8, VII, Definitions 2.3], local [8, IV, Definitions 3.1], Baer-local
[8, IV, Definitions 4.9] and graduated (see [29, §3] or [11, §5.5]) formations are defined by the
action of a group on its chief factors. All these formations are particular cases of the following
construction.

Definition 2. Let f be a function which assigns 0 or 1 to every group G and its chief factor
H/K such that

(1) f(H/K,G) = f(M/N,G) whenever H/K and M/N are G-isomorphic chief factors of G;
(2) f(H/K,G) = f((H/N)/(K/N), G/N) for every N E G with N ≤ K.

Such functions f will be called chief factor functions. Denote by C(f) the class of groups

(G | f(H/K,G) = 1 for every chief factor H/K of a group group G).

For every non-empty formation F in every group G there exists the F-residual of G, that is
the smallest normal subgroup GF of G with G/GF ∈ F. It is clear that F = (G | GF = 1).

Theorem 1. Assume that f(H/K,G) can be computed in polynomial time for every group G
and its chief factor H/K. Then F = C(f) is a P -recognizable formation and GF can be computed
in polynomial time for every G ≤ Sn.

The concept of subnormality plays an important role in the group’s theory. The formational
generalization of this concept was introduced in the universe of soluble groups by Hawkes [14]
and in the universe of all groups by Shemetkov (see [29, Definition 8.1]). A subgroup H
of G is called F-subnormal in G, if H = G or there exists a maximal chain of subgroups
H = H0 ⊂ H1 ⊂ · · · ⊂ Hn = G such that Hi/CoreHi

(Hi−1) ∈ F for i = 1, . . . , n. Note that
if F is a hereditary formation, then the word “maximal” can be omitted in this definition.
Kegel [21] introduced the another such generalization of subnormality. Recall [7, Definition
6.1.4] that a subgroup H of G is called K-F-subnormal in G if there is a chain of subgroups
H = H0 ⊆ H1 ⊆ · · · ⊆ Hn = G with Hi−1 E Hi or Hi/CoreHi

(Hi−1) ∈ F for all i = 1, . . . , n.
If F = N, then the notions of K-F-subnormal and subnormal subgroups coincide. For more
information about F-subnormal and K-F-subnormal subgroups see [7, Chapter 6].

Theorem 2. Let F be a hereditary formation. Assume that GF can be computed in polynomial
time for every G ≤ Sn and natural n. Then there are polynomial-time algorithms that tests
wether given subgroup is F-subnormal or K-F-subnormal.

1 Preliminaries

1.1 Groups and their classes

Recall that MG denotes the smallest normal subgroup of G which contains M ; M ′ is the derived
subgroup of M ; Mp is the subgroup generated by p-th powers of elements of M ; Sn denotes the
symmetric group on n elements; a formation F is called hereditary, if H ≤ G ∈ F impliesH ∈ F.

The material of this section can be found, for example, in [8, p. 5-8]. Let Ω be a set. A
group G is called an Ω-group if there is associated with each element ω ∈ Ω an endomorphism
of G denoted for all g ∈ G by g → gω. A subgroup U of G is called Ω-admissible if uω ∈ U
for all u ∈ U and ω ∈ Ω. Evidently the intersection and the join of Ω-admissible subgroups are
again Ω-admissible. If N is an Ω-admissible normal subgroup of G, the quotient group G/N
may be regarded naturally as an Ω-group via the action defined for all g ∈ G and ω ∈ Ω by
(Ng)ω = N(gω). Finally if G and H are Ω-groups, a isomorphism α : G → H is called an
Ω-isomorphism if for all g ∈ G and ω ∈ Ω holds α(gω) = α(g)ω.
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Theorem 3 (The Isomorphism Theorems). Let Ω be a set and let G be an Ω-group.
(1) If U and N are Ω-admissible subgroups of G and U normalizes N , then UN/N ≃

U/(U ∩N) as Ω-groups.
(2) If M and N are Ω-admissible normal subgroups of G and N < M , then the Ω-groups

(G/N)/(M/N) and G/M are Ω-isomorphic.

An Ω-group is called Ω-simple if 1 and G are the only Ω-admissible normal subgroups of G.
A a subnormal chain U = U0, U1, . . . , Un = G from U to G is called Ω-series if all of its terms
are Ω-admissible. An Ω-series is called Ω-composition series if each factor Ui/Ui−1 is Ω-simple
for i = 1, . . . , n.

Theorem 4 (The Jordan-Hölder Theorem). Let G be an Ω-group, and let

1 = N0 ⊳ N1 ⊳ · · · ⊳ Nn = G and 1 = M0 ⊳ M1 ⊳ · · · ⊳ Mm = G

be two Ω-composition series of G. Then m = n and there exists a permutation π ∈ Sn such
that for i = 1, . . . , n the factor Ni/Ni−1 is Ω-isomorphic with Mπ(i)/Mπ(i)−1.

1.2 Computational conventions

Here we use standard computational conventions of abstract finite groups equipped with poly-
nomial-time procedures to compute products and inverses of elements (for the related abstract
notion of black-box groups, see [28, Chapter 2]).

Unless stated otherwise, for both input and output, groups are specified by generators. We
will consider only G = 〈S〉 ≤ Sn with |S| ≤ n2. If necessary, Sims’ algorithm [28, Parts 4.1 and
4.2] can be used to arrange that |S| ≤ n2.

Quotient groups are specified by generators of a group and its normal subgroup.
According to [2] the following result, all subgroups chains have the bounded length:

Lemma 1 ([2]). Given G ≤ Sn every chain of subgroups of G has at most 2n− 3 members for
n ≥ 2.

We need the following well known basis tools in our proves (see, for example [20] or [28]).

Theorem 5. Given G = 〈S〉 ≤ Sn, in polynomial time one can solve the following problems:

1. Find |G|.

2. Given normal subgroups A and B of G, find a composition series for G containing them.

3. Given T ⊆ G find 〈T 〉G.

4. (mod CFSG) Given N,K ≤ Sn such that N/K is normalized by G/K, find CG/K(N/K)
[20, P6(i)].

5. (mod CFSG) Given a prime p dividing |G|, find a Sylow p-subgroup P of G and NG(P )
[19].

6. Given H = 〈S1〉, K = 〈S2〉 ≤ G find 〈H,K〉 = 〈S1, S2〉 and [H,K] = 〈{[s1, s2] | s1 ∈
S1, s2 ∈ S2〉

〈H,K〉.

Lemma 2 ([28, p. 155]). Let H and K be normal subgroups of G such that H/K is an
elementary abelian p-group for some prime p. Then H/K can be considered as FpG-module.
Every generator of G induces by conjugation an linear transformation of this module. Its matrix
can be computed in a polynomial time.
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2 Proves of the Main Results

2.1 Proof of Theorem 1

The first step is to prove

Lemma 3. If f is a chief factor function, then C(f) is a formation.

Proof. Let G ∈ C(f) and N E G. Then if (H/N)/(K/N) is a chief factor of G/N , then H/K is
a chief factor of G and f((H/N)/(K/N), G/N) = f(H/K,G) = 1 by (2) of Definition 2. Hence
G/N ∈ C(f). It means that C(f) is closed under taking homomorphic images. Assume now
G/N,G/M ∈ C(f) and M ∩N = 1. Let H/K be a chief factor of G below N . Then

HM/KM ≃ H/(H ∩KM) = H/K(H ∩M) = H/K,

i.e. H/K is G-isomorphic to a chief factor of G above M by (1) of The Isomorphism Theorems.
From the Jordan-Hölder Theorem it follows that every chief factor of G is G-isomorphic to
a chief factor of G above M or N . WLOG let H/K ≃ R/T and R/T is a chief factor of G
above N , then f(H/K,G) = f(R/T,G) = f((R/N)/(T/N), G/N) = 1 by Definition 2. It means
that G ∈ C(f). Hence C(f) is closed under taking subdirect products. It means that C(f) is a
formation.

Recall that the smallest normal subgroup H of G such that G/H is the direct product of
simple (resp. simple non-abelian) subgroups of G is called the (resp. non-abelian) residual of G
and is denoted by Res(G) (resp. ResN (G)). Here we are interested in the following subgroups.
Let M be a normal subgroup of a group G. Denote by ResN(M,G) (resp. Resp(M,G)) the
smallest normal subgroup H of G below M such that M/H is the direct product of minimal
normal non-abelian (resp. p-subgroups) subgroups of G/H .

Lemma 4. ResN (N,G) is defined for every normal subgroup N of G. Moreover ResN (N,G)
and a decomposition of N/ResN(N,G) into the direct product of minimal normal subgroups of
G/ResN(N,G) can be computed in a polynomial time.

Proof. Note that ResN(N) char N E G. Hence ResN(N) E G. Recall that ResN(N) is the
smallest normal subgroup of N such that N/ResN(N) is a direct product of simple non-abelian
groups and every minimal normal non-abelian subgroup is a direct product of simple non-
abelian groups. Therefore if ResN(N,G) exists, then ResN(N) contains it. Let prove that
N/ResN(N) is the direct product of minimal normal non-abelian subgroups of G/ResN (N).

Let A = N and M/ResN(N) be a simple subnormal subgroup of A/ResN(N). Then
M/ResN(N) is a simple non-abelian subnormal subgroup of G/ResN(N). Therefore
(M/ResN(N))G is a minimal normal subgroup ofG/ResN(N) belowA/ResN(N) ≤ N/ResN(N).
Note that

A/ResN (N) = (M/ResN(N))G × CA/ResN (N)((M/ResN(N))G),

CA/ResN (N)((M/ResN(N))G) E G/ResN(N). So now we can let

A/ResN(N)← CA/ResN (N)((M/ResN(N))G).

It means that using the previous steps we can decompose N/ResN(N) into the direct product
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of minimal normal non-abelian subgroups of G/ResN(N). Thus ResN(N,G) = ResN(N).

Algorithm 1: NonAbelianDecomposition(G,N)

Result: The smallest normal subgroup K of G below N such that
N/K ≃ N 1 × · · · ×Nk where N i is a minimal normal non-abelian subgroup of
G; subgroups N i.

Data: N is a normal subgroup of a group G
K ← ResN(N);
A← N ;
L← [];
while |A| 6= |K| do

Find a minimal subnormal subgroup B/K of A/K;
Find (B/K)G and add this subgroup to L;
A/K ← CA/K((B/K)G);

end

According to [3, Theorem 8.3] ResN (N) can be found in polynomial time. By 2 of Theorem
5 the minimal subnormal subgroup M/ResN(N) of N/ResN (N) can be found in a polynomial
time. Then (M/ResN (N))G = MG/ResN(N) can be computed in a polynomial time by 3 of
Theorem 5. Now CA/ResN (N)((M/ResN(N))G) can be computed in a polynomial time by 4 of
Theorem 5. Thus Algorithm 1 runs in a polynomial time by Lemma 1.

Lemma 5. Let p be a prime. Resp(N,G) is defined for every normal subgroup N of G. More-
over Resp(N,G) and a decomposition of N/Resp(N,G) into the direct product of minimal nor-
mal subgroups of G/Resp(N,G) can be computed in a polynomial time.

Proof. Let N/K be the direct product of minimal normal p-subgroups of G/K for a given p
where N,K E G. Note that in this case N/K is the elementary abelian p-group. It means that
N ′Np ⊆ K. So if N ′Np = N , then we can let Resp(N,G) = N ′Np. Assume that N 6= N ′Np.
Note that N ′Np char N E G. Hence N ′Np E G. Then we can consider V = N/N ′Np as an
FpG-module.

In this case normal subgroups of G/N ′Np below N/N ′Np are in the one to one correspon-
dence with submodules of V . Let K/N ′Np be the radical Rad(N/N ′Np) of N/N ′Np. Now
N/K ≃ (N/N ′Np)/Rad(N/N ′Np) is a semisimple FpG-module, i.e. N/K is the direct product
of minimal normal subgroups of G/K.

Assume that K1 is a normal subgroup of G such that N/K1 = N1/K1 × · · · × Nk/K1 is a
direct product of minimal normal p-subgroups Ni/K1 of G/K1. It is clear that N ′Np ⊆ K1.
Note that N/(

∏n
i=1,i 6=j Ni) is a chief factor of G. It means that

∏n
i=1,i 6=j Ni/N

′Np is a maximal
submodule of V . Recall that the radical of a module is the intersection of all its maximal
submodules. Now

K/N ′Np = Rad(N/N ′Np) ⊆
n
⋂

j=1

(

n
∏

i=1,i 6=j

Ni/N
′Np) = K1/N

′Np.

Thus K ⊆ K1. It means that K is the smallest normal subgroup G below N such that N/K
is the direct product of minimal normal p-subgroups of G/K. Hence K = Resp(N,G) is well
defined.

Let show that K can be computed in polynomial time. If N = 〈S〉, then N ′Np = 〈{[x, y] |
x, y ∈ S} ∪ {xp | x ∈ S}〉 can be computed in polynomial time. Every generator of G induces
by conjugation a linear transformation of N/N ′Np. The matrix of this transformation can be
found in a polynomial time by Lemma 2. Denote the algebra generated by these matrixes by
R. Then the basis of its Jacobson radical J(R) can be computed in a polynomial time by
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[26, Theorem 2.7]. Now Rad(N/N ′Np) = (N/N ′Np)J(R) by [8, B, Proposition 4.2]. Hence
Rad(N/N ′Np) is generated (as a module and as a subgroup) by products nr where n is a
generator N/N ′Np and r is a generator of J(R). Thus Rad(N/N ′Np) can be computed in a
polynomial time, i.e. Rad(N/N ′Np) = K/N ′Np and we know generators of K as a subgroup
of G.

Since every generator of G induces by conjugation a linear transformation of N/K, the
matrix of this transformation can be found in a polynomial time by Lemma 2. Denote the
algebra generated by these matrixes by R. Note that N/K is a semisimple FpG-module. Hence
it is a semisimple R-module. Now nr = 0 for every n ∈ N/K and r ∈ J(R). Since R acts on
N/K by matrix multiplications, we see that J(R) = 0. Thus R is semisimple. Then bases of
minimal ideals Ri of R can be found in polynomial time by [26, Corollary 3.2]. Then (N/K)Ri

is a minimal submodule of N/K and the sum of this submodules is N/K by [17, VII, Theorem
12.1]. It is clear that generating sets of these submodules (and hence corresponding to them
quotient groups) can be found in a polynomial time.

Algorithm 2: PDecomposition(G,N, p)

Result: The smallest normal subgroup K of G below N such that
N/K ≃ N 1 × · · · ×Nk where N i is a minimal normal p-subgroup of G;
subgroups N i.

Data: N is a normal subgroup of a group G and p is a prime
M ← [];
L← [];
if |NpN ′| = |N | then

output NpN ′ and L;
end

else
For each generator g of G find the linear transformation which this element induces
on N/NpN ′;
For the algebra generated by above mentioned transformations R find the basis of
J(B);
Find the generators of K where K/N ′Np = (N/N ′Np)J(R);
For each generator g of G find the linear transformation which this element induces
on N/K;
Decompose the algebra R generated by above mentioned transformations into the
sum ρ1 ⊕ · · · ⊕ ρk of minimal left ideals;
For each ideal ρi find (N/K)ρi and add it to M ;
For each element in M find its generators in G and add them as an element to L;

end

Lemma 6. Let F = C(f), N and K be normal subgroups of G such that N/K = N1/K × · · · ×
Nt/K where Ni/K is a minimal normal subgroup of G and G/N ∈ F. Then (G/K)F can be
found in polynomial time.

Proof. Let

I+ = {i | f(Ni/K,G) = 1}, I− = {i | f(Ni/K,G) = 0} and M/K =
∏

i∈I−

Ni/K.

We claim that M/K = (G/K)F. Note that every chief factor H/T of G between M and N is
G-isomorphic to Ni/K for some i ∈ I+. Hence

f((H/M)/(T/M), G/M) = f(H/T,G) = f(Ni/K,G) = 1.

6



Since G/N ≃ (G/M)/(N/M) ∈ C(f), we see that f((H/M)/(T/M), G/M) = 1 for every chief
factor (H/M)/(T/M) of G/M above N/M . From the Jordan-Hölder theorem it follows that
(G/K)/(M/K) ≃ G/M ∈ C(f) = F. Hence (G/K)F ≤M/K.

Assume that F/K = (G/K)F < M/K. So I− 6= ∅. Then F/K < FNi/K for some i ∈ I−,
i.e. F ∩Ni = K. Hence FNi/F and Ni/K are G-isomorphic chief factors of G. Thus

1 = f(((FNi/K)/(F/K))/((F/K)/(F/K)), (G/K)/(F/K)) = f((FNi/K)/(F/K), G/K) =

f(FNi/F,G) = f(Ni/K,G) = 0,

a contradiction. Thus (G/K)F = M/K.

Algorithm 3: FResidualPart(G,N,K, L, f)

Result: T/K = (G/K)F.
Data: N E G with G/N ∈ F, K E G with N/K = N1/K × · · · ×Nt/K; the list L of

minimal normal subgroups Ni/K of G/K.
T ← K;
for i in [1, ..., t] do

if f(Ni/K,G) = 0 then
T ← 〈T,Ni〉

end

end

Since f(H/K,G) can be computed in a polynomial time for every chief factor H/K of G,
we see that I− can be computed in a polynomial time. Note that t < 2n by Lemma 1. Hence
the join of not more than t subgroups can be computed in a polynomial time.

Lemma 7. Let F = C(f) and G be a group. Then GF can be computed in a polynomial time.

Proof. Note that G/G ∈ C(f). Assume that we have a subgroup H with G/H ∈ C(f). Then
GF ⊆ H . If GF 6= H , then there is a chief factor H/K of G with f(H/K,G) = 1. Note that
H/K is either a non-abelian or an abelian p-group. Hence H/K is G-isomorphic to a chief
factor of G between ResN (H,G) and H or between Resp(H,G) and H for some p.

Algorithm 4: FResidual(G, f)

Result: N = GF.
Data: F = C(f), G is a group.
K ← G;
repeat

N ← K;
K ←FResidualPart(G, K, NonAbelianDecomposition(G,K), f);
π ← π(K);
for p in π do

K ←FResidualPart(G, K, PDecomposition(G,K, p), f);
end

until |N | 6= |K|;

From Lemmas 4–7 it follows that this is a polynomial time algorithm.

Lemma 8. Let F = C(f). Then F is P -recognizable.

Proof. Let G be a group. Then GF can be computed in a polynomial time. Recall that
(G/K)F = GFK/K. Hence G/K ∈ F iff GF ⊆ K iff 〈GF, K〉 = K iff |〈GF, K〉| = |K|. The last
condition can be checked in polynomial time by 1 and 6 of Theorem 5.
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3 Proof of Theorem 2

Let H be a K-F-subnormal subgroup of G. From the definition of K-F-subnormal subgroup it
follows that either G = H or there is a proper subgroup M of G with H is a K-F-subnormal
subgroup of M and M E G or GF ≤ M .

Algorithm 5: ISKFSUBNORMAL(G,H,F)

Result: True if H is K-F-subnormal in G and False otherwise.
Data: A subgroup H of a group G.
if |G| = |H| then

return True;
else

if |HGF| 6= |G| then
return ISKFSUBNORMAL(HGF, H,F);

else

if |HG| 6= |G| then
return ISKFSUBNORMAL(HG, H,F);

end

end

return False;
end

Since GF can be computed in a polynomial time and according to 1 and 3 of Theorem 5, we
see that every above mentioned check can be made in a polynomial time. Now the statement
of theorem follows from the fact that every chain of subgroups of G has at most 2n members
by Lemma 1.

By analogy one can prove that the following algorithm tests F-subnormality in a polynomial
time.

Algorithm 6: ISFSUBNORMAL(G,H,F)

Result: True if H is F-subnormal in G and False otherwise.
Data: A subgroup H of a group G.
if |G| = |H| then

return True;
else

if |HGF| 6= |G| then
return ISFSUBNORMAL(HGF, H,F);

else
return False;

end

end

4 Applications

4.1 Local and Baer-local formations

Recall [8, IV, Definitions 3.1] that a function f which assigns a formation to each prime is called
a formation function; a chief factor H/K of a group G is called f -central if G/CG(H/K) ∈ f(p)
for all prime divisors of |H/K|; a formation F is called local if its coincides with the class of
groups all whose chief factors are f -central for some formation function f . In this case f is
called a local definition of F.
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Theorem 6. Let fF be a local definition of a local formation F. Assume that GfF(p) can be
computed in a polynomial time for every prime p and every group G. Then F is P -recognizable
and GF can be computed in a polynomial time.

Proof. Note that

G/CG(H/K) ∈ fF(p) ∀p ∈ π(H/K)

⇔ GfF(p) ⊆ CG(H/K) ∀p ∈ π(H/K)

⇔ [GfF(p), H ] ⊆ K ∀p ∈ π(H/K)

⇔ |〈[GfF(p), H ], K〉| = |K| ∀p ∈ π(H/K).

Let

fF(H/K,G) =

{

1, H/K is fF-central;

0, otherwise.
=

{

1, |〈[GfF(p), H ], K〉| = |K| ∀p ∈ π(H/K);

0, otherwise.

From the definition of local formation it follows that F = C(fF). Since GfF(p), the commutator
of two subgroups, the join of two subgroups and the order of subgroup can be computed in a
polynomial time, we see that fF(H/K,G) can be computed in a polynomial time.

Lets prove that fF is a chief factor function. IfH/K andM/N are G-isomorphic chief factors,
then CG(H/K) = CG(M/N). Hence G/CG(H/K) = G/CG(M/N). Therefore fF satisfies (1) of
Definition 2. Note that if [GfF(p), H ] ⊆ K for all p ∈ π(H/K), then

[(G/N)fF(p), H/N ] = [GfF(p)N/N,H/N ] = [GfF(p), H ]N/N ⊆ K/N ∀p ∈ π((H/N)/(K/N)).

Hence fF satisfies (2) of Definition 2.
Therefore the statement of Theorem 6 directly follows from Theorem 1.

The following classes of groups are local formations:

1. The class U of all supersoluble groups. It is locally defined by fU(p) = A(p− 1) (the class
of all abelian groups of exponent dividing p− 1).

2. The class wU of widely supersoluble groups [30]. It is locally defined by fwU(p) = A(p−1)
(the class of all groups all whose Sylow subgroups are abelian of exponent dividing p−1).

3. The class NA of groups G such that all Sylow subgroups of G/F(G) are abelian [30].
It is locally defined by fNA(p) = A (the class of groups all whose Sylow subgroups are
abelian).

4. In [33] the class smU of groups with submodular Sylow subgroups were studied. It is
locally defined [32] by fsmU(p) = A(p− 1) ∩B where B is a class of groups with square-
free exponent.

5. The class of strongly supersoluble groups sU [32]. Its local definition fsU(p) = A(p−1)∩B.

6. The class shU of groups all whose Schmidt subgroups are supersoluble [22, 23]. Its local
definition fshU(p) = Gπ(p−1) (the class of all π(p− 1)-groups).

Corollary 1. Let F ∈ {U,wU, sU, smU,NA, shU}. Then F is P -recognizable and GF can be
computed in a polynomial type. In particular, F-subnormality of a subgroup can be tested in a
polynomial time.
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Proof. Let G = 〈S〉. Note that the generating set Sp of a Sylow p-subgroup of G can be
computed in a polynomial time by 4 of Theorem 5. It is straightforward to check that

1. GfU(p) = 〈{[x, y], xp−1 | x, y ∈ S}〉.
2. GfwU(p) = 〈(

⋃

p∈π(G){[x, y], x
p−1 | x, y ∈ Sp})

G〉.

3. GfNA(p) = 〈(
⋃

p∈π(G){[x, y] | x, y ∈ Sp})
G〉.

4. GfsmU(p) = 〈(
⋃

p∈π(G){[x, y], x
∏

q∈π(p−1) q | x, y ∈ Sp})
G〉.

5. GfsU(p) = 〈{[x, y], x
∏

q∈π(p−1) q | x, y ∈ S}〉.
6. GfshU(p) = 〈(

⋃

p 6∈π(p−1){x | x ∈ Sp})
G〉.

Hence every of the above mentioned subgroups can be computed in a polynomial time. Note
that all these formations are hereditary. Thus the statement of a corollary directly follows from
Theorems 2 and 6.

Let f be a local definition of a local formation F. Recall that if f(p) ⊆ F for all p, then
every f -central chief factor is called F-central and every non-f -central chief factor is called
F-eccentric.

Lemma 9. Assume that fF is a local definition of a local formation F and GfF(p) can be computed
in a polynomial time for every prime p ∈ π(G). Then GFF(p) can be computed in a polynomial
time for every prime p ∈ π(G) where FF is the canonical local definition of F. In particular the
check of F-centrality of a chief factor can be done in a polynomial time.

Proof. Recall that FF(p) = Np(F ∩ fF(p)). So GFF(p) = (GfF(p)GF)Np can be computed in a
polynomial time by Theorem 6 for any p ∈ π(G). Following the proof of this theorem we
can check a chief factor for FF-centrality (which is the same as F-centrality) in a polynomial
time.

One of important families of formations are Baer-local or composition formations. There
are many ways to define them (see [8, IV, Definitions 4.9], [11, p. 4] and [29, Definition 3.11]).
A function of the form f : {Simple groups} → {formations} is called a Baer function. f(Zp)
is denoted by f(p) where Zp is a cyclic group of order p. A chief factor H/K of a group G is
called f -central if G/CG(H/K) ∈ f(S) where all composition factors of H/K are isomorphic
to S. A formation F is called Baer-local if its coincides with the class of groups all whose
chief factors are f -central for some Baer function f . It is known (see [11, 1, Theorem 1.6])
that Baer-local formation can be defined by Baer function f such that f(0) = f(S) for every
non-abelian simple group.

Theorem 7. Let f be a Baer-local definition of a composition formation F. Assume that Gf(x)

can be computed in polynomial time for every x ∈ P ∪ {0}. Then F is P -recognizable and GF

can be computed in polynomial time.

Proof. Let

fF(H/K,G) =











1, H/K is non-abelian and |〈[GfF(0), H ], K〉| = |K|;

1, H/K is a p-group and |〈[GfF(p), H ], K〉| = |K|;

0, otherwise.

As in the proof of Theorem 6 we can chow that fF is a chief factor function and F = C(fF).

4.2 The lattice of chief factor functions

For a chief factor functions f1 and f2 let

1. (f1 ∨ f2)(H/K,G) = 1 iff f1(H/K,G) = 1 or f2(H/K,G) = 1.
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2. (f1 ∧ f2)(H/K,G) = 1 iff f1(H/K,G) = 1 and f2(H/K,G) = 1.

3. f1(H/K,G) = 1 iff f1(H/K,G) = 0.

It is straightforward to check that these functions are chief factor functions. If f1(H/K,G)
and f2(H/K,G) can be computed in a polynomial time, then functions from 1–3 can also
be computed in a polynomial time. Note that the first two items defines the structure of a
distributive lattice on the set of chief factor functions.

Theorem 8. P -recognizable chief factor formations form a distributive lattice.

The formation F of groups whose 3-chief factors are not central plays an important role
as a counterexample in the study of mutual permutable products of groups (see [6, Example
4.4.8]). It is clear that this class of groups is defined by a chief factor function f such that
f(H/K,G) = 1 if H/K is not a central 3-chief factor or is not a 3-chief factor. Since the orders
of a chief factor and its centralizer can be computed in a polynomial time by Theorem 5, we
see

Proposition 1. The formation of groups whose 3-chief factors are not central is P -recognizable.

It is well known that any Baer-local formation F can be defined by Baer-function FF such
that FF(0) = F, i.e. the general definition of Baer-local formation gives little information
about the action of an F-group G on its non-abelian chief factors. Therefore several families
of Baer-local formations were introduced by giving additional information about the action of
an F-group on its non-abelian chief factors. For example, in [12, 13] Guo and Skiba introduced
the class F∗ of quasi-F-groups for a saturated formation F:

F∗ = (G | for every F-eccentric chief factor H/K and every x ∈ G, x induces an inner
automorphism on H/K).

If N ⊆ F is a normally hereditary local formation, then F∗ is a normally hereditary Baer-local
formation by [12, Theorem 2.6].

Theorem 9. Let fF be a local definition of a local formation F. Assume that GfF(p) can be
computed in a polynomial time for every prime p. Then F∗ is P -recognizable and GF∗

can be
computed in a polynomial time.

Proof. Note that every element of a group G induces an inner automorphism on a chief factor
H/K if and only if HCG(H/K) = G. The last condition can be checked in a polynomial time
by Theorem 5. Now we can check that either a chief factor is F-central or every element of a
group G induces an inner automorphism on it in a polynomial time by Lemma 9. Thus F∗ is
P -recognizable and GF∗

can be computed in a polynomial time by Theorem 1.

Corollary 2. Formation N∗ of all quasinilpotent groups is P -recognizable and GN∗

can be
computed in a polynomial time.

4.3 F-subnormal subgroups

In [24, 25, 27, 31] groups with K-F-subnormal or F-subnormal Sylow subgroups were stud-
ied. The class of all groups with K-F-subnormal (resp. F-subnormal) Sylow π-subgroups was
denoted by wπF (resp. wπF, see [31]).

Theorem 10. Let F be a hereditary formation such that GF can be computed in a polynomial
time for every group G and π be a set of primes such that π(G)∩π can be computed in polynomial
time for every group G. Then wπF and wπF are P -recognizable formations.
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Proof. Note that if a Sylow p-subgroup of G is K-F-subnormal, then every Sylow p-subgroup
of every quotient group of G is K-F-subnormal in it. Assume now that P is not a K-F-
subnormal Sylow subgroup of G. Then ISKFSUBNORMAL(G,P,F) finds a K-F-subnormal in
G subgroup M = M(P ) of G with PM = M and PMF = M . Assume that a Sylow p-subgroup
PN/N is K-F-subnormal in G/N . Since F is a hereditary formation, we see that PN/N is
K-F-subnormal in MN/N . From (PN/N)MN/N = PMN/N = MN/N and (PN/N)(M/N)F =
(PN/N)(MFN/N) = MN/N it follows that PN/N = MN/N is a p-group. Hence Op(M) ≤ N .

From the other hand M is K-F-subnormal in G. Hence if Op(M) ≤ N , then PN/N =
MN/N is a K-F-subnormal Sylow p-subgroup of G/N .

Thus GwπF is a normal closure of a subgroup generated by Op(M(P )) where P is a non-K-
F-subnormal subgroup of G for p ∈ π. From Theorem 5 it follows that this subgroup can be
computed in a polynomial time.

The algorithm for computing GwπF uses the same ideas.
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