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A test for a local formation of finite groups to be a formation of
soluble groups with the Shemetkov property1
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Abstract. L.A. Shemetkov posed a Problem 9.74 in Kourovka Notebook to find all local
formations F of finite groups such that every finite minimal non-F-group is either a Schmidt
group or a group of prime order. All known solutions to this problem are obtained under the
assumption that every minimal non-F-group is soluble. Using the above mentioned solutions
we present a polynomial in n time check for a local formation F with bounded π(F) to be a
formation of soluble groups with the Shemtkov property where n = max π(F).
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Introduction and the results

All groups considered here are finite. Recall that a non-nilpotent group all whose proper
subgroups are nilpotent is called a Schmidt group in the honor of O. Yu. Schmidt who described
the structure of such groups [14] in 1924. In 1951 N. Ito [8, Proposition 2] proved that a non-p-
nilpotent group all whose proper subgroups are p-nilpotent is a Schmidt group. Recall that for
a class of groups X a group G 6∈ X is called a minimal non-X-group if all its proper subgroups
belong X. V.N. Semenchuk and A.F. Vasil’ev [15] described all hereditary local formations of
soluble groups F such that every soluble minimal non-F-group is either a Schmidt group or a
group of prime order. In 1984 L.A. Shemetkov asked [12, Problem 9.74] in Kourovka Notebook
to find all local formations F of finite groups such that every finite minimal non-F-group is
either a Schmidt group or a group of prime order. The solutions to this problem are presented
in [10, Corollary 1] and [4, Theorem 2]. Recall that a formation F is said to have the Shemetkov
property if every minimal non-F-group is either a Schmidt group or a group of prime order.

Theorem 1 ([9, Corollary 2.4.23]). Let F be a hereditary local formation. Then F has the

Shemetkov property if and only if it satisfies the following conditions:

1) Every minimal non-F-group is soluble;

2) F is locally defined by f where f(pi) = Gπi
for all pi ∈ π(F) where πi is a subset of π(F)

with pi ∈ πi.

It is natural to ask if condition 1) of Theorem 1 can be deduced from condition 2) of this
theorem. The aim of this paper is to solve a particular case of this question: can one deduce
from condition 2) of Theorem 1 that F is a formation of soluble groups with the Shemetkov
property?

Theorem 2. Let π = {p1, p2, . . . , pk} be a set of primes not greater than n, πi be a subset of

π with pi ∈ πi. Assume that F is a local formation with π(F) = π locally defined by f where

f(pi) = Gπi
. In O(n2) operations one can check whether F is a formation of soluble groups with

the Shemetkov property.

In the section “Proof of Corollary 1” we will show how this algorithm works on a simple
example.

1This work is supported by the Ministry of Education of Belarus (“Convergence–2025”, 20211750)

1

http://arxiv.org/abs/2405.20257v1


Corollary 1. Let π = {2, 3, 5, 7} and F be a local formation with π(F) = π locally defined by

f where f(2) = f(3) = G{2,3,5,7}, f(5) = G{3,5,7} and f(7) = G{5,7}. Then F is a formation of

soluble groups with the Shemetkov property.

The proof of Theorem 2 is based on the concept of N -critical graph. Recall that a Schmidt
(p, q)-group is a Schmidt group with the normal Sylow p-subgroup. An N-critical graph ΓNc(G)
of a group G [19, Definition 1.3] is a directed graph on the vertex set π(G) and (p, q) is an edge
of ΓNc(G) iff G has a Schmidt (p, q)-subgroup. We can modify the proof of Theorem 2 to show

Corollary 2. Let Γ be a directed graph such that V (Γ) is a finite set of primes and n =
max V (Γ). One can check if every group G with ΓNc(G) = Γ is soluble in a polynomial in n
time.

From the proves of Corollaries 2 and 3 follows

Corollary 3. If a {2, 3, 5, 7}-groupG does not contain Schmidt (5, 2)-subgroups, (7, 2)-subgroups
and (7, 3)-subgroups, then G is soluble.

1 Preliminaries

All unexplained notations and terminologies are standard. The reader is referred to [5, 6] if
necessary. Here Zn is the cyclic group of order n; π(G) is the set of all prime divisors of |G|;
π(X) = ∪

G∈X
π(G); Φ(G) is the Frattini subgroup of G; M(X) is the class of all minimal non-

X-groups. Recall that Gπ is the class of all π-groups and Fp denotes a field with p elements.
Whenever V is a G-module over Fp, V ⋊ G denotes the semidirect product of V with G
corresponding to the action of G on V as G-module.

1.1 Formations

Recall that a formation is a class of groups F which is closed under taking epimorphic images
(i.e. from G ∈ F and N E G it follows that G/N ∈ F) and subdirect products (i.e. from
G/N1 ∈ F and G/N2 ∈ F it follows that G/(N1 ∩N2) ∈ F).

A formation F is called
(a) hereditary if from G ∈ F and H ≤ G it follows that H ∈ F.
(b) saturated if from G/N ∈ F where N E G and N ≤ Φ(G) it follows that G ∈ F.
A function of the form f : P→ {formations} is called a formation function. Recall [6, IV,

Definitions 3.1] that a formation F is called local if

F = (G | G/CG(H/K) ∈ f(p) for every p ∈ π(H/K) and every chief factor H/K of G)

for some formation function f . In this case f is called a local definition of F.

1.2 N-critical graph

Here a (directed) graph Γ is a pair of sets V (Γ) and E(Γ) where V (Γ) is a set of vertices of Γ and
E(Γ) is a set of edges of Γ, i.e. the set of ordered pairs of elements from V (Γ). Two graphs Γ1

and Γ2 are called equal (denoted by Γ1 = Γ2) if V (Γ1) = V (Γ2) and E(Γ1) = E(Γ2). Graph Γ1

is called a subgraph of Γ2 (denoted by Γ1 ⊆ Γ2) if V (Γ1) ⊆ V (Γ2) and E(Γ1) ⊆ E(Γ2). Graph
Γ is called a union of graphs Γ1 and Γ2 (denoted by Γ = Γ1 ∪Γ2) if V (Γ) = V (Γ1)∪ V (Γ2) and
E(Γ) = E(Γ1) ∪ E(Γ2).

The N -critical graph of a class of groups X [19, Definition 3.1] is defined by

ΓNc(X) =
⋃

G∈X

ΓNc(G).
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Lemma 1 ([19, Theorem 2.7(2)]). Let H be a subgroup of G and Gi be groups where 1 ≤ i ≤ n.
Then ΓNc(H) ⊆ ΓNc(G) and

ΓNc (×n
i=1Gi) =

n
⋃

i=1

ΓNc(Gi).

Proposition 1 ([19, Proposition 6.1]). The following statements hold:

(a) If p is a prime, then V (ΓNc(PSL(2, 2p))) = π(2(22p − 1)) and E(ΓNc(PSL(2, 2p))) =
{(2, q) | q ∈ π(2p − 1)} ∪ {(q, 2) | q ∈ π(22p − 1)}.

(b) If p is an odd prime, then V (ΓNc(PSL(2, 3p))) = π(3(32p−1)) and E(ΓNc(PSL(2, 3p))) =
{(3, q) | q ∈ π(3p − 1) \ {2}} ∪ {(2, 3)} ∪ {(q, 2) | q ∈ π(32p − 1) \ {2}}.

(c) If p > 5 is a prime with p2+1 ≡ 0 mod 5, then V (ΓNc(PSL(2, p))) = π(p(p2− 1)) and
E(ΓNc(PSL(2, p))) = {(p, q) | q ∈ π

(

p−1
2

)

} ∪ {(2, 3)} ∪ {(q, 2) | q ∈ π(p2 − 1) \ {2}}.
(d) If p is an odd prime, then V (ΓNc(Sz(2

p))) = π(2(22p+1)(2p−1)) and E(ΓNc(Sz(2
p))) =

{(2, q) | q ∈ π(2p − 1)} ∪ {(q, 2) | q ∈ π((2p − 1)(22p + 1))}.
(e) V (ΓNc(PSL(3, 3))) = {2, 3, 13} and E(ΓNc(PSL(3, 3))) = {(2, 3), (3, 2), (13, 3)}.

1.3 Algorithms

We assume that basic arithmetic operations and comparison are done in the same amount of
time (equal 1). Recall that O(f(n)) means a function g(n) such that there exist C > 0 and
a natural number n0 such that for all n ≥ n0 holds |g(n)| < C|f(n)|. It is well known that
the decomposition of a natural number n into the product of primes can be done in O(

√
n)

operations.

2 Proof of Theorem 2

(a) F is hereditary formation.
Note that f(p) is a hereditary formation for all p ∈ π = π(F). Hence F is a hereditary

formation by [6, IV, Proposition 3.14].
(b) F is a formation of soluble groups with the Shemetkov property if and only if ΓNc(G) 6⊆

ΓNc(F) for every minimal simple non-abelian group G.
Suppose that ΓNc(G) 6⊆ ΓNc(F) for every minimal simple non-abelian group G. Assume that

F contains a non-soluble group G1. Since F is a hereditary, it contains a minimal non-soluble
group G2. Note that G3 ≃ G2/Φ(G2) ∈ F is a minimal simple non-abelian group. Hence
ΓNc(G3) ⊆ ΓNc(F), a contradiction.

Thus every group in F is soluble. Assume now thatM(F) contains a non-soluble group G1.
Note that G1 is a minimal non-soluble group. By Gaschütz-Lubeseder-Schmid Theorem F is
a saturated formation. Hence a minimal simple non-abelian group G2 ≃ G1/Φ(G1) ∈ M(F).
Since G2 is not a Schmidt group or a group of prime order, ΓNc(G2) is the join of ΓNc(M) where
M runs through all maximal subgroups of G2. From M ∈ F for every maximal subgroup M of
G2 it follows that ΓNc(G2) ⊆ ΓNc(F), a contradiction. Thus every group in M(F) is soluble.
Therefore F has the Shemetkov property by Theorem 1 or [5, Theorem 6.4.12].

Suppose now that F is a formation of soluble groups with the Shemetkov property. Assume
that there is a minimal simple non-abelian group G with ΓNc(G) ⊆ ΓNc(F). Since G is non-
soluble, it contains a minimal non-F-group H as a subgroup. Since π(G) = V (ΓNc(G)) ⊆
V (ΓNc(F)) and F has the Shemetkov property, we see that H is a Schmidt (p, q)-group for some
(p, q) 6∈ E(ΓNc(F)). From ΓNc(H) ⊆ ΓNc(G) by Lemma 1 it follows that ΓNc(G) 6⊆ ΓNc(F), a
contradiction. Thus ΓNc(G) 6⊆ ΓNc(F) for every minimal simple non-abelian group G.

(c) E(ΓNc(F)) = {(pi, pj) | pi ∈ π, pj ∈ πi}.
Let Γ be a graph with V (Γ) = π and E(Γ) = {(pi, pj) | pi ∈ π, pj ∈ πi}. Assume that

(p, q) ∈ E(ΓNc(F)). Note that p = pi and q = pj for some pi, pj ∈ π with pi 6= pj. Then F

3



contains a Schmidt (pi, pj)-group G1. Hence G2 ≃ G1/Φ(G1) ∈ F is also a Schmidt (pi, pj)-
group. In this case G has the unique minimal normal subgroup N , N is a pi-group and
G/CG(N) ≃ Zpj . Therefore Zpj ∈ f(pi) = Gπi

. Hence pj ∈ πi. Thus E(ΓNc(F)) ⊆ E(Γ).
Let pi ∈ π and pj ∈ πi. According to [6, B, Theorem 10.3] a group Zpj has a faithful

irreducible module V over a field Fpi. Let G = V ⋊ Zpj . Note that V is the unique minimal
normal subgroup of G and every maximal subgroup of G is either a pi-group or a pj-group.
Hence G is a Schmidt (pi, pj)-group. FromG/CG(V ) ≃ Zpj ∈ f(pi) and f(pj) 6= ∅ it follows that
G ∈ F. Hence (pi, pj) ∈ E(ΓNc(F)). Therefore E(Γ) ⊆ E(ΓNc(F)). Thus E(Γ) = E(ΓNc(F)).

(d) Let p be a prime and p ≤ n. If G is isomorphic to any group from PSL(2, 2p), PSL(2, 3p)
and Sz(2p) for odd p, PSL(2, p) for p > 5 with 5 ∈ π(p2+1), then we can check if ΓNc(G) ⊆ Γ
in O(n) operations.

First we need to check that π(G) ⊆ π. Note that

|G| ∈ {(2p + 1)(22p − 2p), (3p + 1)(32p − 3p)/2, 22p(22p + 1)(2p − 1), (p+ 1)(p2 − p)/2}.

Since p ≤ n, the rude estimates shows that |G| ≤ 26n. Hence |G| has no more than 6n not
necessary different primes divisors. Note that if ΓNc(G) ⊆ Γ, then all these divisors belong to π.
Since |π| < n, we see that in no more than 7n divisions we can check the if π(G) ⊆ π = V (Γ).
Suppose now that π(G) ⊆ π.

Assume that G ≃ PSL(2, 2p). Since π(G) ⊆ π, in O(n) operations we can compute π(2p−1)
and π(2p+1). Note that |π(2p− 1)∪ π(2p+1)| < n in our case. According to Proposition 1(a)
taking vertex 2, we need to check that from it starts an arrow to every vertex from π(2p − 1);
taking every vertex from π(2p − 1) ∪ π(2p + 1), we need to check that from it starts an arrow
to vertex 2. It is clear that all these can be done in O(n) operations.

Assume that G ≃ Sz(2p). Since π(G) ⊆ π, in O(n) operations we can compute π(2p − 1)
and π(22p+1). Note that |π(2p−1)∪π(22p+1)| < n in our case. According to Proposition 1(d)
taking vertex 2, we need to check that from it starts an arrow to every vertex from π(2p − 1);
taking every vertex from π(2p − 1) ∪ π(22p + 1), we need to check that from it starts an arrow
to vertex 2. It is clear that all these can be done in O(n) operations.

Assume that G ≃ PSL(2, 3p). Since π(G) ⊆ π, in O(n) operations we can compute π(3p−1)
and π(3p+1). Note that |π(3p− 1)∪π(3p +1)| < n in our case. According to Proposition 1(b)
taking vertex 3, we need to check that from it starts an arrow to every vertex from π(3p−1)\{2};
taking every vertex from π(3p − 1) ∪ π(3p + 1) \ {2}, we need to check that from it starts an
arrow to vertex 2; also we need to check, if (2, 3) ∈ E(Γ). It is clear that all these can be done
in O(n) operations.

Assume that G ≃ PSL(2, p). Since π(G) ⊆ π, in O(n) operations we can compute π(p− 1)
and π(p + 1). Note that |π(p− 1) ∪ π(p + 1)| < n in our case. According to Proposition 1(c)
taking vertex p, we need to check that from it starts an arrow to every vertex from π(p−1

2
);

taking every vertex from π(p−1)∪π(p+1)\{2}, we need to check that from it starts an arrow
to vertex 2; also we need to check, if (2, 3) ∈ E(Γ). It is clear that all these can be done in
O(n) operations.

(e) In O(n3/2) operations we can show that there are up to isomorphism no more than 4n
minimal simple non-abelian groups G for which ΓNc(G) ⊆ Γ is possible and list this groups.

Recall [7, II, Bemerkung 7.5] that minimal simple non-abelian groups up to isomorphism
are PSL(2, 2p) for a prime p, PSL(2, 3p) and Sz(2p) for an odd prime p, PSL(2, p) where p > 5
is a prime with 5 ∈ π(p2 + 1) and PSL(3, 3).

Assume that G ≃ PSL(2, 2p) or G ≃ Sz(2p). Then π(2p − 1) ⊆ π. Hence if q ∈ π(2p − 1),
then 2p ≡ 1 mod q. Note that 2q−1 ≡ 1 mod q by Fermat’s Little Theorem. Hence 2(q−1,p) ≡ 1
mod q. Since p is a prime, p ∈ π(q − 1).

Assume that G ≃ PSL(2, 3p) where p is an odd prime. Then π(3p − 1) \ {2} ⊆ π. So there
is q ∈ π(3p − 1) \ {2, 3}. By analogy p ∈ π(q − 1).
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Let ρ = ∪q∈π(π(q− 1)). Note π(q− 1) can be computed in O(n1/2) divisions for every q ∈ π
and max ρ < n. From |π| < n it follows that ρ can be computed in O(n3/2) operations. Hence
there are up to isomorphism no more than 3|ρ| < 3n minimal simple groups G from

{PSL(2, 2p), PSL(2, 3p), Sz(2p) | p ∈ P}
for which ΓNc(G) ⊆ Γ is possible. Note that if Γ(PSL(2, p)) ⊆ Γ, then p ∈ π. Since |π| ≤ n,
in O(n3/2) operations we can show that there are up to isomorphism no more than 4n minimal
simple non-abelian groups G for which ΓNc(G) ⊆ Γ is possible and list this groups.

(f) The final step.
According to (b) we need only to check that ΓNc(G) 6⊆ ΓNc(F) for every minimal simple

non-abelian group G. Using (e) we can list (up to isomorphism) no more than 4n such groups
G for which ΓNc(G) ⊆ ΓNc(F) is possible in O(n3/2) operations. According to (d) for every
listed group G in O(n) operations we can check if ΓNc(G) ⊆ ΓNc(F) (note that we can check
if ΓNc(PSL(3, 3)) ⊆ ΓNc(F) in O(1) operations). Thus in O(n2) operations we can check if
ΓNc(G) 6⊆ ΓNc(F) for every minimal simple non-abelian group G.

Algorithm 1: IsSolubleSFormation(F)

Result: True, if F is a formation of soluble groups with the Shemtkov property and
false otherwise.

Data: π = {p1, p2, . . . , pk} is a set of primes not greater than n, πi is a subset of π
with pi ∈ πi for i ∈ {1, . . . , k}

Γ← graph with V (Γ) = π and (pi, pj) ∈ E(Γ) iff pj ∈ πi;
if {(2, 3), (3, 2), (13, 3)} ⊆ E(Γ) or {(2, 3), (3, 2), (5, 2)} ⊆ E(Γ) then

return false;
end

for p ∈ π with 5 ∈ π(p2 + 1) and p > 5 do

if π((p3 − p)/2) ⊆ π then

if {(p, q) | q ∈ π
(

p−1
2

)

} ∪ {(2, 3)} ∪ {(q, 2) | q ∈ π(p2 − 1) \ {2}} ⊆ E(Γ) then
return false;

end

end

end

ρ← ∪p∈π(π(p− 1) \ {2});
for p ∈ ρ do

if π(2(22p − 1)) ⊆ π then

if {(2, q) | q ∈ π(2p − 1)} ∪ {(q, 2) | q ∈ π(22p − 1)} ⊆ E(Γ) then
return false;

end

end

if π(2(2p − 1)(22p + 1)) ⊆ π then

if {(2, q) | q ∈ π(2p − 1)} ∪ {(q, 2) | q ∈ π((2p − 1)(22p + 1))} ⊆ E(Γ) then
return false;

end

end

if π(3(32p − 1)/2) ⊆ π then

if {(3, q) | q ∈ π(3p − 1) \ {2}} ∪ {(2, 3)} ∪ {(q, 2) | q ∈ π(32p − 1) \ {2}} ⊆ E(Γ)
then

return false;
end

end

end

return true;
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3 Proof of Corollary 1

Let do the steps according to “IsSolubleSFormation”:
1. V (ΓNc(F)) = {2, 3, 5, 7} and

E(ΓNc(F)) = {(2, 3), (2, 5), (2, 7), (3, 2), (3, 5), (3, 7), (5, 3), (5, 7), (7, 5)}.

2. {(2, 3), (3, 2), (13, 3)} 6⊆ E(Γ) and {(2, 3), (3, 2), (5, 2)} 6⊆ E(Γ).
3. The only prime p > 5 in π with 5 ∈ π(p2 + 1) is 7. Note that {(7, 3), (2, 3), (3, 2)} 6⊆ E(Γ).
4. ρ = (π(2− 1) ∪ π(3− 1) ∪ π(5− 1) ∪ π(7− 1)) \ {2} = {3}.
5. π(2(26 − 1)) ⊆ π but {(2, 7), (7, 2), (3, 2)} 6⊆ E(Γ).
6. π(2(23 − 1)(26 + 1)) 6⊆ π.
7. π(3(36 − 1)/2) 6⊆ π
8. Thus F is a formation of soluble groups with the Shemetkov property.

4 Proof of Corollary 2

Let π = {p1, . . . , pk} = V (Γ), πi = {pi} ∪ {pj | (pi, pj) ∈ E(Γ)} and F be a local formation
with π(F) = π locally defined by f where f(pi) = Gπi

for all pi ∈ π. Since n = max π, in a
polynomial in n time we can check does F is a formation of soluble groups with the Shemetkov
property by Theorem 2.

Let prove that every group G with ΓNc(G) = Γ is soluble if and only if F is a formation of
soluble groups with the Shemetkov property. Note that ΓNc(F) = Γ by step (c) of the proof of
Theorem 2.

Suppose that every group G with ΓNc(G) = Γ is soluble. Assume that there is a minimal
simple non-abelian group G1 with ΓNc(G1) ⊆ Γ. Let H(pi, pj) be a Schmidt (pi, pj)-group and

G2 = G1 × (×(pi,pj)∈E(Γ)H(pi, pj))× (×pi∈V (Γ)Zpi).

Since E(Γ) ∪ V (Γ) is finite, by Lemma 1

ΓNc(G2) = ΓNc(G1) ∪





⋃

(pi,pj)∈E(Γ)

ΓNc(H(pi, pj))



 ∪





⋃

pi∈V (Γ)

ΓNc(Zpi)



 = Γ.

Therefore there exists a non-soluble group G2 with ΓNc(G2) = Γ, a contradiction. Thus
ΓNc(G1) 6⊆ Γ for every minimal simple non-abelian group G1. Thus F is a formation of soluble
groups with the Shemetkov property by step (b) of the proof of Theorem 2.

Suppose that F is a formation of soluble groups with the Shemetkov property. Assume that
there exists a non-soluble group G with ΓNc(G) = Γ. Then G contains a minimal non-F-group
H as a subgroup. Since π(G) = π = π(F), H is a Schmidt (p, q)-group for some (p, q) 6∈ E(Γ).
Hence ΓNc(G) 6= Γ, a contradiction. Thus every group G with ΓNc(G) = Γ is soluble.

5 Final remarks

Let F, π, πi be the same as in Theorem 2. Then if “IsSolubleSFormation(F)” returns true, then
we automatically prove a lot of results about F. Lets list some of them.

From [11] and [17] or [2] it follows that F has the Kegel property, i.e.

If A,B,C ∈ F and G = AB = BC = CA, then G ∈ F.

From [1, Lemma 2.2] it follows that F has the property P2, i.e.

6



If G = A1 . . . Ak where AiAj ∈ F for i 6= j, then G ∈ F.

From [16] (see also [18, Theorem 1]) it follows that F has the Belonogov property in the class
of all soluble groups

If A,B,C are non-conjugate maximal F- subgroups of a soluble group G, then G ∈ F.

It is well known that the class of all nilpotent groups can be characterized as a class of
groups whose every Sylow (or cyclic primary) subgroup is subnormal. Recall [5, Definition
6.1.2] that a subgroup H of a group G is said to be F-subnormal in G if either H = G or there
exists a chain of subgroups H = H0 < · · · < Hn = G such that Hi−1 is a maximal subgroup
of Hi and Hi/CoreHi

(Hi−1) ∈ F for i = 1, . . . , n. From [13, Corollaries 3.9 and 3.10] it follows
that for F hold the analogues of this characterization.

If every Sylow (or every cyclic primary) subgroup of G is F-subnormal in G, then G ∈ F.

From [19, Theorem 4.4] or [3, Theorem 1] it follows that for F holds an analogue of Frobe-
nious p-nilpotency criterion.

A π-group G belongs F iff NG(P )/CG(P ) is a πi-group for every pi-subgroupP ofG and pi ∈ π.

We want to note that the following problems seems interesting and remains open.

Problem 1. Let π = {p1, p2, . . . , pk} be a set of primes not greater than n, πi be a subset of
π with pi ∈ πi. Assume that F is a local formation with π(F) = π locally defined by f where
f(pi) = Gπi

. Can one check that F has the Shemetkov property in polynomial in n time?
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