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Abstract. L.A. Shemetkov posed a Problem 9.74 in Kourovka Notebook to find all local
formations § of finite groups such that every finite minimal non-g-group is either a Schmidt
group or a group of prime order. All known solutions to this problem are obtained under the
assumption that every minimal non-§-group is soluble. Using the above mentioned solutions
we present a polynomial in n time check for a local formation § with bounded 7(§) to be a
formation of soluble groups with the Shemtkov property where n = max 7(g).
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Introduction and the results

All groups considered here are finite. Recall that a non-nilpotent group all whose proper
subgroups are nilpotent is called a Schmidt group in the honor of O. Yu. Schmidt who described
the structure of such groups [14] in 1924. In 1951 N. Ito [8, Proposition 2] proved that a non-p-
nilpotent group all whose proper subgroups are p-nilpotent is a Schmidt group. Recall that for
a class of groups X a group G ¢ X is called a minimal non-X-group if all its proper subgroups
belong X. V.N. Semenchuk and A.F. Vasil’ev [15] described all hereditary local formations of
soluble groups § such that every soluble minimal non-g§-group is either a Schmidt group or a
group of prime order. In 1984 L.A. Shemetkov asked [12] Problem 9.74] in Kourovka Notebook
to find all local formations § of finite groups such that every finite minimal non-§-group is
either a Schmidt group or a group of prime order. The solutions to this problem are presented
in [10, Corollary 1] and [4, Theorem 2]. Recall that a formation § is said to have the Shemetkov
property if every minimal non-g-group is either a Schmidt group or a group of prime order.

Theorem 1 ([9, Corollary 2.4.23]). Let § be a hereditary local formation. Then § has the
Shemetkov property if and only if it satisfies the following conditions:

1) Every minimal non-§-group is soluble;

2) § is locally defined by f where f(p;) = &, for all p; € ©(F) where m; is a subset of m(F)
with p; € ;.

It is natural to ask if condition 1) of Theorem [l can be deduced from condition 2) of this
theorem. The aim of this paper is to solve a particular case of this question: can one deduce
from condition 2) of Theorem [I] that § is a formation of soluble groups with the Shemetkov
property?

Theorem 2. Let m = {p1,pa,...,px} be a set of primes not greater than n, m; be a subset of
T with p; € m;. Assume that § is a local formation with ©(§) = 7 locally defined by f where
f(p;) = &,... In O(n?) operations one can check whether § is a formation of soluble groups with
the Shemetkov property.

In the section “Proof of Corollary I’ we will show how this algorithm works on a simple
example.
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Corollary 1. Let m1 = {2,3,5,7} and § be a local formation with ©(F) = = locally defined by

f where f(2) = f(3) = 2357, f(5) = Gss7 and f(7) = By, Then § is a formation of
soluble groups with the Shemetkov property.

The proof of Theorem [2]is based on the concept of N-critical graph. Recall that a Schmidt
(p, q¢)-group is a Schmidt group with the normal Sylow p-subgroup. An N-critical graph T n.(G)
of a group G [19, Definition 1.3] is a directed graph on the vertex set 7(G) and (p, ¢) is an edge
of I'n.(G) iff G has a Schmidt (p, q)-subgroup. We can modify the proof of Theorem 2] to show

Corollary 2. Let I' be a directed graph such that V(I') is a finite set of primes and n =
max V(I'). One can check if every group G with I'y.(G) = T' is soluble in a polynomial in n
time.

From the proves of Corollaries 2] and [3] follows

Corollary 3. Ifa{2,3,5,7}-group G does not contain Schmidt (5,2)-subgroups, (7, 2)-subgroups
and (7, 3)-subgroups, then G is soluble.

1 Preliminaries

All unexplained notations and terminologies are standard. The reader is referred to [5, ] if
necessary. Here Z,, is the cyclic group of order n; 7(G) is the set of all prime divisors of |G|;
(%) = GLGJXW(G); ®(G) is the Frattini subgroup of G; M(X) is the class of all minimal non-
X-groups. Recall that &, is the class of all m-groups and F, denotes a field with p elements.
Whenever V' is a G-module over F,, V x G denotes the semidirect product of V' with G
corresponding to the action of G on V' as G-module.

1.1 Formations

Recall that a formation is a class of groups § which is closed under taking epimorphic images
(i.e. from G € § and N < G it follows that G/N € §) and subdirect products (i.e. from
G/N; € § and G/N, € § it follows that G/(N; N Ny) € §).

A formation § is called

(a) hereditary if from G € § and H < G it follows that H € §.

(b) saturated if from G/N € § where N < G and N < ®(G) it follows that G € §.

A function of the form f : P — {formations} is called a formation function. Recall [6, TV,
Definitions 3.1] that a formation § is called local if

§=(G|G/Ca(H/K) € f(p) for every p € n(H/K) and every chief factor H/K of G)

for some formation function f. In this case f is called a local definition of §.

1.2 N-critical graph

Here a (directed) graph I' is a pair of sets V (I') and E(I") where V(") is a set of vertices of I and
E(T) is a set of edges of I, i.e. the set of ordered pairs of elements from V(I'). Two graphs I'y
and I'y are called equal (denoted by I'y =T') if V(I'y) = V(I'y) and E(I'y) = E(I'y). Graph I'y
is called a subgraph of I'y (denoted by I'y C I'y) if V/(I';) C V(I'y) and E(I';) C E(I'y). Graph
I" is called a union of graphs I'y and I'y (denoted by I' =T'y UT) if V(I') = V(I";) U V(I'y) and
E) =E(I)UE[,).

The N-critical graph of a class of groups X [19, Definition 3.1] is defined by

PNC(}:) = U PNC(G)



Lemma 1 ([19, Theorem 2.7(2)]). Let H be a subgroup of G and G; be groups where 1 < i < n.
Then FNC<H) Q FNC<G) and

FNc UFNC

Proposition 1 ([19, Proposition 6.1]). The following statements hold:

(a) If p is a prime, then V(L n.(PSL(2,27))) = m(2(2% — 1)) and E(Tyn.(PSL(2,2?))) =
{2.9) | gen(2" -1} U{(q,2) | g € m(2 — 1)}

(b) If p is an odd prime, then V(L no(PSL(2,3P))) = m(3(3*%?—1)) and E(T y.(PSL(2,3?))) =
{B.9) [qen(3 -1\ {21} U{(23)} U{(¢,2) [ g € x(3* — 1)\ {2}}.
(¢) If p > 5 is a prime with p* +1 =0 mod 5, then V(L n.(PSL(2,p))) = m(p(p? — 1)) and
E(Cne(PSL(2,p))) = {(p.a) | ¢ € 7 (P57) }U{(2,3)} U{(q,2) | ¢ € 7(p* — 1) \ {2}}.

( ) If p is an odd prime, then V (Tn.(Sz(2P))) = m(2(2?P+1)(2° —1)) and E(Tn.(Sz(2P))) =
{2,9) g em(2-1)}U{(q,2) | g €m((2" — 1)(2 + 1))}

(e) V(Ine(PSL(3,3))) = {2,3,13} and E(I'n.(PSL(3,3))) = {(2,3),(3,2), (13,3)}.

1.3 Algorithms

We assume that basic arithmetic operations and comparison are done in the same amount of
time (equal 1). Recall that O(f(n)) means a function g(n) such that there exist C' > 0 and
a natural number ng such that for all n > ng holds |g(n)| < C|f(n)|. It is well known that
the decomposition of a natural number n into the product of primes can be done in O(y/n)
operations.

2 Proof of Theorem

(a) § is hereditary formation.

Note that f(p) is a hereditary formation for all p € 7 = 7(§). Hence § is a hereditary
formation by [6, IV, Proposition 3.14].

(b) § is a formation of soluble groups with the Shemetkov property if and only if U n.(G) €
Cne(T) for every minimal simple non-abelian group G.

Suppose that I'y.(G) € I'ne(F) for every minimal simple non-abelian group G. Assume that
$ contains a non-soluble group G;. Since § is a hereditary, it contains a minimal non-soluble
group Go. Note that G3 ~ G5/P(Gy) € § is a minimal simple non-abelian group. Hence
Ine(G3) € T'ne(§), a contradiction.

Thus every group in § is soluble. Assume now that M(§F) contains a non-soluble group Gj.
Note that Gy is a minimal non-soluble group. By Gaschiitz-Lubeseder-Schmid Theorem § is
a saturated formation. Hence a minimal simple non-abelian group Gy ~ G1/®(Gy) € M(F).
Since Gy is not a Schmidt group or a group of prime order, I'y.(G5) is the join of T'y.(M) where
M runs through all maximal subgroups of G5. From M € § for every maximal subgroup M of
Go it follows that I'y.(G2) € I'n.(F), a contradiction. Thus every group in M(F) is soluble.
Therefore § has the Shemetkov property by Theorem [l or [5, Theorem 6.4.12].

Suppose now that § is a formation of soluble groups with the Shemetkov property. Assume
that there is a minimal simple non-abelian group G with I'y.(G) C I'y.(F). Since G is non-
soluble, it contains a minimal non-§-group H as a subgroup. Since m(G) = V(I'y.(G)) C
V(I'ne(F)) and § has the Shemetkov property, we see that H is a Schmidt (p, ¢)-group for some
(p,q) & E(T'ne(S)). From I'y.(H) C I'y(G) by Lemma [ it follows that I'y.(G) € I'n.(F), a
contradiction. Thus I'y.(G) € I'n.(§) for every minimal simple non-abelian group G.

() B(Twe(®)) = {(per3) | pi € m,p; € i}

Let I' be a graph with V(I') = 7 and E(I') = {(pi,p;) | pi € 7, p; € m}. Assume that
(p,q) € E(I'n.(F)). Note that p = p; and ¢ = p; for some p;,p; € m with p; # p;. Then §



contains a Schmidt (p;, p;)-group G1. Hence Gy ~ G1/®(G,) € § is also a Schmidt (p;, p;)-
group. In this case G has the unique minimal normal subgroup N, N is a p;-group and
G/Cq(N) ~ Z,,. Therefore Z, € f(p;) = &, Hence p; € m;. Thus E(I'n.(F)) € E(I).

Let p; € m and p; € m. According to [6, B, Theorem 10.3] a group Z, has a faithful
irreducible module V' over a field F),. Let G =V x Z,.. Note that V' is the unique minimal
normal subgroup of G' and every maximal subgroup of G is either a p;-group or a pj-group.
Hence G is a Schmidt (p;, p;)-group. From G /Cq(V) ~ Z,, € f(p;) and f(p;) # 0 it follows that
G € §. Hence (p;,pj) € E(I'ne(F)). Therefore E(I') C E(I'y.(F)). Thus E(I') = E(I'n.(F)).

(d) Let p be a prime andp < n. If G is isomorphic to any group from PSL(2,2P), PSL(2, 3?)
and Sz(2P) for odd p, PSL(2,p) for p > 5 with 5 € w(p*+ 1), then we can check if T n.(G) C T
in O(n) operations.

First we need to check that 7(G) C 7. Note that

|G| € {(2° + 1)(2% — 27), (8" + 1)(3% — 37)/2, 2% (2% + 1) (2" — 1), (p + )(»* — p)/2}.

Since p < n, the rude estimates shows that |G| < 2%". Hence |G| has no more than 6n not
necessary different primes divisors. Note that if I'y.(G) C T, then all these divisors belong to .
Since |7| < n, we see that in no more than 7n divisions we can check the if 7(G) C = = V(I).
Suppose now that 7(G) C 7.

Assume that G ~ PSL(2,2P). Since 7(G) C 7, in O(n) operations we can compute 7(2° —1)
and (27 4+ 1). Note that [7(2? — 1) Um(2P 4 1)| < n in our case. According to Proposition [I(a)
taking vertex 2, we need to check that from it starts an arrow to every vertex from (2P — 1);
taking every vertex from m(27 — 1) U (2P + 1), we need to check that from it starts an arrow
to vertex 2. It is clear that all these can be done in O(n) operations.

Assume that G ~ Sz(2P). Since 7(G) C 7, in O(n) operations we can compute (27 — 1)
and 7(2?? +1). Note that |7(2° —1)Um (22’ +1)| < n in our case. According to Proposition [Ii(d)
taking vertex 2, we need to check that from it starts an arrow to every vertex from (2P — 1);
taking every vertex from 7 (2 — 1) U (2% + 1), we need to check that from it starts an arrow
to vertex 2. It is clear that all these can be done in O(n) operations.

Assume that G ~ PSL(2,3P). Since 7(G) C 7, in O(n) operations we can compute 7(3” —1)
and 7(37 4+ 1). Note that |7(3? — 1) U7 (3? +1)| < n in our case. According to Proposition [dI(b)
taking vertex 3, we need to check that from it starts an arrow to every vertex from 7(3?—1)\{2};
taking every vertex from 7(3? — 1) U7 (3? + 1) \ {2}, we need to check that from it starts an
arrow to vertex 2; also we need to check, if (2,3) € E(I"). It is clear that all these can be done
in O(n) operations.

Assume that G ~ PSL(2,p). Since 7(G) C 7, in O(n) operations we can compute 7(p — 1)
and 7(p 4+ 1). Note that |7(p — 1) Un(p+ 1)| < n in our case. According to Proposition [I(c)
taking vertex p, we need to check that from it starts an arrow to every vertex from W(I%l);
taking every vertex from 7(p—1)Unm(p+1)\ {2}, we need to check that from it starts an arrow
to vertex 2; also we need to check, if (2,3) € E(I'). It is clear that all these can be done in
O(n) operations.

(e) In O(n?/?) operations we can show that there are up to isomorphism no more than 4n
minimal simple non-abelian groups G for which T'n.(G) C T is possible and list this groups.

Recall [7, 11, Bemerkung 7.5] that minimal simple non-abelian groups up to isomorphism
are PSL(2,2P) for a prime p, PSL(2,3?) and Sz(2?P) for an odd prime p, PSL(2, p) where p > 5
is a prime with 5 € w(p® + 1) and PSL(3,3).

Assume that G ~ PSL(2,2P) or G ~ Sz(2P). Then 7(2° — 1) C w. Hence if ¢ € 7(2F — 1),
then 2 =1 mod ¢. Note that 29! =1 mod ¢ by Fermat’s Little Theorem. Hence 20417 =1
mod ¢. Since p is a prime, p € m(q — 1).

Assume that G ~ PSL(2,3P) where p is an odd prime. Then 7(3” — 1)\ {2} C 7. So there
is g € m(3? — 1)\ {2,3}. By analogy p € 7(q — 1).



Let p = Uyer(m(q—1)). Note m(q — 1) can be computed in O(n'/2) divisions for every q €
and max p < n. From |r| < n it follows that p can be computed in O(n?/2) operations. Hence
there are up to isomorphism no more than 3|p| < 3n minimal simple groups G from

{PSL(2,2"), PSL(2,37), Sz(2") | p € P}

for which I'y.(G) C T is possible. Note that if I'(PSL(2,p)) C I, then p € m. Since |7| < n,
in O(n%?) operations we can show that there are up to isomorphism no more than 4n minimal
simple non-abelian groups G for which I'y.(G) C I' is possible and list this groups.

(f) The final step.

According to (b) we need only to check that I'y.(G) Z T'n.(§) for every minimal simple
non-abelian group G. Using (e) we can list (up to isomorphism) no more than 4n such groups
G for which T'ye(G) C Tne(F) is possible in O(n®?) operations. According to (d) for every
listed group G in O(n) operations we can check if I'y.(G) € I'n.(§) (note that we can check
if Tne(PSL(3,3)) C T'n.(F) in O(1) operations). Thus in O(n?) operations we can check if
Cne(G) € Tne(F) for every minimal simple non-abelian group G.

Algorithm 1: IsSolubleSFormation(§)

Result: True, if § is a formation of soluble groups with the Shemtkov property and
false otherwise.
Data: m = {p1,p2,...,pr} is a set of primes not greater than n, m; is a subset of 7
with p; € m; for 1 € {1,..., k}
I' + graph with V(') = 7 and (p;,p;) € E(I) iff p; € m;
if {(2,3),(3,2),(13,3)} C E(T") or {(2,3),(3,2),(5,2)} C E(I") then
return false;
end
for p € m with 5 € m(p* +1) and p > 5 do
if 7((p®> —p)/2) C 7 then
if {(p,0) g €7 (52} UL(2,3)}U{(0.2) | g € (s — 1)\ {2}} C E(T) then
‘ return false;
end

end

end

p 4= Uper(m(p — 1)\ {2});

for p € p do

if 7(2(2% — 1)) C 7 then

if {(2,q) | qfel (2P —1)}U{(q,2) | g € m(22? — 1)} C E(T') then
return false;

end

end

if 7(2(2° —1)(2% 4+ 1)) C 7 then

i‘f {2,9) |qgen(2?-=1)}U{(q,2) | g € m((27 — 1)(2?? + 1))} C E(T) then

ot

return false;
end

end
if 7(3(3%? —1)/2) C 7 then
if {(3.9) [qen(3 -1\ {2}}U{(2,3)}U{(q,2) | g € (3 — 1)\ {2}} C E(T)

then
‘ return false;
end
end
end

return true;




3 Proof of Corollary (1]

Let do the steps according to “IsSolubleSFormation”:
1. V(T'ne(§)) = {2,3,5,7} and

E(Cne(F)) ={(2,3),(2,5),(2,7),(3,2),(3,5),(3,7),(5,3),(5,7), (7,5) }-

((2,3),(3,2), (13,3)} € B(T) and {(2,3),(3,2), (5.2)} £ B(T).
The only prime p > 5 in 7 with 5 € 7(p* + 1) is 7. Note that {(7,3),(2,3),(3,2)} € E(T).
p=m2-1ur@B-1urb-1)Un(7—-1))\ {2} ={3}.

7(2(26 — 1)) C 7 but {(2,7),(7,2),(3,2)} £ E(T).

(222 = 1)(2°+1)) £ 7.

m(3(3°-1)/2) ¢~

Thus § is a formation of soluble groups with the Shemetkov property.

PN OO W

4 Proof of Corollary

Let m = {p1,...,pe} = V([), m = {p:} U{p; | (pi,p;) € E(I')} and § be a local formation
with 7(F) = 7 locally defined by f where f(p;) = &, for all p; € 7. Since n = max, in a
polynomial in n time we can check does § is a formation of soluble groups with the Shemetkov
property by Theorem L

Let prove that every group G with I'y.(G) = I is soluble if and only if § is a formation of
soluble groups with the Shemetkov property. Note that I'y.(F) = ' by step (c) of the proof of
Theorem 2

Suppose that every group G with I'y.(G) = I is soluble. Assume that there is a minimal
simple non-abelian group G with I'y.(G1) C I'. Let H(p;, p;) be a Schmidt (p;, p;)-group and

Gy =Gy X (X(pi,pj)GE(T)H@ivpj)) X (szEV(F)Zpi)-

Since E(I') U V(T') is finite, by Lemma [l

Tne(Go) =Tne(GOU | | TweH(pipi) | U | Twel2Z) | =T,

(pispj)EE(T) pieV(T)

Therefore there exists a non-soluble group Gy with I'y.(G3) = T', a contradiction. Thus
Cne(Gp) € T for every minimal simple non-abelian group G;. Thus § is a formation of soluble
groups with the Shemetkov property by step (b) of the proof of Theorem

Suppose that § is a formation of soluble groups with the Shemetkov property. Assume that
there exists a non-soluble group G with I'y.(G) =T'. Then G contains a minimal non-g-group
H as a subgroup. Since 7(G) = 7 = 7(§), H is a Schmidt (p, q)-group for some (p,q) & E(T).
Hence I'y.(G) # T, a contradiction. Thus every group G with I'y.(G) =T is soluble.

5 Final remarks

Let §, 7, m; be the same as in Theorem [2I Then if “IsSolubleSFormation(§)” returns true, then
we automatically prove a lot of results about §. Lets list some of them.
From [11] and [I7] or [2] it follows that § has the Kegel property, i.e.

If A,B,C € §and G = AB = BC = CA, then G € §.

From [1, Lemma 2.2] it follows that § has the property Ps, i.e.



If G=A...A; where A;A; € § for i # j, then G € §.

From [I6] (see also [I8, Theorem 1]) it follows that § has the Belonogov property in the class
of all soluble groups

If A, B,C are non-conjugate maximal §- subgroups of a soluble group G, then G € §.

It is well known that the class of all nilpotent groups can be characterized as a class of
groups whose every Sylow (or cyclic primary) subgroup is subnormal. Recall [5, Definition
6.1.2] that a subgroup H of a group G is said to be §-subnormal in G if either H = G or there
exists a chain of subgroups H = Hy < --- < H,, = G such that H;_; is a maximal subgroup
of H; and H;/Corey,(H;—1) € § fori =1,...,n. From [13, Corollaries 3.9 and 3.10] it follows
that for § hold the analogues of this characterization.

If every Sylow (or every cyclic primary) subgroup of G is §-subnormal in G, then G € §.

From [19, Theorem 4.4] or [3, Theorem 1] it follows that for § holds an analogue of Frobe-
nious p-nilpotency criterion.

A m-group G belongs § iff Ng(P)/Cq(P) is a m;-group for every p;-subgroup P of G and p; € .

We want to note that the following problems seems interesting and remains open.

Problem 1. Let 7 = {p1,pa,...,pr} be a set of primes not greater than n, m; be a subset of
7 with p; € m;. Assume that § is a local formation with 7(F) = 7 locally defined by f where
f(pi) = B,,. Can one check that § has the Shemetkov property in polynomial in n time?
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