A test for a local formation of finite groups to be a formation of soluble groups with the Shemetkov property¹

V.I. Murashka

{mvimath@yandex.ru} Department of Mathematics and Technologies of Programming,

Francisk Skorina Gomel State University, Gomel, Belarus

Abstract. L.A. Shemetkov posed a Problem 9.74 in Kourovka Notebook to find all local formations \mathfrak{F} of finite groups such that every finite minimal non- \mathfrak{F} -group is either a Schmidt group or a group of prime order. All known solutions to this problem are obtained under the assumption that every minimal non- \mathfrak{F} -group is soluble. Using the above mentioned solutions we present a polynomial in n time check for a local formation \mathfrak{F} with bounded $\pi(\mathfrak{F})$ to be a formation of soluble groups with the Shemtkov property where $n = \max \pi(\mathfrak{F})$.

Keywords. Finite group; Schmidt group; soluble group; local formation; formation with the Shemetkov property; *N*-critical graph of a group.

MSC2010. 20D10, 20F19.

Introduction and the results

All groups considered here are finite. Recall that a non-nilpotent group all whose proper subgroups are nilpotent is called a Schmidt group in the honor of O. Yu. Schmidt who described the structure of such groups [14] in 1924. In 1951 N. Ito [8, Proposition 2] proved that a non-pnilpotent group all whose proper subgroups are p-nilpotent is a Schmidt group. Recall that for a class of groups \mathfrak{X} a group $G \notin \mathfrak{X}$ is called a minimal non- \mathfrak{X} -group if all its proper subgroups belong \mathfrak{X} . V.N. Semenchuk and A.F. Vasil'ev [15] described all hereditary local formations of soluble groups \mathfrak{F} such that every soluble minimal non- \mathfrak{F} -group is either a Schmidt group or a group of prime order. In 1984 L.A. Shemetkov asked [12, Problem 9.74] in Kourovka Notebook to find all local formations \mathfrak{F} of finite groups such that every finite minimal non- \mathfrak{F} -group is either a Schmidt group or a group of prime order. The solutions to this problem are presented in [10, Corollary 1] and [4, Theorem 2]. Recall that a formation \mathfrak{F} is said to have the Shemetkov property if every minimal non- \mathfrak{F} -group is either a Schmidt group or a group of prime order.

Theorem 1 ([9, Corollary 2.4.23]). Let \mathfrak{F} be a hereditary local formation. Then \mathfrak{F} has the Shemetkov property if and only if it satisfies the following conditions:

1) Every minimal non- \mathfrak{F} -group is soluble;

2) \mathfrak{F} is locally defined by f where $f(p_i) = \mathfrak{G}_{\pi_i}$ for all $p_i \in \pi(\mathfrak{F})$ where π_i is a subset of $\pi(\mathfrak{F})$ with $p_i \in \pi_i$.

It is natural to ask if condition 1) of Theorem 1 can be deduced from condition 2) of this theorem. The aim of this paper is to solve a particular case of this question: can one deduce from condition 2) of Theorem 1 that \mathfrak{F} is a formation of soluble groups with the Shemetkov property?

Theorem 2. Let $\pi = \{p_1, p_2, \ldots, p_k\}$ be a set of primes not greater than n, π_i be a subset of π with $p_i \in \pi_i$. Assume that \mathfrak{F} is a local formation with $\pi(\mathfrak{F}) = \pi$ locally defined by f where $f(p_i) = \mathfrak{G}_{\pi_i}$. In $O(n^2)$ operations one can check whether \mathfrak{F} is a formation of soluble groups with the Shemetkov property.

In the section "Proof of Corollary 1" we will show how this algorithm works on a simple example.

¹This work is supported by the Ministry of Education of Belarus ("Convergence-2025", 20211750)

Corollary 1. Let $\pi = \{2, 3, 5, 7\}$ and \mathfrak{F} be a local formation with $\pi(\mathfrak{F}) = \pi$ locally defined by f where $f(2) = f(3) = \mathfrak{G}_{\{2,3,5,7\}}$, $f(5) = \mathfrak{G}_{\{3,5,7\}}$ and $f(7) = \mathfrak{G}_{\{5,7\}}$. Then \mathfrak{F} is a formation of soluble groups with the Shemetkov property.

The proof of Theorem 2 is based on the concept of N-critical graph. Recall that a Schmidt (p,q)-group is a Schmidt group with the normal Sylow p-subgroup. An N-critical graph $\Gamma_{Nc}(G)$ of a group G [19, Definition 1.3] is a directed graph on the vertex set $\pi(G)$ and (p,q) is an edge of $\Gamma_{Nc}(G)$ iff G has a Schmidt (p,q)-subgroup. We can modify the proof of Theorem 2 to show

Corollary 2. Let Γ be a directed graph such that $V(\Gamma)$ is a finite set of primes and $n = \max V(\Gamma)$. One can check if every group G with $\Gamma_{Nc}(G) = \Gamma$ is soluble in a polynomial in n time.

From the proves of Corollaries 2 and 3 follows

Corollary 3. If a $\{2, 3, 5, 7\}$ -group G does not contain Schmidt (5, 2)-subgroups, (7, 2)-subgroups and (7, 3)-subgroups, then G is soluble.

1 Preliminaries

All unexplained notations and terminologies are standard. The reader is referred to [5, 6] if necessary. Here Z_n is the cyclic group of order n; $\pi(G)$ is the set of all prime divisors of |G|; $\pi(\mathfrak{X}) = \bigcup_{G \in \mathfrak{X}} \pi(G)$; $\Phi(G)$ is the Frattini subgroup of G; $\mathcal{M}(\mathfrak{X})$ is the class of all minimal non- \mathfrak{X} -groups. Recall that \mathfrak{G}_{π} is the class of all π -groups and \mathbb{F}_p denotes a field with p elements. Whenever V is a G-module over \mathbb{F}_p , $V \rtimes G$ denotes the semidirect product of V with Gcorresponding to the action of G on V as G-module.

1.1 Formations

Recall that a *formation* is a class of groups \mathfrak{F} which is closed under taking epimorphic images (i.e. from $G \in \mathfrak{F}$ and $N \trianglelefteq G$ it follows that $G/N \in \mathfrak{F}$) and subdirect products (i.e. from $G/N_1 \in \mathfrak{F}$ and $G/N_2 \in \mathfrak{F}$ it follows that $G/(N_1 \cap N_2) \in \mathfrak{F}$).

A formation \mathfrak{F} is called

(a) hereditary if from $G \in \mathfrak{F}$ and $H \leq G$ it follows that $H \in \mathfrak{F}$.

(b) saturated if from $G/N \in \mathfrak{F}$ where $N \leq G$ and $N \leq \Phi(G)$ it follows that $G \in \mathfrak{F}$.

A function of the form $f : \mathbb{P} \to \{formations\}$ is called a *formation function*. Recall [6, IV, Definitions 3.1] that a formation \mathfrak{F} is called *local* if

 $\mathfrak{F} = (G \mid G/C_G(H/K) \in f(p) \text{ for every } p \in \pi(H/K) \text{ and every chief factor } H/K \text{ of } G)$

for some formation function f. In this case f is called a *local definition* of \mathfrak{F} .

1.2 *N*-critical graph

Here a (directed) graph Γ is a pair of sets $V(\Gamma)$ and $E(\Gamma)$ where $V(\Gamma)$ is a set of vertices of Γ and $E(\Gamma)$ is a set of edges of Γ , i.e. the set of ordered pairs of elements from $V(\Gamma)$. Two graphs Γ_1 and Γ_2 are called equal (denoted by $\Gamma_1 = \Gamma_2$) if $V(\Gamma_1) = V(\Gamma_2)$ and $E(\Gamma_1) = E(\Gamma_2)$. Graph Γ_1 is called a subgraph of Γ_2 (denoted by $\Gamma_1 \subseteq \Gamma_2$) if $V(\Gamma_1) \subseteq V(\Gamma_2)$ and $E(\Gamma_1) \subseteq E(\Gamma_2)$. Graph Γ is called a union of graphs Γ_1 and Γ_2 (denoted by $\Gamma = \Gamma_1 \cup \Gamma_2$) if $V(\Gamma) = V(\Gamma_1) \cup V(\Gamma_2)$ and $E(\Gamma) = E(\Gamma_1) \cup E(\Gamma_2)$.

The N-critical graph of a class of groups \mathfrak{X} [19, Definition 3.1] is defined by

$$\Gamma_{Nc}(\mathfrak{X}) = \bigcup_{G \in \mathfrak{X}} \Gamma_{Nc}(G).$$

Lemma 1 ([19, Theorem 2.7(2)]). Let H be a subgroup of G and G_i be groups where $1 \le i \le n$. Then $\Gamma_{Nc}(H) \subseteq \Gamma_{Nc}(G)$ and

$$\Gamma_{Nc}(\times_{i=1}^{n}G_{i}) = \bigcup_{i=1}^{n}\Gamma_{Nc}(G_{i}).$$

Proposition 1 ([19, Proposition 6.1]). The following statements hold:

(a) If p is a prime, then $V(\Gamma_{Nc}(PSL(2,2^p))) = \pi(2(2^{2p}-1))$ and $E(\Gamma_{Nc}(PSL(2,2^p))) = \pi(2(2^{2p}-1))$

 $\{(2,q) \mid q \in \pi(2^p - 1)\} \cup \{(q,2) \mid q \in \pi(2^{2p} - 1)\}.$

(b) If p is an odd prime, then $V(\Gamma_{Nc}(PSL(2,3^p))) = \pi(3(3^{2p}-1))$ and $E(\Gamma_{Nc}(PSL(2,3^p))) = \{(3,q) \mid q \in \pi(3^p-1) \setminus \{2\}\} \cup \{(2,3)\} \cup \{(q,2) \mid q \in \pi(3^{2p}-1) \setminus \{2\}\}.$

- (c) If p > 5 is a prime with $p^2 + 1 \equiv 0 \mod 5$, then $V(\Gamma_{Nc}(PSL(2,p))) = \pi(p(p^2 1))$ and $E(\Gamma_{Nc}(PSL(2,p))) = \{(p,q) \mid q \in \pi(\frac{p-1}{2})\} \cup \{(2,3)\} \cup \{(q,2) \mid q \in \pi(p^2 1) \setminus \{2\}\}.$ (d) If p is an odd prime, then $V(\Gamma_{Nc}(Sz(2^p))) = \pi(2(2^{2p}+1)(2^p-1))$ and $E(\Gamma_{Nc}(Sz(2^p))) = \pi(2(2^{2p}+1)(2^p-1))$
- (d) If p is an odd prime, then $V(\Gamma_{Nc}(Sz(2^p))) = \pi(2(2^{2p}+1)(2^p-1))$ and $E(\Gamma_{Nc}(Sz(2^p))) = \{(2,q) \mid q \in \pi(2^p-1)\} \cup \{(q,2) \mid q \in \pi((2^p-1)(2^{2p}+1))\}.$
- (e) $V(\Gamma_{Nc}(PSL(3,3))) = \{2,3,13\}$ and $E(\Gamma_{Nc}(PSL(3,3))) = \{(2,3),(3,2),(13,3)\}.$

1.3 Algorithms

We assume that basic arithmetic operations and comparison are done in the same amount of time (equal 1). Recall that O(f(n)) means a function g(n) such that there exist C > 0 and a natural number n_0 such that for all $n \ge n_0$ holds |g(n)| < C|f(n)|. It is well known that the decomposition of a natural number n into the product of primes can be done in $O(\sqrt{n})$ operations.

2 Proof of Theorem 2

(a) \mathfrak{F} is hereditary formation.

Note that f(p) is a hereditary formation for all $p \in \pi = \pi(\mathfrak{F})$. Hence \mathfrak{F} is a hereditary formation by [6, IV, Proposition 3.14].

(b) \mathfrak{F} is a formation of soluble groups with the Shemetkov property if and only if $\Gamma_{Nc}(G) \not\subseteq \Gamma_{Nc}(\mathfrak{F})$ for every minimal simple non-abelian group G.

Suppose that $\Gamma_{Nc}(G) \not\subseteq \Gamma_{Nc}(\mathfrak{F})$ for every minimal simple non-abelian group G. Assume that \mathfrak{F} contains a non-soluble group G_1 . Since \mathfrak{F} is a hereditary, it contains a minimal non-soluble group G_2 . Note that $G_3 \simeq G_2/\Phi(G_2) \in \mathfrak{F}$ is a minimal simple non-abelian group. Hence $\Gamma_{Nc}(G_3) \subseteq \Gamma_{Nc}(\mathfrak{F})$, a contradiction.

Thus every group in \mathfrak{F} is soluble. Assume now that $\mathcal{M}(\mathfrak{F})$ contains a non-soluble group G_1 . Note that G_1 is a minimal non-soluble group. By Gaschütz-Lubeseder-Schmid Theorem \mathfrak{F} is a saturated formation. Hence a minimal simple non-abelian group $G_2 \simeq G_1/\Phi(G_1) \in \mathcal{M}(\mathfrak{F})$. Since G_2 is not a Schmidt group or a group of prime order, $\Gamma_{Nc}(G_2)$ is the join of $\Gamma_{Nc}(M)$ where M runs through all maximal subgroups of G_2 . From $M \in \mathfrak{F}$ for every maximal subgroup M of G_2 it follows that $\Gamma_{Nc}(G_2) \subseteq \Gamma_{Nc}(\mathfrak{F})$, a contradiction. Thus every group in $\mathcal{M}(\mathfrak{F})$ is soluble. Therefore \mathfrak{F} has the Shemetkov property by Theorem 1 or [5, Theorem 6.4.12].

Suppose now that \mathfrak{F} is a formation of soluble groups with the Shemetkov property. Assume that there is a minimal simple non-abelian group G with $\Gamma_{Nc}(G) \subseteq \Gamma_{Nc}(\mathfrak{F})$. Since G is nonsoluble, it contains a minimal non- \mathfrak{F} -group H as a subgroup. Since $\pi(G) = V(\Gamma_{Nc}(G)) \subseteq$ $V(\Gamma_{Nc}(\mathfrak{F}))$ and \mathfrak{F} has the Shemetkov property, we see that H is a Schmidt (p,q)-group for some $(p,q) \notin E(\Gamma_{Nc}(\mathfrak{F}))$. From $\Gamma_{Nc}(H) \subseteq \Gamma_{Nc}(G)$ by Lemma 1 it follows that $\Gamma_{Nc}(G) \not\subseteq \Gamma_{Nc}(\mathfrak{F})$, a contradiction. Thus $\Gamma_{Nc}(G) \not\subseteq \Gamma_{Nc}(\mathfrak{F})$ for every minimal simple non-abelian group G.

(c) $E(\Gamma_{Nc}(\mathfrak{F})) = \{(p_i, p_j) \mid p_i \in \pi, p_j \in \pi_i\}.$

Let Γ be a graph with $V(\Gamma) = \pi$ and $E(\Gamma) = \{(p_i, p_j) \mid p_i \in \pi, p_j \in \pi_i\}$. Assume that $(p,q) \in E(\Gamma_{Nc}(\mathfrak{F}))$. Note that $p = p_i$ and $q = p_j$ for some $p_i, p_j \in \pi$ with $p_i \neq p_j$. Then \mathfrak{F}

contains a Schmidt (p_i, p_j) -group G_1 . Hence $G_2 \simeq G_1/\Phi(G_1) \in \mathfrak{F}$ is also a Schmidt (p_i, p_j) group. In this case G has the unique minimal normal subgroup N, N is a p_i -group and $G/C_G(N) \simeq Z_{p_j}$. Therefore $Z_{p_j} \in f(p_i) = \mathfrak{G}_{\pi_i}$. Hence $p_j \in \pi_i$. Thus $E(\Gamma_{Nc}(\mathfrak{F})) \subseteq E(\Gamma)$.

Let $p_i \in \pi$ and $p_j \in \pi_i$. According to [6, B, Theorem 10.3] a group Z_{p_j} has a faithful irreducible module V over a field \mathbb{F}_{p_i} . Let $G = V \rtimes Z_{p_j}$. Note that V is the unique minimal normal subgroup of G and every maximal subgroup of G is either a p_i -group or a p_j -group. Hence G is a Schmidt (p_i, p_j) -group. From $G/C_G(V) \simeq Z_{p_j} \in f(p_i)$ and $f(p_j) \neq \emptyset$ it follows that $G \in \mathfrak{F}$. Hence $(p_i, p_j) \in E(\Gamma_{Nc}(\mathfrak{F}))$. Therefore $E(\Gamma) \subseteq E(\Gamma_{Nc}(\mathfrak{F}))$. Thus $E(\Gamma) = E(\Gamma_{Nc}(\mathfrak{F}))$.

(d) Let p be a prime and $p \leq n$. If G is isomorphic to any group from $PSL(2, 2^p)$, $PSL(2, 3^p)$ and $Sz(2^p)$ for odd p, PSL(2, p) for p > 5 with $5 \in \pi(p^2 + 1)$, then we can check if $\Gamma_{Nc}(G) \subseteq \Gamma$ in O(n) operations.

First we need to check that $\pi(G) \subseteq \pi$. Note that

$$|G| \in \{(2^{p}+1)(2^{2p}-2^{p}), (3^{p}+1)(3^{2p}-3^{p})/2, 2^{2p}(2^{2p}+1)(2^{p}-1), (p+1)(p^{2}-p)/2\}.$$

Since $p \leq n$, the rude estimates shows that $|G| \leq 2^{6n}$. Hence |G| has no more than 6n not necessary different primes divisors. Note that if $\Gamma_{Nc}(G) \subseteq \Gamma$, then all these divisors belong to π . Since $|\pi| < n$, we see that in no more than 7n divisions we can check the if $\pi(G) \subseteq \pi = V(\Gamma)$. Suppose now that $\pi(G) \subseteq \pi$.

Assume that $G \simeq PSL(2, 2^p)$. Since $\pi(G) \subseteq \pi$, in O(n) operations we can compute $\pi(2^p - 1)$ and $\pi(2^p + 1)$. Note that $|\pi(2^p - 1) \cup \pi(2^p + 1)| < n$ in our case. According to Proposition 1(a) taking vertex 2, we need to check that from it starts an arrow to every vertex from $\pi(2^p - 1)$; taking every vertex from $\pi(2^p - 1) \cup \pi(2^p + 1)$, we need to check that from it starts an arrow to vertex 2. It is clear that all these can be done in O(n) operations.

Assume that $G \simeq Sz(2^p)$. Since $\pi(G) \subseteq \pi$, in O(n) operations we can compute $\pi(2^p - 1)$ and $\pi(2^{2p}+1)$. Note that $|\pi(2^p-1) \cup \pi(2^{2p}+1)| < n$ in our case. According to Proposition 1(d) taking vertex 2, we need to check that from it starts an arrow to every vertex from $\pi(2^p - 1)$; taking every vertex from $\pi(2^p - 1) \cup \pi(2^{2p} + 1)$, we need to check that from it starts an arrow to vertex 2. It is clear that all these can be done in O(n) operations.

Assume that $G \simeq PSL(2, 3^p)$. Since $\pi(G) \subseteq \pi$, in O(n) operations we can compute $\pi(3^p-1)$ and $\pi(3^p+1)$. Note that $|\pi(3^p-1) \cup \pi(3^p+1)| < n$ in our case. According to Proposition 1(b) taking vertex 3, we need to check that from it starts an arrow to every vertex from $\pi(3^p-1)\setminus\{2\}$; taking every vertex from $\pi(3^p-1) \cup \pi(3^p+1) \setminus \{2\}$, we need to check that from it starts an arrow to vertex 2; also we need to check, if $(2,3) \in E(\Gamma)$. It is clear that all these can be done in O(n) operations.

Assume that $G \simeq PSL(2, p)$. Since $\pi(G) \subseteq \pi$, in O(n) operations we can compute $\pi(p-1)$ and $\pi(p+1)$. Note that $|\pi(p-1) \cup \pi(p+1)| < n$ in our case. According to Proposition 1(c) taking vertex p, we need to check that from it starts an arrow to every vertex from $\pi(\frac{p-1}{2})$; taking every vertex from $\pi(p-1) \cup \pi(p+1) \setminus \{2\}$, we need to check that from it starts an arrow to vertex 2; also we need to check, if $(2,3) \in E(\Gamma)$. It is clear that all these can be done in O(n) operations.

(e) In $O(n^{3/2})$ operations we can show that there are up to isomorphism no more than 4n minimal simple non-abelian groups G for which $\Gamma_{Nc}(G) \subseteq \Gamma$ is possible and list this groups.

Recall [7, II, Bemerkung 7.5] that minimal simple non-abelian groups up to isomorphism are $PSL(2, 2^p)$ for a prime p, $PSL(2, 3^p)$ and $Sz(2^p)$ for an odd prime p, PSL(2, p) where p > 5 is a prime with $5 \in \pi(p^2 + 1)$ and PSL(3, 3).

Assume that $G \simeq PSL(2, 2^p)$ or $G \simeq Sz(2^p)$. Then $\pi(2^p - 1) \subseteq \pi$. Hence if $q \in \pi(2^p - 1)$, then $2^p \equiv 1 \mod q$. Note that $2^{q-1} \equiv 1 \mod q$ by Fermat's Little Theorem. Hence $2^{(q-1,p)} \equiv 1 \mod q$. Since p is a prime, $p \in \pi(q-1)$.

Assume that $G \simeq PSL(2, 3^p)$ where p is an odd prime. Then $\pi(3^p - 1) \setminus \{2\} \subseteq \pi$. So there is $q \in \pi(3^p - 1) \setminus \{2, 3\}$. By analogy $p \in \pi(q - 1)$.

Let $\rho = \bigcup_{q \in \pi} (\pi(q-1))$. Note $\pi(q-1)$ can be computed in $O(n^{1/2})$ divisions for every $q \in \pi$ and max $\rho < n$. From $|\pi| < n$ it follows that ρ can be computed in $O(n^{3/2})$ operations. Hence there are up to isomorphism no more than $3|\rho| < 3n$ minimal simple groups G from

$$\{PSL(2,2^p), PSL(2,3^p), Sz(2^p) \mid p \in \mathbb{P}\}\$$

for which $\Gamma_{Nc}(G) \subseteq \Gamma$ is possible. Note that if $\Gamma(PSL(2, p)) \subseteq \Gamma$, then $p \in \pi$. Since $|\pi| \leq n$, in $O(n^{3/2})$ operations we can show that there are up to isomorphism no more than 4n minimal simple non-abelian groups G for which $\Gamma_{Nc}(G) \subseteq \Gamma$ is possible and list this groups.

(f) The final step.

According to (b) we need only to check that $\Gamma_{Nc}(G) \not\subseteq \Gamma_{Nc}(\mathfrak{F})$ for every minimal simple non-abelian group G. Using (e) we can list (up to isomorphism) no more than 4n such groups G for which $\Gamma_{Nc}(G) \subseteq \Gamma_{Nc}(\mathfrak{F})$ is possible in $O(n^{3/2})$ operations. According to (d) for every listed group G in O(n) operations we can check if $\Gamma_{Nc}(G) \subseteq \Gamma_{Nc}(\mathfrak{F})$ (note that we can check if $\Gamma_{Nc}(PSL(3,3)) \subseteq \Gamma_{Nc}(\mathfrak{F})$ in O(1) operations). Thus in $O(n^2)$ operations we can check if $\Gamma_{Nc}(G) \not\subseteq \Gamma_{Nc}(\mathfrak{F})$ for every minimal simple non-abelian group G.

Algorithm 1: IsSolubleSFormation(\mathfrak{F})

```
Result: True, if \mathfrak{F} is a formation of soluble groups with the Shemtkov property and
             false otherwise.
Data: \pi = \{p_1, p_2, \dots, p_k\} is a set of primes not greater than n, \pi_i is a subset of \pi
          with p_i \in \pi_i for i \in \{1, \ldots, k\}
\Gamma \leftarrow \text{graph with } V(\Gamma) = \pi \text{ and } (p_i, p_j) \in E(\Gamma) \text{ iff } p_j \in \pi_i;
if \{(2,3), (3,2), (13,3)\} \subseteq E(\Gamma) or \{(2,3), (3,2), (5,2)\} \subseteq E(\Gamma) then
return false;
end
for p \in \pi with 5 \in \pi(p^2 + 1) and p > 5 do
    if \pi((p^3-p)/2) \subseteq \pi then
         if \{(p,q) \mid q \in \pi\left(\frac{p-1}{2}\right)\} \cup \{(2,3)\} \cup \{(q,2) \mid q \in \pi(p^2-1) \setminus \{2\}\} \subseteq E(\Gamma) then
           return false;
          end
    end
end
\rho \leftarrow \cup_{p \in \pi} (\pi(p-1) \setminus \{2\});
for p \in \rho do
    if \pi(2(2^{2p}-1)) \subseteq \pi then
         if \{(2,q) \mid q \in \pi(2^p - 1)\} \cup \{(q,2) \mid q \in \pi(2^{2p} - 1)\} \subseteq E(\Gamma) then
              return false;
         end
     end
    if \pi(2(2^p-1)(2^{2p}+1)) \subseteq \pi then
         if \{(2,q) \mid q \in \pi(2^p - 1)\} \cup \{(q,2) \mid q \in \pi((2^p - 1)(2^{2p} + 1))\} \subseteq E(\Gamma) then
           return false;
         end
     end
    if \pi(3(3^{2p}-1)/2) \subseteq \pi then
         if \{(3,q) \mid q \in \pi(3^p - 1) \setminus \{2\}\} \cup \{(2,3)\} \cup \{(q,2) \mid q \in \pi(3^{2p} - 1) \setminus \{2\}\} \subseteq E(\Gamma)
           then
              return false;
          end
     end
end
return true;
```

3 Proof of Corollary 1

Let do the steps according to "IsSolubleSFormation": 1. $V(\Gamma_{Nc}(\mathfrak{F})) = \{2, 3, 5, 7\}$ and

 $E(\Gamma_{Nc}(\mathfrak{F})) = \{(2,3), (2,5), (2,7), (3,2), (3,5), (3,7), (5,3), (5,7), (7,5)\}.$

2. $\{(2,3), (3,2), (13,3)\} \not\subseteq E(\Gamma)$ and $\{(2,3), (3,2), (5,2)\} \not\subseteq E(\Gamma)$.

3. The only prime p > 5 in π with $5 \in \pi(p^2 + 1)$ is 7. Note that $\{(7,3), (2,3), (3,2)\} \not\subseteq E(\Gamma)$.

4. $\rho = (\pi(2-1) \cup \pi(3-1) \cup \pi(5-1) \cup \pi(7-1)) \setminus \{2\} = \{3\}.$

5. $\pi(2(2^6-1)) \subseteq \pi$ but $\{(2,7), (7,2), (3,2)\} \not\subseteq E(\Gamma)$.

6. $\pi(2(2^3-1)(2^6+1)) \not\subseteq \pi$.

7. $\pi(3(3^6-1)/2)\not\subseteq\pi$

8. Thus \mathfrak{F} is a formation of soluble groups with the Shemetkov property.

4 Proof of Corollary 2

Let $\pi = \{p_1, \ldots, p_k\} = V(\Gamma), \ \pi_i = \{p_i\} \cup \{p_j \mid (p_i, p_j) \in E(\Gamma)\}\$ and \mathfrak{F} be a local formation with $\pi(\mathfrak{F}) = \pi$ locally defined by f where $f(p_i) = \mathfrak{G}_{\pi_i}$ for all $p_i \in \pi$. Since $n = \max \pi$, in a polynomial in n time we can check does \mathfrak{F} is a formation of soluble groups with the Shemetkov property by Theorem 2.

Let prove that every group G with $\Gamma_{Nc}(G) = \Gamma$ is soluble if and only if \mathfrak{F} is a formation of soluble groups with the Shemetkov property. Note that $\Gamma_{Nc}(\mathfrak{F}) = \Gamma$ by step (c) of the proof of Theorem 2.

Suppose that every group G with $\Gamma_{Nc}(G) = \Gamma$ is soluble. Assume that there is a minimal simple non-abelian group G_1 with $\Gamma_{Nc}(G_1) \subseteq \Gamma$. Let $H(p_i, p_j)$ be a Schmidt (p_i, p_j) -group and

$$G_2 = G_1 \times (\times_{(p_i, p_j) \in E(\Gamma)} H(p_i, p_j)) \times (\times_{p_i \in V(\Gamma)} Z_{p_i}).$$

Since $E(\Gamma) \cup V(\Gamma)$ is finite, by Lemma 1

$$\Gamma_{Nc}(G_2) = \Gamma_{Nc}(G_1) \cup \left(\bigcup_{(p_i, p_j) \in E(\Gamma)} \Gamma_{Nc}(H(p_i, p_j))\right) \cup \left(\bigcup_{p_i \in V(\Gamma)} \Gamma_{Nc}(Z_{p_i})\right) = \Gamma.$$

Therefore there exists a non-soluble group G_2 with $\Gamma_{Nc}(G_2) = \Gamma$, a contradiction. Thus $\Gamma_{Nc}(G_1) \not\subseteq \Gamma$ for every minimal simple non-abelian group G_1 . Thus \mathfrak{F} is a formation of soluble groups with the Shemetkov property by step (b) of the proof of Theorem 2.

Suppose that \mathfrak{F} is a formation of soluble groups with the Shemetkov property. Assume that there exists a non-soluble group G with $\Gamma_{Nc}(G) = \Gamma$. Then G contains a minimal non- \mathfrak{F} -group H as a subgroup. Since $\pi(G) = \pi = \pi(\mathfrak{F})$, H is a Schmidt (p,q)-group for some $(p,q) \notin E(\Gamma)$. Hence $\Gamma_{Nc}(G) \neq \Gamma$, a contradiction. Thus every group G with $\Gamma_{Nc}(G) = \Gamma$ is soluble.

5 Final remarks

Let \mathfrak{F}, π, π_i be the same as in Theorem 2. Then if "IsSolubleSFormation(\mathfrak{F})" returns true, then we automatically prove a lot of results about \mathfrak{F} . Lets list some of them.

From [11] and [17] or [2] it follows that \mathfrak{F} has the Kegel property, i.e.

If
$$A, B, C \in \mathfrak{F}$$
 and $G = AB = BC = CA$, then $G \in \mathfrak{F}$.

From [1, Lemma 2.2] it follows that \mathfrak{F} has the property \mathcal{P}_2 , i.e.

If $G = A_1 \dots A_k$ where $A_i A_j \in \mathfrak{F}$ for $i \neq j$, then $G \in \mathfrak{F}$.

From [16] (see also [18, Theorem 1]) it follows that \mathfrak{F} has the Belonogov property in the class of all soluble groups

If A, B, C are non-conjugate maximal \mathfrak{F} - subgroups of a soluble group G, then $G \in \mathfrak{F}$.

It is well known that the class of all nilpotent groups can be characterized as a class of groups whose every Sylow (or cyclic primary) subgroup is subnormal. Recall [5, Definition 6.1.2] that a subgroup H of a group G is said to be \mathfrak{F} -subnormal in G if either H = G or there exists a chain of subgroups $H = H_0 < \cdots < H_n = G$ such that H_{i-1} is a maximal subgroup of H_i and $H_i/Core_{H_i}(H_{i-1}) \in \mathfrak{F}$ for $i = 1, \ldots, n$. From [13, Corollaries 3.9 and 3.10] it follows that for \mathfrak{F} hold the analogues of this characterization.

If every Sylow (or every cyclic primary) subgroup of G is \mathfrak{F} -subnormal in G, then $G \in \mathfrak{F}$.

From [19, Theorem 4.4] or [3, Theorem 1] it follows that for \mathfrak{F} holds an analogue of Frobenious *p*-nilpotency criterion.

A π -group G belongs \mathfrak{F} iff $N_G(P)/C_G(P)$ is a π_i -group for every p_i -subgroup P of G and $p_i \in \pi$.

We want to note that the following problems seems interesting and remains open.

Problem 1. Let $\pi = \{p_1, p_2, \ldots, p_k\}$ be a set of primes not greater than n, π_i be a subset of π with $p_i \in \pi_i$. Assume that \mathfrak{F} is a local formation with $\pi(\mathfrak{F}) = \pi$ locally defined by f where $f(p_i) = \mathfrak{G}_{\pi_i}$. Can one check that \mathfrak{F} has the Shemetkov property in polynomial in n time?

References

- B. AMBERG, L. S. KAZARIN, AND B. HOEFLING, *Finite groups with multiple factorizations*, Fundamental'naya i Prikladnaya Matematika, 4 (1998), pp. 1251–1263. in Russian.
- [2] A. BALLESTER-BOLINCHES AND L. M. EZQUERRO, On formations with the Kegel property, J. Group Theory, 5 (2005), pp. 605–611.
- [3] A. BALLESTER-BOLINCHES AND M. D. PEREZ-RAMOS, Two questions of L. A. Shemetkov on critical groups, J. Algebra, 179 (1996), pp. 905–917.
- [4] A. BALLESTER-BOLINSHES AND M. D. PEREZ-RAMOS, On *S-critical groups*, J. Algebra, 174 (1995), pp. 948–958.
- [5] A. BALLESTER-BOLLINCHES AND L. M. EZQUERRO, *Classes of Finite Groups*, vol. 584 of Math. Appl., Springer Netherlands, 2006.
- [6] K. DOERK AND T. O. HAWKES, *Finite Soluble Groups*, vol. 4 of De Gruyter Exp. Math., De Gruyter, Berlin, New York, 1992.
- [7] B. HUPPERT, Endlicher gruppen I, Springer, Berlin, 1967.
- [8] N. ITO, Note on (LM)-groups of finite order, Kodai Math. Seminar Report., 3 (1951), pp. 1–6.
- [9] S. KAMORNIKOV AND M. SELKIN, Subgroup's functors and classes of finite groups, Belaruskaya nauka, Minsk, 2003. in Russian.
- [10] S. F. KAMORNIKOV, On two problems by L.A. Shemetkov, Siberian Math. J., 35 (1994), pp. 713– 721.
- [11] L. S. KAZARIN, Factorizations of finite groups by solvable subgroups, Ukrain. Mat. Zh., 43 (1991), pp. 947–950.

- [12] V. MAZUROV AND E. I. KHUKHRO, eds., The Kourovka Notebook, no. 20, 2022.
- [13] V. I. MURASHKA, Finite groups with given sets of *S*-subnormal subgroups, Asian-European J. Math., 13 (2020), p. 2050073.
- [14] O. Y. SCHMIDT, Groups all whose subgroups are special, Mat. Sbornik, 31 (1924), pp. 366–372. in Russian.
- [15] V. N. SEMENCHUCK AND A. F. VASIL'EV, Studies of normaland subgroup structure of finite groups, Nauka i technika, 1984, ch. Characterization of local formations \$\vec{F}\$ by properties of minimal non-\$\vec{F}\$-groups, pp. 175–181.
- [16] A. F. VASIL'EV, On the problem of the enumeration of local formations with a given property, Voprosy Algebry, 3 (1987), pp. 3–11.
- [17] A. F. VASIL'EV, On the enumeration of local formations with the Kegel condition, Voprosy Algebry, 7 (1993), pp. 86–93. in Russian.
- [18] A. F. VASIL'EV, V. I. MURASHKA, AND A. K. FURS, Finite Groups with Three NonconjugateMaximal Formational Subgroups, Math. Notes, 111 (2022), pp. 356–363. in Russian.
- [19] A. F. VASILYEV AND V. I. MURASHKA, Arithmetic Graphs and Classes of Finite Groups, Sib. Math. J., 60 (2019), pp. 41–55.