= МАТЕМАТИКА =

УДК 512.542

ЛЮБАЯ РАЗРЕШИМО НАСЫЩЕННАЯ НАСЛЕДСТВЕННАЯ РЕШЕТОЧНАЯ ФОРМАЦИЯ ЯВЛЯЕТСЯ НАСЫЩЕННОЙ

© 2010 г. С. Ф. Каморников

Представлено академиком Ю.Л. Ершовым 25.08.2009 г.

Поступило 01.09.2009 г.

1. В 1939 г. Виландт установил [1], что в любой конечной группе множество всех субнормальных подгрупп образует подрешетку решетки всех подгрупп. В развитие этого результата, исходя из того, что понятие \mathfrak{F} -субнормальной подгруппы является естественным обобщением понятия субнормальной подгруппы, в 1978 г. Л.А. Шеметков в [2] сформулировал следующий вопрос: в каких случаях множество всех \mathfrak{F} -субнормальных подгрупп группы G образует решетку?

Назовем формацию конечных групп \mathfrak{F} решеточной формацией, если множество всех \mathfrak{F} -субнормальных подгрупп образует подрешетку решетки всех подгрупп в любой конечной группе. В такой терминологии вопрос Л.А. Шеметкова может быть переформулирован в виде следующей общей задачи.

Проблема А. Найти все решеточные формации.

Эта задача вошла в "Коуровскую тетрадь" [3] (для насыщенных формаций) и обзор [4] (для наследственных насыщенных формаций).

В [5] были перечислены все наследственные насыщенные решеточные формации. Описание разрешимых наследственных насыщенных решеточных формаций было получено в [6]. Результаты работ [5, 6] отражены также в книге [7].

После работ [5, 6] проблема А была модифицирована Л.А. Шеметковым в следующем виде.

Проблема А*. Найти все ненасыщенные наследственные решеточные формации.

В классе разрешимых групп проблема А* получила полное решение в [8]. В настоящей работе она решается в универсуме всех конечных групп для разрешимо насыщенных наследственных формаций. В основе решения лежит отрицательный ответ на следующий вопрос 15.38 из "Коуровской тетради" [3]: существует ли ненасыщенная наследственная разрешимо насыщенная решеточная формация?

В качестве следствия получаем, что в классе разрешимо насыщенных наследственных формаций новых решеточных формаций, отличных от тех, что описаны в [5], нет.

2. Предварительные результаты. Все рассматриваемые в данной работе группы предполагаются конечными; нами используются определения и обозначения, принятые в [9, 10]. Приведем лишь основные из них.

Напомним, что формация — это класс групп, замкнутый относительно гомоморфных образов и конечных подпрямых произведений. Формация \mathfrak{F} называется насыщенной, если из $G/\Phi(G) \in \mathfrak{F}$ всегда следует $G \in \mathfrak{F}$. В одной из неопубликованных работ Бэра (см. [10]) понятие насыщенной формации получило следующее развитие. Формация групп \mathfrak{F} называется разрешимо насыщенной, если ей принадлежит всякая группа G, обладающая такой разрешимой нормальной подгруппой N, что $G/\Phi(N) \in \mathfrak{F}$. Очевидно, каждая насыщенная формация \mathfrak{F} является разрешимо насыщенной. Обратное неверно. Более того, существует континуум разрешимо насыщенных формаций, которые не являются насыщенными.

Согласно теореме Бэра [10], непустая формация $\widetilde{\mathfrak{V}}$ разрешимо насыщена тогда и только тогда, когда она является композиционной. Идея композиционной формации впервые изложена Л. А. Шеметковым в обзорном докладе [11]. Суть идеи состоит в рассмотрении класса групп, на главных факторах которых индуцированы специальные группы автоморфизмов. Формула композиционной формации приведена в работе [12].

Пусть \mathfrak{F} — непустая формация. Если G — группа, то через $G^{\mathfrak{F}}$ обозначается \mathfrak{F} -корадикал группы G, т.е. пересечение всех тех нормальных подгрупп N из G, для которых $G/N \in \mathfrak{F}$.

О пределение. Подгруппа H группы G называется \mathfrak{F} -с убнормальной, еслилибо H = G, либо существует максимальная цепь подгрупп

$$G = H_0 \supset H_1 \supset ... \supset H_n = H$$
,

Гомельский филиал Международного института трудовых и социальных отношений, Беларусь

такая что $(H_{i-1})^{\mathfrak{F}} \subseteq H_i$ для всех i=1,2,...,n. Множество всех \mathfrak{F} -субнормальных подгрупп группы G обозначим через $\mathrm{sub}_{\mathfrak{F}}(G)$.

Доказательство следующих лемм осуществляется простой проверкой. Напомним только, что непустая формация \mathfrak{F} называется наследственной, если из $G \in \mathfrak{F}$ всегда следует $H \in \mathfrak{F}$ для любой подгруппы H группы G.

 \mathfrak{I} е м м а 1. Пусть \mathfrak{F} — наследственная формация. Тогда справедливы следующие утверждения:

- 1) если H подгруппа группы G и $G^{\mathfrak{F}} \subseteq H$, то $H \in \operatorname{sub}_{\mathfrak{F}}(G)$;
- 2) если $H \in \operatorname{sub}_{\mathfrak{F}}(G)$, то $H \cap K \in \operatorname{sub}_{\mathfrak{F}}(K)$ для любой подгруппы K группы G;
 - 3) если $H_1, H_2 \in \operatorname{sub}_{\mathfrak{F}}(G)$, то $H_1 \cap H_2 \in \operatorname{sub}_{\mathfrak{F}}(G)$;
- 4) $ecnu\ H \in \operatorname{sub}_{\mathfrak{F}}(K)\ u\ K \in \operatorname{sub}_{\mathfrak{F}}(G),\ mo\ H \in \operatorname{sub}_{\mathfrak{F}}(G).$

 Π е м м а 2. Пусть \mathfrak{F} — непустая формация. Пусть H и N — подгруппы группы G, причем N нормальна в G. Тогда:

- 1) если $H \in \operatorname{sub}_{\mathfrak{F}}(G)$, то $HN \in \operatorname{sub}_{\mathfrak{F}}(G)$ и $HN/N \in \operatorname{sub}_{\mathfrak{F}}(G/N)$;
- 2) если $N \subseteq H$, то $H \in \operatorname{sub}_{\mathfrak{F}}(G)$ тогда и только тогда, когда $H/N \in \operatorname{sub}_{\mathfrak{F}}(G/N)$.

Пусть \mathfrak{S} — формация всех разрешимых групп, а \mathfrak{G}_{π} — формация всех π -групп (π — некоторое множество простых чисел).

 Π е м м а 3 (см. лемму 3.1.8 в [9]) . Пусть $\mathfrak{F} \in \{\mathfrak{S}, \mathfrak{S}_{\pi}\}$. Тогда справедливо следующее утверждение: если $H \in \mathrm{sub}_{\mathfrak{F}}(G)$, то $G^{\mathfrak{F}} = H^{\mathfrak{F}}$.

Если \mathfrak{X} — некоторый класс групп, то через $D_0\mathfrak{X}$ обозначается класс всех групп, представимых в виде $H_1 \times H_2 \times ... \times H_t$, где $H_i \in \mathfrak{X}$ для всех i=1, 2,...,t.

Нам понадобится следующее описание разрешимых наследственных насыщенных решеточных формаций (см. [5, 6]).

Лемма 4. Пусть \mathfrak{F} — разрешимая наследственная насыщенная формация. Тогда и только тогда \mathfrak{F} является решеточной, когда существует такое разбиение $\{\pi_i \mid i \in I\}$ множества $\pi(\mathfrak{F})$ на попарно непересекающиеся подмножества, что \mathfrak{F} =

$$=D_0\bigg(\bigcup_{i\in I}\mathfrak{S}_{\pi_i}\bigg).$$

Через $\pi(\mathfrak{F})$ обозначается множество всех простых делителей порядков групп из класса \mathfrak{F} .

3. Вспомогательные леммы. В этом разделе через \mathfrak{F} всегда будем обозначать разрешимо насыщенную решеточную наследственную формацию.

Лемма 5. *Если* $\mathfrak{H} \in \{\mathfrak{S}, \mathfrak{G}_{\pi}\}$, то $\mathfrak{F} \cap \mathfrak{H}$ является решеточной формацией.

Доказательство. Пусть H_1 , H_2 — это ($\mathfrak{F} \cap$ (-5)-субнормальные подгруппы группы G. Тогда, в частности, подгруппы H_1 и H_2 \mathfrak{H} -субнормальны в G. Поэтому на основании леммы 3 $G^{\circ} \subseteq H_1$ и $G^{\circ} \subseteq H_2$. Ввиду леммы 2 $H_1/G^{\circ} \in$ $\in \operatorname{sub}_{\widetilde{N} \cap \widetilde{\Sigma}}(G/G^{\widetilde{\Sigma}})$ и $H_2/G^{\widetilde{\Sigma}} \in \operatorname{sub}_{\widetilde{N} \cap \widetilde{\Sigma}}(G/G^{\widetilde{\Sigma}})$. Отсюда следует, что подгруппы H_1/G° и H_2/G° являются \mathfrak{F} -субнормальными в $\mathit{G/G}^{\S}$. Поскольку формация $\widetilde{\mathfrak{F}}$ является решеточной, то $(H_1 \ \cap \ H_2)/G^{\mathfrak{H}}$ и $\langle H_1, H_2 \rangle / G^{\mathfrak{H}}$ суть \mathfrak{F} -субнормальные подгруппы группы G/G^{\S} . А поскольку $G/G^{\S} \in \mathfrak{H}$, то подгруппы $(H_1\cap H_2)/G^{\mathfrak{H}}$ и $\langle H_1,H_2
angle/G^{\mathfrak{H}}$ являются $(\mathfrak{F}\cap \mathfrak{F})$ -субнормальными в G/G° . Ввиду леммы 2 имеем, что $H_1 \cap H_2 \in \mathrm{sub}_{\mathfrak{F} \cap \mathfrak{F}}(G)$ и $\langle H_1, H_2 \rangle \in \mathrm{sub}_{\mathfrak{F} \cap \mathfrak{F}}(G)$. Таким образом, формация $\mathfrak{F} \cap \mathfrak{H}$ является решеточной. Лемма доказана.

$$\Pi$$
 е м м а 6. $\mathfrak{F} \cap \mathfrak{S} = D_0 \Big(\bigcup_{i \in I} \mathfrak{S}_{\pi_i} \Big)$, где $\bigcup_{i \in I} \pi_i = \pi(\mathfrak{F} \cap \mathfrak{S})$ и $\pi_k \cap \pi_l = \phi$ для всех $k \neq l$ из I .

Доказательство. Формация $\mathfrak{F} \cap \mathfrak{S}$ является разрешимо насыщенной. А поскольку она разрешима, то $\mathfrak{F} \cap \mathfrak{S}$ является насыщенной формацией. Из наследственности формации $\mathfrak{F} \cap \mathfrak{S}$ следует, что наследственна и формация $\mathfrak{F} \cap \mathfrak{S}$. Кроме того, ввиду леммы 5 формация $\mathfrak{F} \cap \mathfrak{S}$ является решеточной. Отсюда, на основании леммы 4, существует такое разбиение $\{\pi_i \mid i \in I\}$ множества $\pi(\mathfrak{F} \cap \mathfrak{S})$ на попарно непересекающиеся подмно-

жества, что
$$\mathfrak{F} \cap \mathfrak{S} = D_0 \Big(\bigcup_{i \in I} \mathfrak{S}_{\pi_i} \Big)$$
. Лемма доказана.

Лемма 7. Пусть $\mathfrak{F}_{\pi_1}=\mathfrak{F}\cap\mathfrak{G}_{\pi_1}$. Тогда $\mathfrak{F}_{\pi_i}\cap\mathfrak{G}=\mathfrak{S}_{\pi_i}$.

 \mathcal{J} о казательство. Включение $\mathfrak{F}_{\pi_1} \cap \mathfrak{S} \subseteq \mathfrak{S}_{\pi_1}$ очевидно. Ввиду леммы 6 $\mathfrak{F} \cap \mathfrak{S} = D_0\Big(\mathfrak{S}_{\pi_1} \cup D_0\Big(\bigcup_{j \in J}\mathfrak{S}_{\pi_j}\Big)\Big)$, где $J = I \setminus \{1\}$. Поэтому $\mathfrak{S}_{\pi_1} \subseteq \mathfrak{F} \cap \mathfrak{S}$. Теперь $\mathfrak{S}_{\pi_1} \subseteq \mathfrak{S}_{\pi_1} \cap \mathfrak{F} \cap \mathfrak{S} = \mathfrak{F}_{\pi_1} \cap \mathfrak{S}$. Следовательно, $\mathfrak{F}_{\pi_1} \cap \mathfrak{S} = \mathfrak{S}_{\pi_1}$. Лемма доказана.

Лемма 8. Формация \mathfrak{F}_{π_1} представима в виде $\mathfrak{F}_{\pi_1}=\mathfrak{S}_{\pi_1}\mathfrak{F}_{\pi_1}.$

Доказательство. Включение $\mathfrak{F}_{\pi_1} \subseteq \mathfrak{S}_{\pi_1} \mathfrak{F}_{\pi_1}$ очевидно. Предположим, что $\mathfrak{F}_{\pi_1} \subset \mathfrak{S}_{\pi_1} \mathfrak{F}_{\pi_1}$. Пусть G — группа наименьшего порядка из $\mathfrak{S}_{\pi_1} \mathfrak{F}_{\pi_1} \setminus \mathfrak{F}_{\pi_1}$. Поскольку \mathfrak{F}_{π_1} — формация, то G обладает единственной минимальной нормальной подгруппой N. При этом N есть p-группа для некоторого

простого p из π_1 и N есть \mathfrak{F}_{π_1} -корадикал группы G. Пусть N — дополняемая минимальная нормальная подгруппа группы G. Тогда существует максимальная подгруппа M группы G, такая что G = [N]M. Пусть H — примарная подгруппа группы G. Тогда из $HN \in \mathfrak{S}_{\pi_1}$ на основании лемм 1 и 7 получаем, что $H \in \operatorname{sub}_{\mathfrak{S}_{\pi_i}}(HN) \subseteq \operatorname{sub}_{\mathfrak{F}_{\pi_i}}(HN)$. Так как формация \mathfrak{F}_{π_1} наследственна и $G/N \in \mathfrak{F}_{\pi_1}$, то ввиду леммы 2 имеем $HN/N \in \operatorname{sub}_{\mathfrak{F}_{\pi_*}}(G/N)$ и $HN \in$ $\in \mathrm{sub}_{\mathfrak{F}_{\pi_{-}}}(G)$. Применяя лемму 1, получаем, что $H \in \operatorname{sub}_{\mathfrak{F}_{\pi_*}}(G)$. Итак, любая примарная подгруппа группы G является \mathfrak{F}_{π_1} -субнормальной в G. Но Mпорождается всеми своими примарными подгруппами. Кроме того, ввиду леммы 5 формация \mathfrak{F}_{π_1} является решеточной. Поэтому M есть \mathfrak{F}_{π_1} нормальная максимальная подгруппа группы G. Следовательно, $G/\mathrm{Core}_G(M) \in \mathfrak{F}_{\pi_1}$. Если $\mathrm{Core}_G(M) \neq$ $\neq 1$, то G имеет по крайней мере две различные минимальные нормальные подгруппы, что противоречит выбору группы G. Значит, $Core_G(M) = 1$. Но тогда $G \cong G/\mathrm{Core}_G(M) \in \mathfrak{F}_{\pi_1}$. Пришли к противо-

2. Пусть $N \subseteq \Phi(G)$. Если G — это p-группа, то ввиду леммы 7 $G \in \Re_p \subseteq \mathfrak{S}_{\pi_1} \subseteq \mathfrak{F}_{\pi_1}$, где \Re_p — формация всех p-групп. Пришли к противоречию. Значит, найдется простое число q, отличное от p, такое что $q \in \pi(G)$. При этом ввиду выбора группы G справедливо равенство $O_q(G) = 1$. На основании следствия B, 10.7, из [10], существует точный и неприводимый F_qG -модуль V. Рассмотрим группу D = [V]G и ее примарную подгруппу R. Очевидно, VNR — разрешимая π_1 -группа. Поэтому на основании лемм 1 и 7 имеем $R \in \operatorname{sub}_{\mathfrak{S}_{\pi_1}}(VNR) \subseteq \subseteq \operatorname{sub}_{\mathfrak{F}_{\pi_1}}(VNR)$. Кроме того,

$$D/VN = VG/VN \cong G/G \cap VN \cong G/N \in \mathfrak{F}_{\pi_1}$$
.

Следовательно, ввиду леммы 1 получаем $VNR/VN \in \mathrm{sub}_{\mathfrak{F}_{\pi_1}}(D/VN)$, а на основании леммы 2 подгруппа VNR принадлежит $\mathrm{sub}_{\mathfrak{F}_{\pi_1}}(D)$. Значит, ввиду леммы 1 подгруппа R является \mathfrak{F}_{π_1} -субнормальной в D. Итак, любая примарная подгруппа группы D будет \mathfrak{F}_{π_1} -субнормальной в D. Отсюда на основании леммы 5 группа G является \mathfrak{F}_{π_1} -нормальной максимальной подгруппой группы D, а значит, $D/\mathrm{Core}_D(G) \in \mathfrak{F}_{\pi_1}$. Однако V- точный F_qG -модуль. Поэтому $\mathrm{Core}_D(G) = 1$ и $D \in \mathfrak{F}_{\pi_1}$. По-

скольку \mathfrak{F}_{π_1} — наследственная формация, то $G \in \mathfrak{F}_{\pi_1}$. Снова пришли к противоречию. Лемма доказана.

Л е м м а 9. \mathfrak{F}_{π_1} является насыщенной формацией.

Доказательство. Пусть $G/\Phi(G) \in \mathfrak{F}_{\pi_1}$. Тогда, очевидно, $\Phi(G)$ — разрешимая π_1 -группа. Следовательно, $G \in \mathfrak{S}_{\pi_1} \mathfrak{F}_{\pi_1}$. Но ввиду леммы 8 имеет место равенство $\mathfrak{S}_{\pi_1} \mathfrak{F}_{\pi_1} = \mathfrak{F}_{\pi_1}$. Поэтому $G \in \mathfrak{F}_{\pi_1}$. Таким образом, формация \mathfrak{F}_{π_1} является насыщенной. Лемма доказана.

4. Основная теорема. Следующая теорема дает ответ на вопрос 15.38 из [3].

Те о р е м а. Всякая разрешимо насыщенная наследственная решеточная формация является насыщенной.

Доказательство. Пусть \mathfrak{F} — разрешимо насыщенная наследственная решеточная формация. Рассмотрим $\mathfrak{F}^{\star}=\mathfrak{F}\cap\mathfrak{S}$. Ввиду леммы 6 справедливо равенство $\mathfrak{F}^{\star}=D_0\bigl(\bigcup_{i\in I}\mathfrak{S}_{\pi_i}\bigr)$, где $\pi_k\cap\pi_I=\phi$ для любых $k\neq I$ из I. Если $\mathfrak{F}^{\star}=\mathfrak{F}$, то насыщенность формации \mathfrak{F} следует из ее разрешимости. Пусть $\mathfrak{F}\neq\mathfrak{F}^{\star}$. Можно представить \mathfrak{F}^{\star} в виде

$$\mathfrak{F}^{\star} = D_0 \Big(\mathfrak{S}_{\pi_1} \cup D_0 \Big(\bigcup_{j \in J} \mathfrak{S}_{\pi_j} \Big) \Big) ,$$

где $J=\Lambda\{1\}$ и $2\in\pi_1,\pi_k\cap\pi_l=\phi$ для любых $k\neq l$ из J. Рассмотрим формацию

$$\mathfrak{X} = D_0 \Big(\mathfrak{F}_{\pi_1} \quad \cup D_0 \Big(\bigcup_{j \in J} \mathfrak{S}_{\pi_j} \Big) \Big) \,,$$

где $\mathfrak{F}_{\pi_1}=\mathfrak{F}\cap\mathfrak{G}_{\pi_1}$. Покажем, что $\mathfrak{X}=\mathfrak{F}$.

Включение $\mathfrak{X} \subseteq \mathfrak{F}$ очевидно. Предположим, что $\mathfrak{X} \subset \mathfrak{F}$. Пусть G — группа наименьшего порядка из $\mathfrak{F} \backslash \mathfrak{X}$. Тогда из наследственности формации \mathfrak{F} следует, что G — минимальная не \mathfrak{X} -группа. Поскольку ввиду леммы 9 формация \mathfrak{F}_{π_1} насыщена, то насыщенной будет и формация \mathfrak{X} . Следовательно, $\Phi(G) = 1$. Поэтому $G^{\mathfrak{X}} = N$ — единственная минимальная нормальная подгруппа группы G.

Предположим, что $\pi(G)$ не содержится в π_1 . Если $G \in D_0(\mathfrak{G}_{\pi_1} \cup \mathfrak{G}_{\mathfrak{G}})$, где \mathfrak{G} — дополнение множества π_1 в множестве всех простых чисел, то ввиду единственности в G минимальной нормальной подгруппы группы G имеем $G \in \mathfrak{G}_{\mathfrak{G}}$. Так как $G \in \mathfrak{F}_{\mathfrak{G}}$ то G — разрешимая группа. Поэтому из $G \in \mathfrak{F} \cap \mathfrak{S}$

ввиду леммы 6 получаем, что $G \in D_0\Bigl(\bigcup_{j \in J} \mathfrak{S}_{\pi_j}\Bigr) \subseteq \mathfrak{X}.$

Пришли к противоречию.

Таким образом, $G \notin D_0(\mathfrak{G}_{\pi_1} \cup \mathfrak{G}_{\sigma})$. Значит, G- минимальная не $D_0(\mathfrak{G}_{\pi_1} \cup \mathfrak{G}_{\sigma})$ -группа. Ввиду [13] G является группой Шмидта. Тогда на основании леммы 6 имеем $G \in \mathfrak{F}^{\bigstar} \subseteq \mathfrak{X}$. Пришли к противоречию.

Итак, $\pi(G) \subseteq \pi_1$. Но тогда $G \in \mathfrak{F} \cap \mathfrak{G}_{\pi_1} = \mathfrak{F}_{\pi_1} \subseteq \mathfrak{X}$. Снова пришли к противоречию. Следовательно, $\mathfrak{F} = \mathfrak{X}$, а значит, \mathfrak{F} — насыщенная формация. Теорема доказана.

Следствие. Пусть \Im — разрешимо насыщенная наследственная формация. Тогда и только тогда \Im является решеточной, когда формация \Im удовлетворяет следующим условиям:

1)
$$\mathfrak{F} = D_0(\mathfrak{M} \cup \mathfrak{H}), \, \pi(\mathfrak{M}) \cap \pi(\mathfrak{H}) = \phi;$$

2) существует такое разбиение $\{\pi_i|i\in I\}$ множества $\pi(\mathfrak{H})$ на попарно непересекающиеся подмножества, что $\mathfrak{H}=D_0\Big(\bigcup_{i\in I}\mathfrak{S}_{\pi_i}\Big)$;

- 3) $\mathfrak{M} = \mathfrak{S}_{\pi(\mathfrak{M})} \mathfrak{M}$ наследственная насыщенная формация, являющаяся классом Фиттинга, нормальным в \mathfrak{M}^2 :
- 4) всякая нециклическая минимальная не \mathfrak{M} -группа G с единичной подгруппой Фраттини является монолитической с неабелевым цоколем $N = G^{\mathfrak{M}}$, причем G/N — циклическая примарная группа.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wielandt H. // Math. Z. 1939. Bd. 45. S. 209-244.
- 2. *Шеметков Л.А.* Формации конечных групп. М.: Наука, 1978. 272 с.
- 3. Коуровская тетрадь. Нерешенные вопросы теории групп. Новосибирск: Ин-т математики СО РАН, 2006. 194 с.
- 4. *Shemetkov L.A.* // Вопросы алгебры (Гомель), 1992. В. 7. С. 3–38.
- 5. Васильев А.Ф., Каморников С.Ф., Семенчук В.Н. В кн.: Бесконечные группы и примыкающие к ним алгебраические системы. Киев: Ин-т математики АН Украины, 1993. С. 27—54.
- Ballester-Bolinches A., Doerk K., Perez-Ramos M.D. // J. Algebra. 1992. V. 148. P. 42–52.
- 7. *Ballester-Bolinches A., Ezquerro L.M.* Classes of Finite Groups. Dordrecht: Springer, 2006. 385 p.
- 8. *Васильев А.Ф., Каморников С.Ф.* // Алгебра и логика. 2002. Т. 42. № 4. С. 411–428.
- 9. *Каморников С.Ф., Селькин М.В.* Подгрупповые функторы и классы конечных групп. Минск: Белорус. наука, 2003. 256 с.
- 10. *Doerk K., Hawkes T.* Finite Soluble Groups. B.; N.Y.: Walter de Gruyter, 1992. 897 p.
- 11. Шеметков Л.А. // УМН. 1975. Т. 30. № 2. С. 179—198.
- 12. *Каморников С.Ф., Шеметков Л.А.* // Алгебра и логика. 1995. Т. 34. № 5. С. 493—513.
- 13. *Arad Z., Chillag D.* // J. Algebra. 1984. V. 87. № 2. P. 472—482