A note on the \mathfrak{F} -hypercenter of a finite group

V. I. MURASHKA

All groups considered here are finite. In [1] R. Baer showed that on the one hand the hypercenter $Z_{\infty}(G)$ of a group G coincides with the intersection of all maximal nilpotent subgroups of G and on the other hand $Z_{\infty}(G)$ coincides with the intersection of normalizers of all Sylow subgroups of G.

Let \mathfrak{X} be a class of groups. A chief factor H/K of a group G is called \mathfrak{X} -central if $(H/K) > G/C_G(H/K) \in \mathfrak{X}$. A normal subgroup N of G is said to be \mathfrak{X} -hypercentral in G if N = 1 or $N \neq 1$ and every chief factor of G below N is \mathfrak{X} -central. The \mathfrak{X} -hypercenter $Z_{\mathfrak{X}}(G)$ is the product of all normal \mathfrak{X} -hypercentral subgroups of G (see $[\mathbf{2}, 1, \text{Definition } 2.2]$). So if $\mathfrak{X} = \mathfrak{N}$ is the class of all nilpotent groups then $Z_{\mathfrak{N}}(G)$ is just the hypercenter $Z_{\infty}(G)$ of a group G.

Recall that $\operatorname{Int}_{\mathfrak{F}}(G)$ is the intersection of all \mathfrak{F} -maximal subgroups of a group G and $\underset{i \in I}{\times} \mathfrak{F}_{\pi_i} = (G = \underset{i \in I}{\times} \mathcal{O}_{\pi_i}(G) | \mathcal{O}_{\pi_i}(G) \in \mathfrak{F}_{\pi_i}) \text{ is a hereditary saturated formation where } \sigma =$ $\{\pi_i | i \in I\}$ is a partition of \mathbb{P} into mutually disjoint subsets and \mathfrak{F}_{π_i} is a hereditary saturated formation with $\pi(\mathfrak{F}_{\pi_i}) = \pi_i$ for all $i \in I$. Denote the intersection of all normalizers of \mathfrak{F} -maximal subgroups of G by $\operatorname{NI}_{\mathfrak{F}}(G)$.

Theorem. Let $\sigma = \{\pi_i | i \in I\}$ be a partition of \mathbb{P} into mutually disjoint subsets, \mathfrak{F}_{π_i} be a hereditary saturated formation with $\pi(\mathfrak{F}_{\pi_i}) = \pi_i$ for all $i \in I$ and $\mathfrak{F} = \underset{i \in I}{\times} \mathfrak{F}_{\pi_i}$. The

following statements are equivalent:

(1) $\operatorname{Int}_{\mathfrak{F}}(G) = \operatorname{Z}_{\mathfrak{F}}(G)$ for every group G.

(2) Int_{\mathfrak{F}_{π_i}}(G) = Z_{\mathfrak{F}_{π_i}}(G) for every π_i -group G and every $i \in I$. (3) $\bigcap_{i \in I} \operatorname{NI}_{\mathfrak{F}_{\pi_i}}(G) = Z_{\mathfrak{F}}(G)$ for every group G.

 $i \in I$

Corollary (Baer [1]). Let G be a group. Then

(1) The hypercenter of G is the intersection of all normalizers of all Sylow subgroups of G.

(2) The hypercenter of G is the intersection of all maximal nilpotent subgroups of G.

Remark. A. N. Skiba [3] described all hereditary saturated formations \mathfrak{F} with $\operatorname{Int}_{\mathfrak{F}}(G) =$ $Z_{\mathfrak{F}}(G)$ in terms of the canonical local definition of \mathfrak{F} . In the proof of Theorem we don't use his description.

References

- [1] Baer R., Group Elements of Prime Power Index // Trans. Amer. Math Soc., V.75, 1, 1953, 20-47.
- [2] Guo W., Structure theory for canonical classes of finite groups // Springer 2015.
- Skiba A. N., On the \mathfrak{F} -hypercentre and the intersection of all \mathfrak{F} -maximal subgroups of a finite group // [3]Journal of Pure and Applied Algebra, V.216, 4, 2012, 789–799.

Francisk Skorina Gomel State University, Gomel (Belarus) *E-mail:* mvimath@yandex.ru