Залесская Е. Н.

УО «ВГУ им. П. М. Машерова»

(г. Витебск, Беларусь) E-mail: alenushka0404@mail.ru

О ГИПОТЕЗЕ ЛОКЕТТА ДЛЯ КЛАССОВ ФИТТИНГА

Все рассматриваемые группы конечны. В определениях и обозначениях мы следуем [1].

Классом Фиттинга называется класс групп **F**, удовлетворяющий следующим условиям:

- 1) каждая нормальная подгруппа любой группы из ${\bf F}$ также принадлежит ${\bf F}$;
- 2) из того, что нормальные подгруппы A и B группы G принадлежат \mathbf{F} , всегда следует, что их произведение AB принадлежит \mathbf{F} .

Пусть \mathbf{F}^* — наименьший из классов Фиттинга, содержащий \mathbf{F} , такой, что $(G \times H)_{\mathbf{F}^*} = G_{\mathbf{F}^*} \times H_{\mathbf{F}^*}$ для всех групп G и H и

$$F_*$$
 = \cap ((Y:Y − класс Фиттинга и Y*= F^*).

Класс Фиттинга **F** удовлетворяет гипотезе Локетта в классе Фиттинга **Y**, если **F** \subseteq **Y** и **Y*** \cap **F***=**F***.

Напомним, что секцией Локетта класса Фиттинга ${\bf F}$ называют [2] множество

Locksec(
$$\mathbf{F}$$
)={ $\mathbf{Y} \mid \mathbf{Y} - \kappa$ ласс Фиттинга и $\mathbf{Y}^* = \mathbf{F}^*$ }.

Теорема. Если **X,Y,F** — такие классы Фиттинга, что $X \in L(F), F \subseteq Y$ и $X = (X \lor Y *) \cap F$ *, то класс Фиттинга F удовлетворяет гипотезе Локетта в Y.

ЛИТЕРАТУРА

- 1. Скиба, А. Н. Кратно ω-локальные формации и классы Фиттинга конечных групп / А. Н. Скиба, Л. А. Шеметков // Матем. труды, 1999. Т.2, №1. С. 1-34.
- 2. Doerk, K. Finite soluble groups. / K. Doerk, T. Hawkes. Berlin-New York: Walter de Gruyter, 1992. 891 p.

Каморников С. Ф.

МИТСО

(Гомель, Беларусь) E-mail: sfkamornikov@mail.ru

О ДОПОЛНЯЕМЫХ ЭЛЕМЕНТАХ В РЕШЕТКАХ РЕГУЛЯРНЫХ ПОДГРУППОВЫХ ФУНКТОРОВ

В работе исследуются дополняемые элементы в решетках регулярных подгрупповых функторов. Рассматриваются только конечные группы. Используются определения и обозначения, принятые в [1, 2].

Пусть X — непустой класс конечных групп. Отображение θ , сопоставляющее каждой группе $G \in X$ некоторую непустую систему $\theta(G)$ ее подгрупп, называется подгрупповым X-функтором (или, иначе, подгрупповым функтором на X), если для любого изоморфизма φ каждой группы $G \in X$ выполняется равенство $(\theta(G))^{\varphi} = \theta(G^{\varphi})$.

Подгрупповой X-функтор θ называется регулярным, если для любого эпиморфизма $\varphi:A\to B$, где $A\in X$, имеют место включения $(\theta(A))^{\varphi}\subseteq \theta(B),\ (\theta(B))^{\varphi^{-1}}\subseteq \theta(A)$ и, кроме того, $G\subseteq \theta(G)$ для любой группы G.

Пусть n — произвольное натуральное число. Подгруппа H группы G называется n -максимальной, если для любой максимальной цепи

$$H=G_{\scriptscriptstyle 0}\subset G_{\scriptscriptstyle 1}\subset ...\subset G_{\scriptscriptstyle k-1}\subset G_{\scriptscriptstyle k}=G$$

имеет место неравенство $k \le n$ и при этом найдется, по крайней мере, одна максимальная цепь длины n, соединяющая подгруппу H с группой G.

Пусть θ — подгрупповой X-функтор, который выделяет в каждой группе $G \in X$ множество $\theta(G)$, содержащее группу G и некоторые ее k -максимальные подгруппы для $k \le n$. Такой подгрупповой X-функтор будем называть n -максимальным подгрупповым функтором на X. Множество всех n -максимальных подгрупповых функторов на X обозначим через $M^n(X)$.

Если n=1, то n-максимальный подгрупповой функтор на X называется просто m-функтором на X.

Выделим в множестве $M^{n}(X)$ всех n -максимальных подгрупповых X-функторов подмножество $M^{n}_{reg}(X)$ всех регулярных n -максимальных подгрупповых X-функторов.

На множестве $M_{reg}^{n}(X)$ введем частичный порядок \leq , полагая, что отношение $\theta_{1} \leq \theta_{2}$ имеет место тогда и только тогда, когда для любой группы $G \in X$ справедливо включение $\theta_{1}(G) \subseteq \theta_{2}(G)$.

Для совокупности $\{\theta_i \big| i \in I\}$ X-функторов из M_{reg}^n (X) определим их пересечение $\theta = \bigcap_{i \in I} \theta_i$ следующим образом: $\theta(G) = \bigcap_{i \in I} \theta_i(G)$ для любой группы $G \in X$. Простая проверка показывает, что θ — регулярный n-максимальный подгрупповой функтор на X. Этот функтор является точной нижней гранью множества $\{\theta_i \big| i \in I\}$ в M_{reg}^n (X). Таким образом, M_{reg}^n (X) — полная решетка.

Решетка $M_{reg}^{n}(\mathbf{X})$ является бесконечно дистрибутивной. Единицей ее является подгрупповой функтор $1_{\mathbf{X}}$, выделяющий в каждой

группе $G \in X$ все ее k -максимальные подгруппы (для всех $k \le n$), а нулем — подгрупповой функтор 0_X , выделяющий в каждой группе $G \in X$ только саму группу G.

Если l и k — натуральные числа и $l \le k$, то, очевидно, $M_{reg}^{l}(\mathbf{X})$ — подрешетка решетки $M_{reg}^{k}(\mathbf{X})$. Поэтому, если $M_{reg}^{0}(\mathbf{X}) = \{0_{\mathbf{X}}\}$, то имеет место решеточное включение

$$M_{reg}^{0}(X) \subseteq M_{reg}^{1}(X) \subseteq ... \subseteq M_{reg}^{n}(X).$$

Кроме того, $\bigcup_{n=0}^{\infty} M^{n}_{reg}(X)$ — решетка всех регулярных подгрупповых X-функторов.

Теорема. Пусть X – непустой гомоморф, замкнутый относительно конечных прямых произведений. Тогда справедливы следующие утверждения:

- 1) $M_{reg}^{-1}(X)$ булева решетка;
- 2) если класс X разрешим, то при любом $n \ge 2$ дополняемыми в $M_{res}^{n}(X)$ являются лишь функторы θ_{X} и 1_{X} ;
- 3) если класс X не является разрешимым, то при $n \ge 2$ в решетке $M^{n}_{reg}(X)$ могут быть дополняемые элементы, отличные от 0_{X} и 1_{X} ;
- 4) в решетке всех регулярных подгрупповых X-функторов дополняемыми являются лишь функторы 0_X и 1_X .

ЛИТЕРАТУРА

- 1. Каморников, С. Ф. Подгрупповые функторы и классы конечных групп / С. Ф. Каморников, М. В. Селькин. Мн., 2003.
- 2. Скиба, А. Н. Алгебра формаций / А. Н. Скиба. Мн., 1997.

Клиндухов Н. А.¹, Буйнов Н. С.

УО «ВГУ им. П. М. Машерова» (г. Витебск, Беларусь)

E-mail: \(^1\)klinduhov@gmail.com

МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ СИЛЬНОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ СО СПИН-КРОССОВЕРНОЙ СИСТЕМОЙ

Первое изучение LIESST-эффекта было сделано в работе Декуртинса в 1984 [1]. В статье авторы сообщили, что облучение кристаллов $[Fe(ptz)_6](BF_4)_2$ электромагнитной волной в 530 нм в низкоспиновом состоянии при низкой температуре (20 K) позволяло перевести в возбужденное состояние со временем жизни свыше 10^6 сек. В нашей