ВЕСЦІ НАЦЫЯНАЛЬНАЙ АКАДЭМІІ НАВУК БЕЛАРУСІ № 4 2010 СЕРЫЯ ФІЗІКА-МАТЭМАТЫЧНЫХ НАВУК

УДК 512.542

С. Ф. КАМОРНИКОВ

О РЕШЕТКЕ ПОДГРУПП ФРАТТИНИЕВА ТИПА

Международный институт трудовых и социальных отношений, Гомель

(Поступила в редакцию 29.01.2010)

Введение. До недавних пор подгруппы фраттиниева типа изучались лишь с позиции анализа их внутреннего строения. Конечно, и на этом пути предлагались подходы, обозревающие достаточно широкие семейства подгрупп фраттиниева типа. Отметим, в частности, формационное направление, связанное с введением понятия \S -абнормальной максимальной подгруппы и изучением пересечения $\Delta^{\S}(G)$ таких подгрупп в группе G [1–2], и арифметический подход, в рамках которого исследовались пересечения (например, $\Phi_p(G)$ и $\Phi_\pi(G)$) максимальных подгрупп заданного индекса [3–4].

В то же время связь подгрупп фраттиниева типа между собой, в контексте их решеточных свойств, практически не рассматривалась. Положение изменилось с выходом работ [5, 6], где, вопервых, введены регулярный подгрупповой m-функтор θ и подгруппа $\Phi_{\theta}(G)$ как собирательные образы инвариантной при гомоморфизмах системы максимальных подгрупп, с одной стороны, и подгруппы фраттиниева типа, с другой; во-вторых, описано строение и изучены свойства решетки M_{reg} всех регулярных m-функторов; в-третьих, подгруппа фраттиниева типа $\Phi_{\theta}(G)$ представлена как \mathfrak{X} -корадикал группы G относительно определенного класса групп \mathfrak{X} .

В данной работе изучаются свойства решетки $\Phi it(G)$. При этом рассматриваются произвольные конечные группы, т. е. всегда под группой подразумевается конечная группа. Нами используются определения и обозначения, принятые в [5, 7]. Наиболее часто встречающиеся здесь понятия мы определяем по ходу изложения материала.

Подгруппы фраттиниева типа. Согласно [5], подгрупповым m-функтором называется функция θ , которая сопоставляет каждой группе G некоторое множество $\theta(G)$ ее максимальных подгрупп и саму группу G. При этом предполагается, что если $\theta(G) = \{M_1, ..., M_n, G\}$, то $\theta(G^{\alpha}) = \{M_1^{\alpha}, ..., M_n^{\alpha}, G^{\alpha}\}$ для любого изоморфизма $\alpha: G \to G^{\alpha}$.

Подгрупповой m-функтор θ называется регулярным, если выполняются следующие условия:

- 1) из $N \triangleleft G$ и $M \in \theta(G)$ следуем $MN / N \in \theta(G / N)$;
- 2) из $M / N \in \Theta(G / N)$ следует $M \in \Theta(G)$.

Множество всех регулярных m-функторов обозначим через M_{reg} . На этом множестве определим операции пересечения и объединения m-функторов, полагая

$$(\theta_1 \cap \theta_2)(G) = \theta_1(G) \cap \theta_2(G) ,$$

$$(\theta_1 \cup \theta_2)(G) = \theta_1(G) \cup \theta_2(G) ,$$

для любой группы G. Как показано в [5], m-функторы $\bigcap_{i \in I} \theta_i$ и $\bigcup_{i \in I} \theta_i$ регулярны и являются в M_{reg} соответственно нижней и верхней гранью множества $\{\theta_i \mid i \in I\}$. Таким образом, M_{reg} —

полная, бесконечно дистрибутивная решетка относительно частичного порядка, определяемого теоретико-множественным включением. Минимальным элементом (нулем) этой решетки является m-функтор θ такой, что $\theta(G) = \{G\}$ для любой группы G. В качестве ее максимального элемента (единицы) выступает m-функтор, выделяющий в каждой группе саму группу G и все ее максимальные подгруппы.

Если θ — регулярный подгрупповой m-функтор, то через $\Phi_{\theta}(G)$ обозначим θ -подгруппу Фраттини группы G, равную пересечению всех подгрупп, принадлежащих $\theta(G)$. Так как множество всех максимальных подгрупп группы G автоморфно допустимо, т. е. $M^{\alpha} \in \theta(G)$ для каждой подгруппы M из $\theta(G)$, то $\Phi_{\theta}(G)$ — характеристическая подгруппа группы G.

Будем говорить, что подгруппа N группы G является подгруппой фраттиниева типа, если $N = \Phi_{\theta}(G)$ для некоторого m-функтора $\theta \in M_{\text{reg}}$. Множество всех подгрупп фраттиниева типа из G обозначим через $\Phi(G)$. Таким образом, $\Phi(G) = \{\Phi_{\theta}(G) | \theta \in M_{\text{reg}}\}$.

Доказательство следующей леммы осуществляется простой проверкой.

Л е м м а 1. Если θ и τ — регулярные подгрупповые т-функторы, то для любой группы G справедливо равенство $\Phi_{\theta \cup \tau}(G) = \Phi_{\theta}(G) \cap \Phi_{\tau}(G)$.

Из леммы 1 следует, что множество $\Phi it(G)$, частично упорядоченное по включению, является нижней полурешеткой, а следовательно, и полной решеткой. Нулем этой решетки является подгруппа Φ раттини $\Phi(G)$, а единицей — сама группа G. В дальнейшем точную верхнюю грань элементов N_1 и N_2 из $\Phi it(G)$ будем обозначать $N_1 \vee_{\Phi} N_2$.

На основании леммы 1 для отображения $f:\theta\mapsto\Phi_{\theta}(G)$ решетки M_{reg} в решетку Φ it(G) выполняется равенство $f(\theta_1\cup\theta_2)=f(\theta_1)\cap f(\theta_2)$. В то же время не всегда выполняется равенство $f(\theta\cap\tau)=\Phi_{\theta\cap\tau}(G)=f(\theta)\vee_{\Phi}f(\tau)$. Отсюда, в частности, решетка Φ it(G) не является подрешеткой решетки всех нормальных подгрупп группы G.

Подгруппа фраттиниева типа как корадикал группы. Пусть \mathfrak{X} — некоторый класс групп. Следуя [7], через $R_0\mathfrak{X}$ обозначим класс всех конечных подпрямых произведений групп из \mathfrak{X} . Понятно, что $G \in R_0\mathfrak{X}$ тогда и только тогда, когда в G имеются нормальные подгруппы N_i $(i=1,\ldots,t)$, для которых $G/N_i \in \mathfrak{X}$ и $\bigcap_{i=1}^t N_i = 1$. Класс \mathfrak{X} называется R_0 -замкнутым, если $R_0\mathfrak{X} \subseteq \mathfrak{X}$.

В дальнейшем нам понадобится следующая лемма, доказательство которой можно найти в [7]. Л е м м а 2. Пусть $\mathfrak{X} - R_0$ -замкнутый класс, содержащий единичную группу. Тогда для любой группы G множество $\mathfrak{J} = \{N \triangleleft G \,|\, G/N \in \mathfrak{X}\}$, частично упорядоченное по включению, не пусто и имеет единственный минимальный элемент $\bigcap \{N \,|\, N \in \mathfrak{J}\}$, который обозначается через $G^{\mathfrak{X}}$ и называется \mathfrak{X} -корадикалом группы G.

В дальнейшем через P будем обозначать класс всех примитивных групп. Напомним, что группа называется примитивной, если она обладает максимальной подгруппой с единичным ядром. Эта максимальная подгруппа называется примитиватором группы.

- В [8] показано, что если G примитивная группа и M ее примитиватор, то выполняется одно из следующих условий:
- 1) G обладает единственной минимальной нормальной абелевой подгруппой N, которая дополняется подгруппой M;
 - 2) G обладает единственной минимальной нормальной неабелевой подгруппой N;
- 3) G обладает двумя минимальными нормальными подгруппами N_1 и N_2 , которые неабелевы и дополняются примитиватором M.

Следуя [7] через P_i обозначим класс всех примитивных групп, удовлетворяющих i-му условию (i = 1, 2 или 3). Понятно, что P = $P_1 \cup P_2 \cup P_3$.

Очевидно, что если M — максимальная подгруппа группы G, то G / $Core_G(M)$ — примитивная группа. Верно и обратное: если $K \triangleleft G$ и G / K — примитивная группа, то группа G обладает такой максимальной подгруппой M, что K = $Core_G(M)$.

Пусть \mathfrak{X} – некоторый (в том числе и пустой) подкласс класса P. Такой подкласс будем называть примитивным классом. Через P(G) обозначим класс всех групп, изоморфных примитивным факторгруппам группы G (если G=1, то полагаем $P(G)=\emptyset$).

Если $\mathfrak X$ — некоторый класс групп, то через $R_0(\mathfrak X,1)$ обозначим класс $R_0(\mathfrak X) \cup (1)$. Как следует из леммы II, 1.6 [7], для любого класса групп $\mathfrak X$ класс $R_0(\mathfrak X,1)$ является R_0 -замкнутым и содержит единичную группу. Поэтому на основании леммы 2 каждая группа обладает $R_0(\mathfrak X,1)$ -корадикалом.

 Π е м м а 3. Пусть \mathfrak{X} – некоторый примитивный класс. Тогда для любой группы G справедливо одно из следующих утверждений:

- 1) если $P(G) \cap \mathfrak{X} = \emptyset$, то $R_0(\mathfrak{X},1)$ -корадикал группы G совпадает c G;
- 2) если $P(G) \cap \mathfrak{X} \neq \emptyset$, то $R_0(\mathfrak{X},1)$ -корадикал группы G совпадает c пересечением ядер всех тех максимальных подгрупп M группы G, для которых факторгруппа G / $Core_G(M)$ принадлежит \mathfrak{X} .

Доказательство. Если $P(G) \cap \mathfrak{X} = \emptyset$, то в G нет факторгрупп, принадлежащих \mathfrak{X} . Поэтому ввиду леммы 2 $R_0(\mathfrak{X},1)$ -корадикал группы G совпадает с G.

Пусть теперь $P(G) \cap \mathfrak{X} \neq \emptyset$. Тогда в G найдется по крайней мере одна факторгруппа G/N, принадлежащая \mathfrak{X} , а вместе с ней — максимальная подгруппа M, для которой $G/\operatorname{Core}_G(M) \in \mathfrak{X}$ и $N = \operatorname{Core}_G(M)$. Обозначим пересечением ядер всех тех максимальных подгрупп M группы G, для которых факторгруппа $G/\operatorname{Core}_G(M)$ принадлежит \mathfrak{X} , через R. Ввиду леммы $\operatorname{2R}_0(\mathfrak{X},1)$ -корадикал группы G содержится в R.

Предположим, что $R_0(\mathfrak{X},1)$ -корадикал группы G строго содержится в R.

Тогда на основании леммы 2 в G найдется не содержащая R нормальная подгруппа N, для которой $G/N \in \mathfrak{X}$. Так как G/N — примитивная группа, то в G/N найдется максимальная подгруппа S/N, для которой $\mathrm{Core}_{G/N}(S/N) = 1$. Отсюда следует, что S — максимальная подгруппа G, $\mathrm{Core}_G(S) = N$ и $G/\mathrm{Core}_G(S) \in \mathfrak{X}$. Значит, $R \subseteq \mathrm{Core}_G(S) = N$. Пришли к противоречию. Лемма доказана.

Если θ — ненулевой регулярный m-функтор, то через $P(\theta)$ обозначим класс всех тех примитивных групп A, у которых по крайней мере один примитиватор принадлежит $\theta(A)$.

3 а м е ч а н и е. Пример простой неабелевой группы A показывает, что некоторые примитиваторы из A могут принадлежать $\theta(A)$, а некоторые могут не входить в $\theta(A)$.

Доказательство следующей леммы вытекает из регулярности подгруппового m-функтора θ . Л е м м а 4. Для любого регулярного подгруппового m-функтора θ и любой группы G справедливо равенство $\Phi_{\theta}(G/\Phi_{\theta}(G))=1$. B частности, $\Phi(G/\Phi_{\theta}(G))=1$.

Теорема 1. Пусть θ – регулярный подгрупповой т-функтор. Если G – группа и \mathfrak{X} = $P(\theta) \cap P(G)$, то $R_0(\mathfrak{X},1)$ -корадикал группы G совпадает c подгруппой $\Phi_{\theta}(G)$.

Д о к а з а т е л ь с т в о. Пусть $\mathfrak{J} = \{N \triangleleft G \mid G \mid N \in \mathfrak{X}\} = \emptyset$. Это значит, что группа G не имеет факторгрупп, принадлежащих \mathfrak{X} , а поэтому $\theta(G) = \{G\}$. Следовательно, $\Phi_{\theta}(G) = G - R_0(\mathfrak{X},1)$ -корадикал группы G.

Пусть теперь $\mathfrak{J}\neq\emptyset$. Тогда для любой подгруппы $N\in\mathfrak{J}$ найдется примитиватор M/N группы G/N, принадлежащий $\theta(G/N)$. Ввиду регулярности m-функтора θ имеем, что $M\in\theta(G)$. Кроме того, из $\mathrm{Core}_{G/N}(M/N)=1$ следует, что $\mathrm{Core}_G(M)=N$. Отсюда на основании леммы 2

заключаем, что $\Phi_{\theta}(G) \subseteq \bigcap \{N \mid N \in \mathfrak{J}\}$, т. е. подгруппа $\Phi_{\theta}(G)$ содержится в $R_0(\mathfrak{X},1)$ -корадикале группы G.

Предположим, что $\Phi_{\theta}(G)$ — собственная подгруппа $R_0(\mathfrak{X},1)$ -корадикала R группы G. Пусть $L/\Phi_{\theta}(G)$ — минимальная нормальная подгруппа группы $G/\Phi_{\theta}(G)$, содержащаяся в $R/\Phi_{\theta}(G)$. Ввиду леммы 4 $\Phi(G/\Phi_{\theta}(G))$ = 1. Поэтому найдется максимальная подгруппа $M/\Phi_{\theta}(G)$ группы $G/\Phi_{\theta}(G)$, которая не содержит $L/\Phi_{\theta}(G)$. Рассмотрим два возможных случая.

- 1. Пусть $M \in \theta(G)$. Тогда ввиду регулярности подгруппового m-функтора θ имеем $M / \operatorname{Core}_G(M) \in \theta(G / \operatorname{Core}_G(M))$. Кроме того, $G / \operatorname{Core}_G(M) \in P(\theta) \cap P(G)$. Значит, $L \subseteq R \subseteq \operatorname{Core}_G(M)$. Однако, это невозможно, так как M не покрывает главный фактор $L / \Phi_{\theta}(G)$. Пришли к противоречию.
- 2. Пусть все максимальные подгруппы группы G, не покрывающие $L/\Phi_{\theta}(G)$, не входят в $\theta(G)$. Но тогда ввиду регулярности m-функтора θ все максимальные подгруппы группы $G/\Phi_{\theta}(G)$, принадлежащие $\theta(G/\Phi_{\theta}(G))$, содержат $L/\Phi_{\theta}(G)$. Отсюда имеем $L/\Phi_{\theta}(G) \subseteq \Phi_{\theta}(G/\Phi_{\theta}(G))$. Однако это невозможно, так как ввиду леммы 4 выполняется равенство $\Phi_{\theta}(G/\Phi_{\theta}(G)) = 1$. Снова пришли к противоречию.

Следовательно, подгруппа $\Phi_{\theta}(G)$ является $R_0(\mathfrak{X},1)$ -корадикалом группы G. Теорема доказана.

В дальнейшем для группы G и регулярного подгруппового m-функтора θ класс $P(\theta) \cap P(G)$ обозначим через $P(G,\theta)$, а через $P_{max}(G,\theta)$ обозначим примитивный класс, содержащий все группы из $P(G,\theta)$, а также те примитивные группы H из P(G), которые обладают следующими свойствами:

- 1) все примитиваторы группы H не принадлежат $\theta(H)$;
- 2) всегда из максимальности подгруппы M в группе G и условия $G/\operatorname{Core}_G(M)\cong H$ следует включение $\Phi_{\theta}(G)\subseteq M$.

 Π е м м а 5. Пусть θ — регулярный подгрупповой т-функтор. Тогда для любой группы G и любого примитивного класса \mathfrak{X} , удовлетворяющего условию $P(G,\theta) \subseteq \mathfrak{X} \subseteq P_{max}(G,\theta)$, подгруппа $\Phi_{\theta}(G)$ является $R_0(\mathfrak{X},1)$ -корадикалом группы G.

Д о к а з а т е л ь с т в о. Ввиду леммы 3 имеем, что $R_0(P_{\max}(G,\theta),1)$ -корадикал группы G совпадает с пересечением ядер всех тех максимальных подгрупп M группы G, для которых факторгруппа G / $Core_G(M)$ принадлежит $P_{\max}(G,\theta)$. Из определения класса $P_{\max}(G,\theta)$ следует, что из максимальности подгруппы M в группе G и условия G / $Core_G(M) \in P_{\max}(G,\theta) \setminus P(G,\theta)$ вытекает включение $\Phi_{\theta}(G) \subseteq Core_G(M)$. Поэтому на основании теоремы 1 $R_0(P_{\max}(G,\theta),1)$ -корадикал группы G совпадает с $R_0(P(G,\theta),1)$ -корадикалом группы G, а значит, совпадает с подгруппой $\Phi_{\theta}(G)$. Отсюда ввиду леммы 3 окончательно имеем, что подгруппа $\Phi_{\theta}(G)$ совпадает с $R_0(P(\mathfrak{X},1)$ -корадикалом группы G. Лемма доказана.

На основании лемм 1 и 3 для любых m-функторов θ и τ из M_{reg} и любой группы G подгруппа $\Phi_{\theta}(G) \cap \Phi_{\tau}(G)$ совпадает с $R_0(\textbf{\textit{P}}(G,\theta) \cup \textbf{\textit{P}}(G,\tau),1)$ -корадикалом группы G.

Пример нециклической группы G порядка 6 показывает, что подгруппа $\Phi_{\theta}(G) \vee_{\Phi} \Phi_{\tau}(G)$ может не совпадать с $R_0(P(G, \theta) \cap P(G, \tau), 1)$ -корадикалом группы G.

В то же время имеет место следующая

T е o p е м а 2. Пусть θ и τ – регулярные подгрупповые m-функторы. Тогда для любой группы G справедливы следующие утверждения:

1) подгруппа $\Phi_{\theta}(G) \cap \Phi_{\tau}(G)$ совпадает с $R_0(P_{\max}(G,\theta) \cup P_{\max}(G,\tau),1)$ -корадикалом группы G; 2) подгруппа $\Phi_{\theta}(G) \vee_{\Phi} \Phi_{\tau}(G)$ совпадает с $R_0(P_{\max}(G,\theta) \cap P_{\max}(G,\tau),1)$ -корадикалом группы G. Д о к а з а т е л ь с т в о. Простая проверка показывает, что

$$P(G, \theta \cup \tau) = P(G, \theta) \cup P(G, \tau) \subseteq P_{\max}(G, \theta) \cup P_{\max}(G, \tau) \subseteq P_{\max}(G, \theta \cup \tau).$$

Отсюда ввиду леммы 5 подгруппа $\Phi_{\theta}(G) \cap \Phi_{\tau}(G)$ совпадает с $R_0(P_{\max}(G,\theta) \cup P_{\max}(G,\tau),1)$ -корадикалом группы G.

Из определения решетки Φ it(G) следует, что найдется такой регулярный подгрупповой m-функтор υ , что $\Phi_{\upsilon}(G) = \Phi_{\theta}(G) \vee_{\Phi} \Phi_{\tau}(G)$. В частности, υ равен пересечению всех таких ω из M_{reg} , для которых $\Phi_{\theta}(G) \cdot \Phi_{\tau}(G) \subseteq \Phi_{\omega}(G)$. Поэтому

$$P(G, \upsilon) \subseteq P_{\max}(G, \theta) \cup P_{\max}(G, \tau) \subseteq P_{\max}(G, \upsilon).$$

Снова применяя лемму 5, получаем, что подгруппа $\Phi_{\theta}(G) \vee_{\Phi} \Phi_{\tau}(G)$ совпадает с $R_0(\textbf{\textit{P}}_{max}(G,\theta) \cap \textbf{\textit{P}}_{max}(G,\tau),1)$ -корадикалом группы G. Теорема доказана.

Свойства решетки Фіt(G**).** Существует группа G, для которой решетка Фіt(G) не является модулярной. На это указывает, в частности, следующий

П р и м е р. Пусть G_1 и G_2 – нециклические группы соответственно порядка 10 и 6. И пусть $G=G_1\times G_2$. Если θ – регулярный подгрупповой m-функтор, выделяющий в G все ее максимальные подгруппы индекса, не делящегося на 5, то $\Phi_{\theta}(G)$ – силовская 5-подгруппа группы G. Если τ – регулярный подгрупповой m-функтор, выделяющий в G все ее максимальные подгруппы индекса, делящегося на 3, то $\Phi_{\tau}(G)=G_1$. Если ω – регулярный подгрупповой m-функтор, выделяющий в G все ее максимальные подгруппы индекса, делящегося на 5, то $\Phi_{\omega}(G)=G_2$. Теперь

$$\Phi_{\tau}(G) \cap (\Phi_{\theta}(G) \vee_{\Phi} \Phi_{\omega}(G)) = G_1 \cap G = G_1 \neq \Phi_{\theta}(G) = \Phi_{\theta}(G) \vee_{\Phi} 1 = \Phi_{\theta}(G) \vee_{\Phi} (\Phi_{\tau}(G) \cap \Phi_{\omega}(G)).$$

Таким образом, решетка $\Phi it(G)$ не является модулярной, а значит, не является дистрибутивной.

Далее запись $(H_1,...,H_n)$ используется для обозначения класса групп, порожденного группами $H_1,...,H_n$.

Теорема 3. Пусть $H_1,...,H_n$ – максимальная система попарно неизоморфных примитивных групп из P(G). Если X – множество, состоящее из группы G и всех \mathfrak{X}_i -корадикалов группы G, где $\mathfrak{X}_i = (H_i)$, i = 1,...,n, то:

- 1) для любого элемента решетки $\Phi it(G)$ существует \bigcap -представление с помощью элементов множества X;
 - 2) $\mid \Phi it(G) \mid \leq 2^n$.

Доказательство. Пусть $\theta \in M_{\text{reg}}$. Если $P(G,\theta) = \emptyset$, то ввиду теоремы 1 подгруппа $\Phi_{\theta}(G)$ совпадает с $R_0(\emptyset,1)$ -корадикалом группы G, равным G.

Значит, $\mathfrak{X} = \mathbf{\textit{P}}(G,\theta) \neq \emptyset$. Отметим, что $\mathbf{\textit{P}}(G) = (H_1,...,H_n)$. Поэтому найдутся группы $H_{i_1},...,H_{i_k} (k \ge 1)$ такие, что $\mathfrak{X} = (H_{i_1},...,H_{i_k})$.

Пусть $\mathfrak{X}_j = (H_{i_j})$, j = 1,...,k. И пусть θ_j – такой регулярный подгрупповой m-функтор, что $P(\theta_j) = (H_{i_j})$ и $\theta_j(H_{i_j})$ – множество всех примитиваторов группы H_{i_j} , принадлежащих $\theta(H_{i_j})$. Тогда ввиду леммы 1 подгруппа $\Phi_{\theta}(G)$ совпадает с пересечением θ_j -подгрупп

Фраттини группы G для всех j=1,...,k. На основании леммы 3 подгруппа $\Phi_{\theta}(G)$ совпадает с пересечением всех $R_0(\mathfrak{X}_{i,1})$ -корадикалов группы $G,\ j=1,...,k$. Утверждение 1) доказано.

Из утверждения 1) следует, что число элементов решетки $\Phi it(G)$ не превосходит числа всех подмножеств множества $\{H_1,...,H_n\}$. Поэтому $|\Phi it(G)| \le 2^n$. Теорема доказана.

3 а м е ч а н и е. Пусть A — неабелева простая группа. И пусть $G = A_1 \times A_2$, где $A \cong A_1 \cong A_2$. Так как G — примитивная группа из P_3 , то $\{G,A\}$ — максимальная система попарно неизоморфных групп из $P(G,\theta)$. Очевидно, $\Phi it(G) = \{1,G\}$. Кроме того, $R_0((G),1)$ -корадикал и $R_0((A),1)$ -корадикал группы G единичны.

Таким образом, во множестве X из теоремы 3 некоторые из $\mathrm{R}_0(\mathfrak{X}_{j},1)$ -корадикалов группы G могут быть равными.

В связи с теоремой 3 отметим следующие вопросы.

- 1. Описать строение группы G, если решетка $\Phi it(G)$ является модулярной (дистрибутивной).
 - 2. Описать строение группы G, если решетка $\Phi it(G)$ является решеткой c дополнением.
- 3. Пусть $H_1,..., H_n$ максимальная система попарно неизоморфных примитивных групп из P(G). Описать строение группы G, если решетка Φ itG) содержит ровно 2^n элементов.

Литература

- 1. Шеметков Л. А. // Матем. сб. 1974. Т. 94, № 4. С. 628–648.
- 2. Шеметков Л. А. Формации конечных групп. М., 1978.
- 3. Deskins W. E. // Illinois J. Math. 1961. Vol. 5, N 2. P. 306–313.
- 4. Шеметков Л. А., Скиба А. Н. Формации алгебраических систем. М., 1989.
- 5. Каморников С. Ф., Селькин М. В. Подгрупповые функторы и классы конечных групп. Минск, 2003.
- 6. К а м о р н и к о в С. Ф. // Классы групп, алгебр и их приложения: тез. докл. Междунар. конф., посвящ. 70-летию со дня рождения Л. А. Шеметкова. Гомель, 2007. С. 81–82.
 - 7. Doerk K., Hawkes T. Finite soluble groups. Berlin; New York, 1992.
 - 8. B a e r R. // Illinois J. Math. 1957. Vol. 1. P. 115–187.

S. F. KAMORNIKOV

LATTICE OF FRATTINI-TYPE SUBGROUPS

Summary

In the article some properties of the lattice of Frattini-type subgroups of a finite group are investigated.