

Общероссийский математический портал

С. Ф. Каморников, Обобщенные подгруппы Фраттини как корадикалы групп, Mamem. заметки, 2010, том 87, выпуск 3, 402–411

DOI: 10.4213/mzm4622

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 37.17.74.99

29 января 2025 г., 14:55:54

Математические заметки

Том 87 выпуск 3 март 2010

УДК 512.542

Обобщенные подгруппы Фраттини как корадикалы групп

С. Ф. Каморников

Рассматриваются только конечные разрешимые группы. Устанавливается, что класс всех регулярных подгрупповых m-функторов совпадает с классом всех X-абнормальных m-функторов, где X пробегает все подклассы класса всех примитивных групп. Изучаются свойства решетки всех регулярных подгрупповых m-функторов, описываются атомы и коатомы этой решетки. Доказывается, что обобщенная подгруппа Фраттини группы G, соответствующая регулярному m-функтору, совпадает с X-корадикалом группы G для некоторого R_0 -замкнутого класса X.

Библиография: 8 названий.

1. Введение. В данной работе рассматриваются только конечные разрешимые группы (под группой всегда подразумевается конечная разрешимая группа).

Во многих работах, посвященных максимальным подгруппам и их пересечениям, четко прослеживаются два направления.

Первое из них связано с применением идей и методов теории формаций. В его основе лежит понятие \mathfrak{F} -абнормальной максимальной подгруппы. Напомним [1], [2], что если \mathfrak{F} – непустая формация, то максимальная подгруппа M группы G называется \mathfrak{F} -нормальной, если она содержит \mathfrak{F} -корадикал $G^{\mathfrak{F}}$ группы G, и \mathfrak{F} -абнормальной, если $MG^{\mathfrak{F}}=G$.

Второе направление занимается изучением свойств максимальных подгрупп, определяемых некоторыми ограничениями на их индексы.

Бесспорно, имеется тесная связь между обоими направлениями. В то же время существуют примеры систем максимальных подгрупп, которые не могут быть охарактеризованы в терминах \mathfrak{F} -абнормальности или \mathfrak{F} -нормальности ни для какой формации \mathfrak{F} . Такой пример дают, в частности, максимальные подгруппы, индексы которых не делятся на заданное простое число p.

Применение функциональных схем исследования свойств максимальных подгрупп позволяет объединить два указанных подхода и по-новому взглянуть на задачи о пересечениях максимальных подгрупп. Центральным на этом пути оказалось следующее определение, аксиоматизирующее свойство инвариантности при гомоморфизмах большинства известных классов максимальных подгрупп.

Согласно [3] подгрупповым m-функтором называется функция Θ , которая сопоставляет каждой группе G некоторое множество $\Theta(G)$ ее максимальных подгрупп и саму группу G. При этом предполагается, что $\Theta(G^{\alpha}) = (\Theta(G))^{\alpha}$ для любого изоморфизма $\alpha \colon G \to G^{\alpha}$.

Подгрупповой m-функтор Θ называется peryлярным, если выполняются следующие условия:

- 1) из $N \subseteq G$ и $M \in \Theta(G)$ следует $MN/N \in \Theta(G/N)$;
- 2) из $M/N \in \Theta(G/N)$ следует $M \in \Theta(G)$.

Множество всех регулярных m-функторов обозначим через \mathcal{M}_{reg} . На этом множестве определим операции пересечения и объединения следующим образом:

$$(\Theta_1 \cap \Theta_2)(G) = \Theta_1(G) \cap \Theta_2(G), \qquad (\Theta_1 \cup \Theta_2)(G) = \Theta_1(G) \cup \Theta_2(G)$$

для любых двух m-функторов Θ_1 и Θ_2 и любой группы G. Как показано в [3], m-функтор $\bigcap_{i\in I}\Theta_i$ является нижней гранью множества $\{\Theta_i\mid i\in I\}$ в $\mathcal{M}_{\mathrm{reg}}$, а m-функтор $\bigcup_{i\in I}\Theta_i$ является его верхней гранью. Таким образом, $\mathcal{M}_{\mathrm{reg}}$ – полная, бесконечно дистрибутивная решетка относительно частичного порядка, определяемого теоретико-множественным включением. Более того, решетка $\mathcal{M}_{\mathrm{reg}}$ является булевой (см., например, [3]).

В настоящей работе устанавливается, что все регулярные подгрупповые m-функторы исчерпываются \mathfrak{X} -абнормальными m-функторами. Правда, в качестве \mathfrak{X} выступает не формация, а класс примитивных групп. Таким образом, регулярные подгрупповые m-функторы не расширяют класс \mathfrak{X} -абнормальных (или \mathfrak{X} -нормальных) m-функторов, как это казалось ранее; регулярные m-функторы, задаваемые ограничениями на индексы максимальных подгрупп, также являются \mathfrak{X} -абнормальными (или \mathfrak{X} -нормальными). В связи с этим обобщенные подгруппы Фраттини, изучавшиеся разными авторами, на самом деле оказываются \mathfrak{X} -корадикалами.

Кроме того, в работе устанавливается точное строение решетки \mathcal{M}_{reg} , описываются ее атомы и коатомы, изучается строение соответствующих им обобщенных подгрупп Фраттини. В доказательствах существенно используется тот факт, что в разрешимой группе нефраттиниевы главные факторы дополняемы. В работе используются определения и обозначения, принятые в [3]–[5].

- **2.** Характеризации регулярных m-функторов. Пусть $\mathfrak X$ непустой класс групп. Максимальная подгруппа M группы G называется
 - 1) \mathfrak{X} -нормальной, если $G/\operatorname{Core}_G(M) \in \mathfrak{X}$;
 - 2) \mathfrak{X} -абнормальной, если $G/\operatorname{Core}_G(M) \notin \mathfrak{X}$.

В случае, когда \mathfrak{X} – непустая формация, т.е. класс групп, замкнутый относительно гомоморфных образов и подпрямых произведений с конечным числом сомножителей, данное определение эквивалентно приведенному выше.

По определению (см. [3]), подгрупповой функтор выделяет в каждой группе некоторую систему ее подгрупп, включая и саму группу. Подгрупповой функтор Θ называется \mathfrak{X} -нормальным (\mathfrak{X} -абнормальным), если он выделяет в каждой группе G саму группу G и все ее \mathfrak{X} -нормальные (\mathfrak{X} -абнормальные) максимальные подгруппы.

В дальнейшем через \mathscr{P} будем обозначать класс всех (разрешимых) примитивных групп. Напомним, что группа G называется npumumuehoù, если она обладает максимальной подгруппой с единичным ядром. Как показано в [6], группа G примитивна тогда и только тогда, когда она обладает единственной минимальной нормальной подгруппой, которая дополняема в G. Это дополнение является максимальной подгруппой группы G с единичным ядром и называется ее npumumueamopom. Понятно, что если M – максимальная подгруппа группы G, то группа G СогеG M примитивна и M СогеG M – примитиватор группы G СогеG M .

В дальнейшем любой (в том числе и пустой) подкласс класса $\mathscr P$ будем называть примитивным классом.

ЛЕММА 1. Пусть \mathfrak{X} – некоторый примитивный класс, и пусть Θ – отображение, которое ставит в соответствие каждой группе G множество $\Theta(G)$, состоящее из группы G и всех тех максимальных подгрупп M группы G, для которых $G/\operatorname{Core}_G(M) \in \mathfrak{X}$. Тогда

- 1) Θ регулярный подгрупповой m-функтор;
- 2) m-функтор Θ является ($\mathscr{P} \setminus \mathfrak{X}$)-абнормальным.

Доказательство. 1) Пусть $\varphi \colon G \to G^{\varphi}$ – групповой изоморфизм. Так как $\mathfrak X$ – класс групп, то ввиду изоморфизма

$$G^{\varphi}/\operatorname{Core}_{G^{\varphi}}(M^{\varphi}) \simeq G/\operatorname{Core}_{G}(M)$$

имеем $G^{\varphi}/\operatorname{Core}_{G^{\varphi}}(M^{\varphi}) \in \mathfrak{X}$. Следовательно, $(\Theta(G))^{\varphi} = \Theta(G^{\varphi})$, т.е. Θ – подгрупповой m-функтор.

Пусть N – нормальная подгруппа группы G и $M \in \Theta(G)$. Если N не содержится в M, то $MN/N = G/N \in \Theta(G/N)$. Если же $N \subseteq M$, то $N \subseteq \mathrm{Core}_G(M)$. Поэтому

$$G/N/\operatorname{Core}_{G/N}(M/N) = G/N/\operatorname{Core}_{G}(M)/N \simeq G/\operatorname{Core}_{G}(M) \in \mathfrak{X}.$$

Значит, $M/N \in \Theta(G/N)$. Верно и обратное. Если $M/N \in \Theta(G/N)$, то $M \in \Theta(G)$. Таким образом, m-функтор Θ является регулярным.

Утверждение 2) следует из определения ($\mathscr{P} \setminus \mathfrak{X}$)-абнормального m-функтора.

ТЕОРЕМА 1. Пусть Θ – подгрупповой т-функтор. Тогда и только тогда Θ является регулярным, когда он \mathfrak{X} -нормален для некоторого примитивного класса \mathfrak{X} .

Доказательство. Если $\mathfrak X$ — примитивный класс групп и Θ — $\mathfrak X$ -нормальный подгрупповой m-функтор, то в силу леммы 1 m-функтор Θ является регулярным.

Докажем обратное. Пусть Θ – регулярный подгрупповой m-функтор. Обозначим через $\mathfrak X$ класс всех тех примитивных групп A, примитиваторы которых принадлежат $\Theta(A)$. Пусть τ – $\mathfrak X$ -нормальный подгрупповой m-функтор. Покажем, что $\Theta = \tau$.

Пусть G – произвольная группа и $M\in\Theta(G)$. В силу регулярности m-функтора Θ имеем

$$M/\operatorname{Core}_G(M) \in \Theta(G/\operatorname{Core}_G(M)).$$

При этом $M/\operatorname{Core}_G(M)$ – примитиватор группы $G/\operatorname{Core}_G(M)$. Отсюда и из определения класса $\mathfrak X$ следует, что $G/\operatorname{Core}_G(M) \in \mathfrak X$, т.е. $M-\mathfrak X$ -нормальная максимальная подгруппа группы G. Таким образом, $\Theta(G) \subseteq \tau(G)$.

Пусть теперь $H \in \tau(G)$. Тогда

$$G/\operatorname{Core}_G(H) \in \mathfrak{X}.$$

Так как группа $G/\operatorname{Core}_G(H)$ примитивна, а $H/\operatorname{Core}_G(H)$ – ее примитиватор, то из определения класса $\mathfrak X$ имеем $H/\operatorname{Core}_G(H) \in \Theta(G/\operatorname{Core}_G(H))$. Отсюда и из регулярности m-функтора Θ заключаем, что $H \in \Theta(G)$. Значит, $\tau(G) \subseteq \Theta(G)$.

Следствие 1.1. Пусть Θ – подгрупповой т-функтор, и пусть $\mathfrak X$ – класс всех тех примитивных групп A, примитиваторы которых принадлежат $\Theta(A)$. Тогда и только тогда Θ является регулярным, когда он $(\mathscr P \setminus \mathfrak X)$ -абнормален.

Следствие 1.2. Пусть \mathfrak{F} – произвольный класс групп, и пусть \mathfrak{X} – класс, состоящий из всех тех примитивных групп A, примитиваторы которых \mathfrak{F} -нормальны в A. Тогда

- 1) подгрупповой т-функтор Θ является \mathfrak{F} -нормальным тогда и только тогда, когда он \mathfrak{X} -нормален;
- 2) подгрупповой m-функтор Θ является \mathfrak{F} -абнормальным тогда и только тогда, когда он \mathfrak{X} -абнормален.

ЗАМЕЧАНИЯ. 1. В силу следствия 1.2 множество всех регулярных подгрупповых m-функторов совпадает с множеством всех \mathfrak{F} -нормальных (\mathfrak{F} -абнормальных) m-функторов, если \mathfrak{F} пробегает множество всех классов групп, а также совпадает с множеством всех \mathfrak{X} -нормальных (\mathfrak{X} -абнормальных) m-функторов, если \mathfrak{X} пробегает множество всех примитивных классов групп.

- 2. Подгрупповой m-функтор Θ является единичным (единицей решетки \mathcal{M}_{reg}) тогда и только тогда, когда он является \mathscr{P} -нормальным.
- 3. Подгрупповой m-функтор Θ является нулевым (нулем решетки \mathcal{M}_{reg}) тогда и только тогда, когда он является \varnothing -нормальным.
- 4. Пусть π непустое множество простых чисел, и пусть Θ подгрупповой m-функтор, выделяющий в каждой группе все ее максимальные подгруппы, индексы которых не делятся на числа из π . Тогда Θ регулярен и является \mathfrak{X} -нормальным, где \mathfrak{X} класс всех примитивных групп, цоколь которых является π' -группой.
- **3.** Строение решетки \mathcal{M}_{reg} . Обозначим через $Cl(\mathscr{P})$ множество всех подклассов класса \mathscr{P} всех примитивных групп. На этом множестве естественным образом введем отношение частичного порядка: $\mathfrak{X}_1 \leq \mathfrak{X}_2$ тогда и только тогда, когда $\mathfrak{X}_1 \subseteq \mathfrak{X}_2$. Тогда $Cl(\mathscr{P})$ является полной решеткой, в которой

$$\mathfrak{X}_1 \wedge \mathfrak{X}_2 = \mathfrak{X}_1 \cap \mathfrak{X}_2, \qquad \mathfrak{X}_1 \vee \mathfrak{X}_2 = \mathfrak{X}_1 \cup \mathfrak{X}_2.$$

Минимальным элементом (нулем) этой решетки является пустой класс \varnothing . В качестве ее максимального элемента (единицы) выступает класс \mathscr{P} . Понятно, что решетка $Cl(\mathscr{P})$ является бесконечно дистрибутивной. Кроме того, любой элемент $\mathfrak{X} \in Cl(\mathscr{P})$ обладает дополнением $\mathscr{P} \setminus \mathfrak{X}$. Поэтому решетка $Cl(\mathscr{P})$ является булевой.

Для ненулевого m-функтора $\Theta \in \mathcal{M}_{\text{reg}}$ определим класс $\mathscr{P}(\Theta)$ следующим образом:

$$\mathscr{P}(\Theta)=\{A\in\mathscr{P}\mid$$
 примитиватор группы A принадлежит $\Theta(A)\}.$

Если Θ – нулевой m-функтор (т.е. $\Theta(G)=\{G\}$ для любой группы G), то полагаем $\mathscr{P}(\Theta)=\varnothing$.

Следующая теорема устанавливает связь между решетками \mathscr{M}_{reg} и $Cl(\mathscr{P}).$

ТЕОРЕМА 2. Решетки \mathscr{M}_{reg} и $Cl(\mathscr{P})$ изоморфны.

Доказательство. Покажем, что отображение $\varphi \colon \Theta \to \mathscr{P}(\Theta)$, сопоставляющее каждому регулярному подгрупповому m-функтору Θ примитивный класс $\mathscr{P}(\Theta)$, является искомым изоморфизмом.

Пусть $\mathfrak X$ – некоторый примитивный класс. Тогда в силу леммы 1 отображение τ , ставящее в соответствие каждой группе G множество $\tau(G)$, содержащее группу G и все те ее максимальные подгруппы M, для которых $G/\operatorname{Core}_G(M) \in \mathfrak X$, является регулярным m-функтором. При этом $\varphi(\tau) = \mathfrak X$. Поэтому отображение φ сюръективно.

Если $\Theta_1, \Theta_2 \in \mathcal{M}_{\text{reg}}$ и $\Theta_1 \neq \Theta_2$, то найдется группа D, для которой выполнено $\Theta_1(D) \neq \Theta_2(D)$. Это значит, что в D существует, к примеру, максимальная подгруппа M, принадлежащая $\Theta_1(D)$, но не принадлежащая $\Theta_2(D)$. Поскольку подгрупповые m-функторы Θ_1 и Θ_2 регулярны, примитиватор $M/\operatorname{Core}_D(M)$ группы $\overline{D} = D/\operatorname{Core}_D(M)$ принадлежит $\Theta_1(\overline{D})$, но не принадлежит $\Theta_2(\overline{D})$. Следовательно, $\overline{D} \in \varphi(\Theta_1)$, но $\overline{D} \notin \varphi(\Theta_2)$. Значит, $\varphi(\Theta_1) \neq \varphi(\Theta_2)$. Таким образом, отображение φ является инъективным.

Покажем теперь, что отображение φ является решеточным изоморфизмом. Так как $(\Theta_1 \cap \Theta_2)(G) = \Theta_1(G) \cap \Theta_2(G)$ для любой группы G, то

$$\varphi(\Theta_1 \wedge \Theta_2) = \varphi(\Theta_1 \cap \Theta_2)$$

$$= \{D \in \mathscr{P} \mid \text{примитиватор группы } D \text{ принадлежит } (\Theta_1 \cap \Theta_2)(D)\}$$

$$= \{A \in \mathscr{P} \mid \text{примитиватор группы } A \text{ принадлежит } (\Theta_1(A)\}$$

$$\cap \{B \in \mathscr{P} \mid \text{примитиватор группы } B \text{ принадлежит } (\Theta_2(B)\}$$

$$= \varphi(\Theta_1) \cap \varphi(\Theta_2) = \varphi(\Theta_1) \wedge \varphi(\Theta_2).$$

Аналогично показывается, что $\varphi(\Theta_1 \vee \Theta_2) = \varphi(\Theta_1) \vee \varphi(\Theta_2)$.

Таким образом, отображение φ является изоморфизмом решеток \mathscr{M}_{reg} и $Cl(\mathscr{P})$.

Очевидно, решетка $Cl(\mathscr{P})$ является атомной и коатомной. Атомами решетки $Cl(\mathscr{P})$ являются классы вида $\mathfrak{X}=(G)$, где G – примитивная группа, а (G) – класс групп, порожденный группой G, т.е. класс, содержащий вместе с группой G все группы, изоморфные G. Коатомами решетки $Cl(\mathscr{P})$ являются классы вида $\mathscr{P}\setminus (G)$, где G – примитивная группа.

Следствие 2.1. Решетка \mathcal{M}_{reg} является атомной и коатомной.

Следствие 2.2. Регулярный подгрупповой m-функтор Θ является атомом решетки \mathcal{M}_{reg} тогда и только тогда, когда $\mathscr{P}(\Theta) = (G)$ для некоторой примитивной группы G.

Следствие 2.3. Регулярный подгрупповой m-функтор Θ является коатомом решетки \mathcal{M}_{reg} тогда и только тогда, когда $\mathscr{P}(\Theta) = \mathscr{P} \setminus (G)$ для некоторой примитивной группы G.

Пример. Пусть H — циклическая группа простого порядка p, и пусть Θ — атом решетки \mathcal{M}_{reg} , для которого $\mathscr{P}(\Theta) = (H)$. Тогда m-функтор Θ выделяет в группе все ее нормальные максимальные подгруппы, имеющие индекс p. Если τ — коатом решетки \mathcal{M}_{reg} , для которого $\mathscr{P}(\tau) = \mathscr{P} \setminus (H)$, то τ выделяет в группе все максимальные подгруппы, кроме нормальных максимальных подгрупп индекса p. Очевидно, при этом Θ совпадает с \mathfrak{N}_p -пормальным, а τ — с \mathfrak{N}_p -абнормальным подгрупповым m-функтором, где \mathfrak{N}_p — формация всех p-групп.

4. Обобщенная подгруппа Фраттини относительно атома решетки \mathcal{M}_{reg} . Пусть \mathfrak{X} — некоторый класс групп. Следуя [5], через $R_0\mathfrak{X}$ обозначим класс всех изоморфных копий конечных подпрямых произведений групп из \mathfrak{X} . Понятно, что $G \in R_0\mathfrak{X}$ тогда и только тогда, когда в G имеются нормальные подгруппы N_i , $i=1,2,\ldots,t$, для которых $G/N_i \in \mathfrak{X}$ и $\bigcap_{i=1}^n N_i = 1$. Класс \mathfrak{X} называется R_0 -замкнутым, если $R_0\mathfrak{X} \subseteq \mathfrak{X}$.

В дальнейшем нам понадобится следующая лемма, доказательство которой можно найти в [5].

ЛЕММА 2. Пусть \mathfrak{X} – R_0 -замкнутый класс, содержащий единичную группу. Тогда для любой группы G множество

$$J = \{ N \le G \mid G/N \in \mathfrak{X} \},\$$

частично упорядоченное по включению, имеет единственный минимальный элемент $\bigcap_{N\in J} N$, который обозначается через $G^{\mathfrak{X}}$ и называется \mathfrak{X} -корадикалом группы G.

Если Θ – подгрупповой m-функтор, то следуя [3], через $\Phi_{\Theta}(G)$ обозначим обобщенную подгруппу Фраттини, т.е. подгруппу, равную пересечению всех подгрупп, принадлежащих $\Theta(G)$.

ТЕОРЕМА 3. Пусть Θ – атом решетки \mathcal{M}_{reg} и $\mathscr{P}(\Theta) = (H)$, и пусть $\mathfrak{X} = R_0(H) \cup (1)$. Тогда для любой группы G справедливо равенство $\Phi_{\Theta}(G) = G^{\mathfrak{X}}$.

Доказательство. Пусть $J=\{N\unlhd G\mid G/N\simeq H\}=\varnothing$. Это значит, что группа G не имеет факторгрупп, изоморфных H, а поэтому $\Theta(G)=\{G\}$. Следовательно, $\Phi_{\Theta}(G)=G=G^{\mathfrak{X}}.$

Пусть теперь $J \neq \emptyset$. Тогда для любой нетривиальной подгруппы $N \in J$ примитиватор M/N группы G/N принадлежит $\Theta(G/N)$. В силу регулярности m-функтора Θ имеем $M \in \Theta(G)$. Кроме того, из $\mathrm{Core}_{G/N}(M/N) = 1$ следует, что $\mathrm{Core}_G(M) = N$. Отсюда на основании леммы 2 заключаем, что

$$\Phi_{\Theta}(G) \subseteq \bigcap_{N \in J} N = G^{\mathfrak{X}}.$$

Допустим, что $\Phi_{\Theta}(G) \subset G^{\mathfrak{X}}$. Пусть $L/\Phi_{\Theta}(G)$ – минимальная нормальная подгруппа группы $G/\Phi_{\Theta}(G)$, содержащаяся в $G^{\mathfrak{X}}/\Phi_{\Theta}(G)$. Так как

$$\Phi(G/\Phi_{\Theta}(G))=1,$$

то $L/\Phi_{\Theta}(G)$ — дополняемый главный фактор группы G. Пусть M — максимальная подгруппа группы G, дополняющая $L/\Phi_{\Theta}(G)$. Предположим, что M не принадлежит $\Theta(G)$. В силу леммы 3.29 из [7]

$$G/\operatorname{Core}_G(M) \simeq [L/\Phi_{\Theta}(G)](G/C_G(L/\Phi_{\Theta}(G))).$$

Отсюда следует, что для любой другой максимальной подгруппы D группы G, дополняющей главный фактор $L/\Phi_{\Theta}(G)$, имеет место изоморфизм

$$G/\operatorname{Core}_G(M) \simeq G/\operatorname{Core}_G(D).$$

Так как M не принадлежит $\Theta(G)$, группа $G/\operatorname{Core}_G(M)$ не изоморфна H. Но тогда не изоморфна группе H и группа $G/\operatorname{Core}_G(D)$, а следовательно, максимальная подгруппа $D/\operatorname{Core}_G(D)$ не принадлежит $\Theta(G/\operatorname{Core}_G(D))$. Отсюда в силу регулярности m-функтора Θ заключаем, что D не принадлежит $\Theta(G)$. Итак, все максимальные подгруппы группы $G/\Phi_{\Theta}(G)$, принадлежащие $\Theta(G/\Phi_{\Theta}(G))$, содержат $L/\Phi_{\Theta}(G)$. Отсюда

$$L/\Phi_{\Theta}(G) \subseteq \Phi_{\Theta}(G/\Phi_{\Theta}(G)),$$

что противоречит равенству $\Phi_{\Theta}(G/\Phi_{\Theta}(G)) = 1$.

Таким образом, $M \in \Theta(G)$. Так как $G/\operatorname{Core}_G(M)$ — примитивная группа и $M/\operatorname{Core}_G(M) \in \Theta(G/\operatorname{Core}_G(M))$, то $G/\operatorname{Core}_G(M) \simeq H$. Отсюда и из определения \mathfrak{X} -корадикала следует, что $G^{\mathfrak{X}} \subseteq \operatorname{Core}_G(M)$. Но тогда $L \subseteq G^{\mathfrak{X}} \subseteq \operatorname{Core}_G(M) \subseteq M$. Снова пришли к противоречию. Следовательно, $\Phi_{\Theta}(G) = G^{\mathfrak{X}}$.

5. Обобщенная подгруппа Фраттини относительно коатома решетки $\mathscr{M}_{\mathrm{reg}}.$

ТЕОРЕМА 4. Пусть Θ – коатом решетки \mathcal{M}_{reg} , $\mathscr{P}(\Theta) = \mathscr{P} \setminus (H)$ и p – простое число, делящее $|\mathrm{Soc}(H)|$. Если $\Phi(G) = 1$ и P – силовская p-подгруппа группы $\Phi_{\Theta}(G)$, то

- 1) $P \subseteq G$;
- 2) $P=N_1\times N_2\times \cdots \times N_t$, где N_i минимальная нормальная подгруппа группы G, $i=1,2,\ldots,t$;
- 3) $[N_i](G/C_G(N_i)) \simeq H, i = 1, 2, ..., t;$
- 4) $\Phi_{\Theta}(G)/P = \Phi(G/P) p' \epsilon pynna;$
- 5) если A дополнение подгруппы P в группе G, то выполнено $\Phi_{\Theta}(G) = P\Phi(A)$ и $C_{\Phi(A)}(P) = 1$;
- 6) $ecnu(\mathfrak{X} = R_0(H) \cup (1), mo \Phi_{\Theta}(G) \cap G^{\mathfrak{X}} = 1.$

Доказательство. В силу леммы Фраттини справедливо равенство

$$N_G(P)\Phi_{\Theta}(G) = G.$$

Предположим, что $N_G(P)$ — собственная подгруппа группы G. Заключим $N_G(P)$ в максимальную подгруппу M группы G. Очевидно, индекс |G:M| не делится на p. С другой стороны, так как $M\Phi_{\Theta}(G)=G$, то $M\in \tau(G)$, где τ — атом решетки $\mathscr{M}_{\mathrm{reg}}$, для которого $\mathscr{P}(\tau)=(H)$. Поэтому $G/\operatorname{Core}_G(M)\simeq H$. Отсюда и из того, что p делит $|\operatorname{Soc}(H)|$, следует, что

$$|G/\operatorname{Core}_G(M): M/\operatorname{Core}_G(M)| = |G:M|$$

есть степень простого числа p. Пришли к противоречию. Следовательно, $P \leq G$. Утверждение 1) доказано.

Так как $\Phi(G) = 1$ и $P \leq G$, в силу леммы 7.9 из [4] подгруппа P равна прямому произведению некоторого числа t минимальных нормальных подгрупп N_i группы G. Утверждение 2) доказано.

Если N_i — минимальная нормальная подгруппа группы G, содержащаяся в P, то в силу равенства $\Phi(G) = 1$ подгруппа N_i дополняема в G. Если M_i — максимальная подгруппа группы G, дополняющая подгруппу N_i , то из $N_i \subseteq \Phi_{\Theta}(G)$ следует $M_i \in \tau(G)$. Поэтому $G/\operatorname{Core}_G(M_i) \simeq H$. В силу леммы 3.29 из [7] имеем

$$G/\operatorname{Core}_G(M_i) \simeq [N_i](G/C_G(N_i)).$$

Поэтому $[N_i](G/C_G(N_i)) \simeq H$ для всех $i=1,2,\ldots,t$. Утверждение 3) доказано.

Пусть L/K – главный фактор группы G, причем $P\subseteq K\subset L\subseteq \Phi_\Theta(G)$. Так как P – силовская p-подгруппа группы $\Phi_\Theta(G)$, то L/K – p'-группа. Предположим, что фактор L/K дополняем в G. Пусть D – дополнение для L/K в G. Тогда $G/\operatorname{Core}_G(D)\simeq H$. Поэтому из $|L/K|=|\operatorname{Soc}(H)|$ следует, что L/K – p-группа. Получили противоречие. Следовательно, все G-главные факторы группы $\Phi_\Theta(G)/P$ являются фраттиниевыми, а значит, $\Phi_\Theta(G)/P\subseteq \Phi(G/P)$. Обратное включение очевидно. Таким образом, $\Phi_\Theta(G)/P=\Phi(G/P)$. Утверждение 4) доказано.

В силу леммы 7.9 из [4] подгруппа P дополняема в G. Пусть A – одно из таких дополнений. Так как каждая максимальная подгруппа M группы G, содержащая P,

имеет вид $M = M_1 P$, где M_1 – максимальная подгруппа A, то $\Phi(G/P) = \Phi(A)P/P$. Отсюда и из утверждения 4) следует, что $\Phi_{\Theta}(G) = P\Phi(A)$. Кроме того, на основании леммы V.5.12 из [5] справедливо равенство $C_{\Phi(A)}(P) = \Phi(G) = 1$. Утверждение 5) доказано.

Очевидно, подгрупповые m-функторы Θ и τ взаимодополняемы в решетке \mathcal{M}_{res} . Поэтому $\Phi_{\Theta}(G) \cap \Phi_{\tau}(G) = \Phi(G)$. На основании теоремы 3 справедливо равенство $\Phi_{\tau}(G) = G^{\mathfrak{X}}$. Отсюда имеем, что $\Phi_{\Theta}(G) \cap G^{\mathfrak{X}} = 1$.

Замечание. Следующий пример показывает, что в теореме 4 в общем случае факторгруппа $\Phi_{\Theta}(G)/P$ может быть неединичной. Пусть Θ – коатом решетки \mathcal{M}_{reg} , для которого $\mathscr{P}(\Theta) = \mathscr{P} \setminus (H)$, где H – голоморф циклической группы порядка 17. Тогда если P – силовская 17-подгруппа группы H, то $\Phi_{\Theta}(H)/P$ – циклическая группа порядка 8.

Далее через Z_p мы обозначаем циклическую группу простого порядка p, а через $\Delta^{\mathfrak{X}}(G)$ будем обозначать пересечение всех \mathfrak{X} -абнормальных максимальных подгрупп группы G (\mathfrak{X} – некоторый класс групп).

Следствие 4.1. Пусть Θ – коатом решетки \mathcal{M}_{reg} , для которого $\mathscr{P}(\Theta) = \mathscr{P} \setminus$ (Z_p) . Тогда справедливы следующие утверждения:

- 1) $\Phi_{\Theta}(G) = \Delta^{\mathfrak{N}_p}(G)$;
- 2) выполнено

$$\Phi_{\Theta}(G)/\Phi(G) = N_1/\Phi(G) \times \cdots \times N_t/\Phi(G),$$

где $N_i/\Phi(G) \subseteq Z(G/\Phi(G))$ и $|N_i/\Phi(G)| = p$ для всех $i = 1, 2, \ldots, t$;

- 3) $G/\Phi(G) = \Phi_{\Theta}(G)/\Phi(G) \times A/\Phi(G)$;
- 4) $ecnu \mathfrak{X} = R_0(Z_n) \cup (1), mo G^{\mathfrak{X}} \subseteq A u$

$$A/G^{\mathfrak{X}} = K_1/G^{\mathfrak{X}} \times \cdots \times K_s/G^{\mathfrak{X}},$$

где $|K_i/G^{\mathfrak{X}}| = p$ для любого $j = 1, 2, \ldots, s$.

6. Общий случай. Зафиксируем далее группу G. Через $\mathscr{P}(G)$ обозначим класс всех примитивных групп, изоморфных факторгруппам группы G (если G=1, то $\mathscr{P}(G) = \varnothing$).

ЛЕММА 3. Если Θ_1 и Θ_2 – подгрупповые m-функторы, то

$$\Phi_{\Theta_1 \cup \Theta_2}(G) = \Phi_{\Theta_1}(G) \cap \Phi_{\Theta_2}(G).$$

Доказательство. Пусть $\Theta_1(G) = \{G, M_1, \dots, M_n\}, \ \Theta_2(G) = \{G, D_1, \dots, D_k\}.$ Тогда

$$\Phi_{\Theta_1 \cup \Theta_2}(G) = (G \cap M_1 \cap \dots \cap M_n) \cap (G \cap D_1 \cap \dots \cap D_k) = \Phi_{\Theta_1}(G) \cap \Phi_{\Theta_2}(G).$$

ТЕОРЕМА 5. Пусть Θ – регулярный подгрупповой m-функтор, u пусть

$$\mathscr{P}(\Theta) \cap \mathscr{P}(G) = (H_1, \dots, H_t),$$

где $\{H_1,\ldots,H_t\}$ – максимальное множество попарно неизомор ϕ ных примитивных групп из $\mathscr{P}(\Theta) \cap \mathscr{P}(G)$. Если Θ_i – атом решетки \mathscr{M}_{reg} , для которого $\mathscr{P}(\Theta_i) = (H_i)$, $i = 1, \ldots, t, mo$

- 1) $\Phi_{\Theta}(G) = \bigcap_{i=1}^t \Phi_{\Theta_i}(G);$
- 2) $\Phi_{\Theta}(G) = \bigcap_{i=1}^{t-1} (G^{\mathfrak{X}_i}), \text{ ide } \mathfrak{X}_i = R_0(H_i) \cup (1);$ 3) $\Phi_{\Theta}(G) = G^{\mathfrak{X}}, \text{ ide } \mathfrak{X} = R_0(\mathscr{P}(\Theta) \cap \mathscr{P}(G)) \cup (1).$

Доказательство. Пусть $\tau = \bigcup_{i=1}^t \Theta_i$. Простая проверка показывает, что выполнено $\Phi_{\Theta}(G) = \Phi_{\tau}(G)$. Теперь утверждение 1) прямо следует из леммы 3. На основании теоремы 3, $\Phi_{\Theta_i}(G) = G^{\mathfrak{X}_i}$. Отсюда следует, что $\Phi_{\Theta}(G) = \bigcap_{i=1}^t (G^{\mathfrak{X}_i})$. Утверждение 3) вытекает из определения \mathfrak{X} -корадикала и того, что $G^{\mathfrak{X}} = \bigcap_{i=1}^t (G^{\mathfrak{X}_i})$.

Замечание. Из леммы 3 следует, что множество

$$\{\Phi_{\Theta}(G) \mid \Theta \in \mathscr{M}_{reg}\}$$

частично упорядоченное по включению, является нижней полурешеткой, а следовательно, и полной решеткой. Нулем этой решетки является подгруппа Фраттини $\Phi(G)$, а единицей – сама группа G.

Следующий пример показывает, что отображение

$$\varphi \colon \Theta \mapsto \Phi_{\Theta}(G)$$

не является антигомоморфизмом решетки \mathscr{M}_{reg} в решетку нормальных подгрупп группы G.

Пример. Пусть G — группа, изоморфная симметрической группе третьей степени, и пусть Θ_1 — подгрупповой m-функтор, выделяющий в каждой группе саму группу и все ее максимальные подгруппы, индекс которых не делится на 3, а Θ_2 — подгрупповой m-функтор, выделяющий в каждой группе саму группу и все ее максимальные подгруппы, индекс которых не делится на 2. Если Q — силовская 3-подгруппа группы G, а P — силовская 2-подгруппа группы G, то

$$\Theta_1(G) = \{G, Q\}, \qquad \Theta_2(G) = \{G, P^x \mid x \in G\}.$$

Поэтому

$$\Phi_{\Theta_1}(G) = Q, \qquad \Phi_{\Theta_2}(G) = 1, \qquad \Phi_{\Theta_1 \cap \Theta_2}(G) = G.$$

Значит, $\Phi_{\Theta_1 \cap \Theta_2}(G) \neq \Phi_{\Theta_1}(G)\Phi_{\Theta_2}(G)$.

Следующий пример показывает, что в общем случае решетка

$$\{\Phi_{\Theta}(G)\mid\Theta\in\mathscr{M}_{\mathrm{reg}}\}$$

не является подрешеткой решетки всех нормальных подгрупп группы G.

Пример. Пусть G – группа из предыдущего примера, и пусть $D=A\times G$, где A – циклическая группа порядка 2. Если Θ_1 – нормальный подгрупповой m-функтор (т.е. m-функтор, выделяющий все нормальные максимальные подгруппы), Θ_2 – его дополнение в решетке $\mathcal{M}_{\rm reg}$, то

$$\Phi_{\Theta_1}(D) = Q, \qquad \Phi_{\Theta_2}(D) = A.$$

Предположим, что $\Phi_{\Theta_1}(D)\Phi_{\Theta_2}(D)\in \{\Phi_{\Theta}(D)\mid \Theta\in\mathscr{M}_{\mathrm{reg}}\}$. Тогда найдется регулярный подгрупповой m-функтор Θ , для которого справедливо равенство

$$\Phi_{\Theta}(D) = \Phi_{\Theta_1}(D)\Phi_{\Theta_2}(D).$$

Так как $|D:\Phi_{\Theta}(D)|=2$, то $\Theta(D)\supseteq\{D,A\times Q\}$. Но ввиду того, что Θ – подгрупповой m-функтор, подгруппа PQ также принадлежат $\Theta(D)$. Пришли к противоречию. Следовательно, подгруппа $\Phi_{\Theta_1}(D)\Phi_{\Theta_2}(D)$ не принадлежит решетке $\{\Phi_{\Theta}(D)\mid\Theta\in\mathscr{M}_{\mathrm{reg}}\}$.

Из строения решетки \mathscr{M}_{reg} (теорема 2) следует, что любой регулярный подгрупповой m-функтор может быть сконструирован как из атомов, так и коатомов решетки M_{req} . В силу теоремы 5 подгруппа $\Phi_{\Theta}(G)$ группы G может быть построена из подгрупп $\Phi_{\Theta_i}(G)$, где Θ_i — такие атомы решетки \mathscr{M}_{reg} , что $\Theta = \bigcup_{i \in I} \Theta_i$. На основании приведенных примеров для коатомов Θ_i решетки \mathscr{M}_{reg} аналогичное представление подгруппы $\Phi_{\Theta_i}(G)$ произведением соответствующих подгрупп $\Phi_{\Theta_i}(G)$ невозможно.

Условие разрешимости групп в данной работе является существенным. Связано это с тем, что по теореме Ope [8] в разрешимой примитивной группе все примитиваторы сопряжены.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- R. Carter, T. Hawkes, "The F-normalisers of a finite soluble group", J. Algebra, 5:2 (1967), 175–202.
- [2] Л. А. Шеметков, "Ступенчатые формации групп", Матем. сб., 94:4 (1974), 628-648.
- [3] С.Ф. Каморников, М.В. Селькин, Подгрупповые функторы и классы конечных групп, Белорусская наука, Минск, 2003.
- [4] Л. А. Шеметков, Формации конечных групп, Современная алгебра, Наука, М., 1978.
- [5] K. Doerk, T. Hawkes, Finite Soluble Groups, de Gruyter Exp. Math., 4, Walter de Gruyter, Berlin-New York, 1992.
- [6] R. Baer, "Classes of finite groups and their properties", Illinois J. Math., 1 (1957), 115–187.
- [7] Л. А. Шеметков, А. Н. Скиба, Формации алгебраических систем, Современная алгебра, Наука, М., 1989.
- [8] O. Ore, "Contributions to the theory of groups of finite order", Duke Math. J., 5:2 (1939), 431–460.

С. Ф. Каморников

Поступило 30.08.2007

Гомельский государственный университет им. Ф. Скорины, Беларусь *E-mail*: sfkamornikov@mail.ru