КОНЕЧНЫЕ ГРУППЫ С G-ПЕРЕСТАНОВОЧНЫМИ НОРМАЛИЗАТОРАМИ СИЛОВСКИХ ПОДГРУПП

С. Ф. Каморников, В. Н. Тютянов, О. Л. Шеметкова

Аннотация. Пусть A, B — подгруппы конечной группы G. Тогда A называется (наследственно) G-перестановочной с B, если $AB^x = B^xA$ для некоторого $x \in G$ (для некоторого элемента $x \in \langle A, B \rangle$). Подгруппа A группы G называется (наследственно) G-перестановочной в G, если G (наследственно) G-перестановочной G в работе исследуется строение конечной группы G, все нормализаторы силовских подгрупп которой являются (наследственно) G-перестановочными.

 $DOI\,10.33048/smzh.2024.65.404$

Ключевые слова: конечная группа, силовская подгруппа, нормализатор силовской подгруппы, G-перестановочная подгруппа, наследственно G-перестановочная подгруппа, \mathbb{P} -субнормальная подгруппа.

1. Введение

Все рассматриваемые группы конечны.

Следующая концепция, развивающая понятие квазиперестановочной подгруппы (см. [1]), предложена в работе [2].

Определение 1. Пусть A, B — подгруппы группы G. Тогда A называется:

- (1) G-перестановочной с B, если $AB^x = B^x A$ для некоторого $x \in G$;
- (2) наследственно G-перестановочной с B, если $AB^x = B^x A$ для некоторого элемента $x \in \langle A, B \rangle$.

Определение 2. Подгруппа A группы G называется ($\mathit{наследственно}$) G-перестановочной e G, если A (наследственно) G-перестановочна со всеми подгруппами из G.

G-перестановочные и наследственно G-перестановочные подгруппы в последнее время нашли ряд интересных приложений, связанных с изучением нормальной структуры конечной группы и установлением условий ее не простоты [3–6]. Например, в [3] доказана разрешимость группы, у которой все минимальные подгруппы являются наследственно G-перестановочными (под минимальной подгруппой группы G понимается любая ее подгруппа простого порядка). В [4] доказано, что если S — силовская 2-подгруппа группы G и каждая максимальная подгруппа из S является наследственно G-перестановочной в G, то G разрешима. В работах [5,6] исследовано нормальное и формационное строение группы, у которой любая подгруппа Шмидта является наследственно

Исследования первого и второго авторов выполнены при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект Ф23РНФ-237).

⁽с) 2024 Каморников С. Ф., Тютянов В. Н., Шеметкова О. Л.

G-перестановочной (noderpynnoй Шмидта называется ненильпотентная группа, все собственные подгруппы которой нильпотентны).

В данной работе исследуется строение группы G, все нормализаторы силовских подгрупп которой являются (наследственно) G-перестановочными.

Наша главная цель — доказательство следующих двух теорем.

Теорема 1. Если нормализатор каждой силовской подгруппы группы G является G-перестановочным в G, то группа G разрешима.

Теорема 2. Если нормализатор каждой силовской подгруппы группы G является наследственно G-перестановочным в G, то группа G сверхразрешима.

2. Используемая терминология и предварительные результаты

В работе используются стандартные определения и обозначения (см., например, [7]). Напомним лишь некоторые из них:

- $\pi(G)$ множество простых делителей порядка группы G;
- ullet если p некоторое простое число, то G_p силовская p-подгруппа группы G, а $Syl_p(G)$ множество всех ее силовских p-подгрупп;
 - $\Phi(G)$ подгруппа Фраттини группы G;
 - \mathfrak{U} класс всех сверхразрешимых групп;
- $G^{\mathfrak{U}}-\mathfrak{U}$ -корадикал группы G, т. е. наименьшая нормальная подгруппа группы G, фактор-группа по которой сверхразрешима.

Для описания расширений групп используются следующие обозначения:

- $A \times B$ прямое произведение подгрупп A и B;
- A: B расщепляемое расширение группы A с помощью группы B.

Отметим следующее свойство G-перестановочных подгрупп, доказательство которого осуществляется простой проверкой.

Лемма 1. Пусть G — группа, H, T и K — ее подгруппы, причем подгруппа K нормальна в G. Если $K \subseteq T$ и H G-перестановочна c T, то HK/K G/K-перестановочна c T/K. В частности, если подгруппа H наследственно G-перестановочна в G, то подгруппа HK/K наследственно G/K-перестановочна в G/K.

При доказательстве теоремы 1 будем опираться на следующие результаты о строении некоторых простых групп.

Лемма 2 [8, лемма 1.6]. Пусть G — простая группа лиева типа и L — максимальная подгруппа группы G. Если унипотентная подгруппа U содержится в L, то L — параболическая подгруппа G.

Лемма 3 [9, лемма 3]. Пусть
$$G$$
 — простая группа лиева типа и $G \notin \{A_5(2), C_3(2), D_4(2), {}^2A_3(2)\}.$

Тогда существует простой делитель порядка группы G, который не делит порядок ни одной собственной параболической подгруппы группы G.

Лемма 4 [10, следствие 5]. Пусть $G \in \{A_n, S_n\}$, где $n \geq 5$. Предположим, что G = AB, где A и B — максимальные подгруппы группы G, не содержащие A_n . Тогда справедливо одно из следующих утверждений:

- (i) $A = (S_{n-k} \times S_k) \cap G$ для некоторого k такого, что $1 \le k \le 5$, а B является k-олноролной:
 - (ii) n = 6, $A = PGL_2(5) \cap G \bowtie B = (S_3 \wr S_2) \cap G$.

Понадобятся также следующие два результата теории чисел.

Лемма 5 [11, лемма 1.1]. Пусть n — целое число и $n \ge 9$. Тогда существуют по меньшей мере три таких простых числа r, что n < r < 2n.

Лемма 6 [12]. Пусть p и q — простые числа, m и n — натуральные числа, причем $p^m = q^n + 1$. Тогда выполняется одно из следующих условий:

- (1) q = 2, p = 3, n = 3 μ m = 2;
- $(2) \; q = 2, \, m = 1, \, n$ является степенью числа 2, а $p = q^n + 1$ простое число Ферма;
- (3) $p=2,\, n=1$ и $q=p^m-1$ простое число Мерсенна, в частности, m является простым числом.

Следуя [13], подгруппу H группы G будем называть \mathbb{P} -субнормальной в G, если либо H=G, либо существует цепь подгрупп

$$H = H_0 \subset H_1 \subset \cdots \subset H_{n-1} \subset H_n = G$$

такая, что $|H_i:H_{i-1}|$ — простое число для любого $i=1,2,\ldots,n$.

Отметим следующее свойство наследственно G-перестановочных подгрупп, устанавливающее их связь с \mathbb{P} -субнормальными подгруппами.

Лемма 7 [6, лемма 2.8]. Любая наследственно G-перестановочная подгруппа разрешимой группы G является \mathbb{P} -субнормальной.

Требование разрешимости группы G в лемме 7 существенно и в общем случае его отбросить нельзя. Пусть, например, $G=A\times B$, где A — абелева группа, B — простая неабелева группа, не содержащая максимальных подгрупп простого индекса. Очевидно, подгруппа A наследственно G-перестановочна в G, но не \mathbb{P} -субнормальна.

В [13] введен и исследован класс групп $w\mathfrak{U}$, все силовские подгруппы которых \mathbb{P} -субнормальны. Одно из свойств этого класса мы приведем в виде леммы. Напомним только, что если \mathfrak{F} — класс групп, то группа G называется \mathfrak{F} -критической, если она не принадлежит \mathfrak{F} , но все ее собственные подгруппы принадлежат \mathfrak{F} . В частности, \mathfrak{U} -критическая группа — это минимальная несверхразрешимая группа.

Лемма 8 [13, теорема 2.9]. Любая $w\mathfrak{U}$ -критическая группа является бипримарной минимальной несверхразрешимой группой.

Основные свойства минимальных несверхразрешимых групп приведены в работах [14, 15]. Одна из полных классификаций минимальных несверхразрешимых групп содержится в [16].

Лемма 9 [14,15]. Пусть G — минимальная несверхразрешимая группа. Тогда выполняются следующие утверждения:

- 1) G разрешима и $|\pi(G)| \leq 3$;
- 2) $G^{\mathfrak{U}}$ силовская p-подгруппа группы G для некоторого простого p;
- 3) $G^{\mathfrak{U}}/\Phi(G^{\mathfrak{U}})$ главный фактор группы G;
- 4) $|G^{\mathfrak{U}}/\Phi(G^{\mathfrak{U}})|=p^n$, где n>1;
- $5) \Phi(G^{\mathfrak{U}}) = G^{\mathfrak{U}} \cap \Phi(G).$

3. Доказательство теоремы 1

Пусть G — группа наименьшего порядка, для которой теорема неверна. Предположим сначала, что группа G простая. Опираясь на классификацию простых неабелевых групп, исключим каждый из возможных случаев.

(a) G — простая спорадическая группа.

В работе [23] доказано, что если G — простая спорадическая группа, содержащая собственную G-перестановочную подгруппу F, то $G = J_1$ и |F| = 2. Отсюда имеем противоречие с условием теоремы.

$$(b)$$
 $G \cong A_n$, где $n \geq 5$.

Сначала рассмотрим случаи, когда $n \leq 16$. При этом для $n \leq 13$ укажем в группе G силовскую p-подгруппу P, нормализатор которой не перестановочен ни с одной силовской q-подгруппой группы G:

- если $G \in \{A_5, A_6\}$, то $P \in Syl_5(G)$ и q = 2;
- ullet если $G \cong A_7$, то $P \in Syl_7(G)$ и q = 2 [17, с. 10];
- если $G \in \{A_8, A_9, A_{10}\}$, то $P \in Syl_7(G)$ и q = 5 [17, с. 22, 37, 48];
- если $G \in \{A_{11}, A_{12}\}$, то $P \in Syl_{11}(G)$ и q = 7 [17, с. 75, 91];
- если $G \cong A_{13}$, то $P \in Syl_{13}(G)$ и q = 11 [17, с. 91].

В оставшихся случаях n=14,15,16 в группе $G\cong A_n$ укажем максимальную подгруппу M, которая согласно лемме 4 не является сомножителем ни в одной факторизации, и силовскую подгруппу P, нормализатор которой не содержится ни в одной подгруппе, сопряженной с M (отсюда сразу же следует противоречие с условием теоремы):

- если n=14, то $M=(A_6\times A_8).2$ и $P\in Syl_{13}(G);$
- если n = 15, то $M = (A_7 \times A_8).2$ и $P \in Syl_{13}(G)$;
- \bullet если n=16, то $M=(A_7\times A_9).2$ и $P\in Syl_{13}(G).$

Пусть далее $n=2k+1\geq 17$. В качестве максимальной подгруппы рассмотрим подгруппу $M=(A_{(n-1)/2}\times A_{(n+1)/2}).2$. В этом случае $(n+1)/2\geq 9$. По лемме 5 существуют три различных простых числа $r_1< r_2< r_3$ таких, что $(n+1)/2< r_1< r_2< r_3< n+1$. Отсюда следует, что $(n+1)/2< r_1< r_2< n$. При этом $(|M|,r_1)=(|M|,r_2)=1$. Следовательно, $G=MN_G(R_1)$ для $R_1\in Syl_{r_1}(G)$. Так как $(n-1)/2\geq 8$, последнее невозможно ввиду леммы 4.

Пусть $n=2k\geq 18$. В качестве максимальной подгруппы рассмотрим подгруппу $M=(A_{n/2-1}\times A_{n/2+1}).2$. В этом случае $n/2\geq 9$. По лемме 5 существуют три различных простых числа $r_1< r_2< r_3$ таких, что $n/2< r_1< r_2< r_3< n$. Отсюда следует, что $n/2+1< r_2< r_3< n$. При этом $(|M|,r_2)=(|M|,r_3)=1$. Следовательно, $G=MN_G(R_2)$ для $R_2\in Syl_{r_2}(G)$. Так как $n/2-1\geq 8$, последнее невозможно ввиду леммы 4.

 $(c) \ G$ — простая группа лиева типа над полем характеристики p.

Пусть U — унипотентная подгруппа группы G. Тогда $N_G(U) = UH = B$ — подгруппа Бореля, где H — подгруппа Картана. Пусть сначала

$$G \notin \{A_5(2), C_3(2), D_4(2), {}^2A_3(2)\}.$$

Согласно лемме 3 найдется простое число $r \in \pi(G)$ такое, что r не делит порядок ни одной собственной параболической подгруппы группы G. Рассмотрим подгруппу $R \in Syl_r(G)$. По условию можно считать, что существует подгруппа BR. Из леммы 2 следует, что BR = G. Таким образом, группа G является произведением двух разрешимых групп. Список простых неабелевых групп, являющихся произведением двух своих разрешимых подгрупп, приведен в [18]. Группами лиева типа в данном списке являются

$$L_2(q), q > 3;$$
 $L_3(q), q < 9;$ $U_3(8);$ $L_4(2) \cong A_8;$ $Sp_4(3) \cong U_4(2).$

Случай $L_4(2)\cong A_8$ рассмотрен выше. Отметим, что $|G:B|=r^t$ для некоторого $t\geq 1$. Из [19] следует, что группа $U_3(8)$ не имеет подгрупп примарного индекса. Рассмотрим оставшиеся случаи.

 $G\cong L_2(q)$, где q>3. Все сведения о строении подгрупп группы $L_2(q)$ можно найти в [20, теорема II.8.27]. Далее будем ссылаться на эту теорему без дополнительных оговорок. Согласно [19] в этом случае $q+1=r^t$. Пусть сначала $q=p^n$ — нечетное число. Тогда q+1 является степенью числа 2, силовская 2-подгруппа группы G имеет порядок q+1 и совпадает со своим нормализатором. Ясно, что она не перестановочна ни с одной подгруппой, сопряженной с силовской p-подгруппой группы G, что противоречит условию теоремы. Пусть $q=2^n$. Из леммы 6 следует, что q+1 либо простое число, либо равно 9. В обоих случаях максимальная подгруппа порядка 2(q+1), являющаяся нормализатором силовской r-подгруппы группы G, не перестановочна ни с одной силовской 2-подгруппой группы G. Снова приходим к противоречию с условием теоремы.

 $G\cong L_3(q)$, где q<9. Из [19] следует, что в этом случае q^2+q+1 — степень простого числа. Для q=2 имеем $L_3(2)\cong L_2(7)$. Данный случай рассмотрен выше. Проанализируем оставшиеся случаи.

 $G\cong L_3(3)$. Из [17, с. 13] следует, что нормализатор в G силовской 13-подгруппы изоморфен 13 : 3. Эта подгруппа не перестановочна ни с одной силовской 3-подгруппой группы G, а значит, группа G не удовлетворяет условию теоремы.

 $G\cong L_3(5)$. Из [17, с. 38] следует, что нормализатор в G силовской 31-подгруппы изоморфен 31 : 3. Эта подгруппа не перестановочна ни с одной силовской 3-подгруппой группы G, снова приходим к противоречию.

 $G\cong L_3(8)$. Из [17, с. 74] следует, что нормализатор в G силовской 73-подгруппы изоморфен 73 : 3. Эта подгруппа не перестановочна ни с одной силовской 3-подгруппой группы G, а значит, G не удовлетворяет условию теоремы.

 $G\cong Sp_4(3)\cong U_4(2)$. Пусть $T\in Syl_2(G)$. Из [17, с. 26] следует, что $N_G(T)=T:\langle a\rangle$, где |a|=3, и подгруппа $N_G(T)$ не перестановочна ни с одной силовской 3-подгруппой группы G, что противоречит условию теоремы.

Рассмотрим теперь случай, когда

$$G \in \{A_5(2), C_3(2), D_4(2), {}^2A_3(2)\}.$$

Пусть сначала $G\cong L_6(2)$. В группе $L_6(2)$ подгруппа Картана H единична, поэтому силовская 2-подгруппа группы G, являющаяся унипотентной подгруппой, самонормализуема. По условию теоремы группа G обладает свойством $E_{\{2,r\}}$ для всякого $r\in\pi(G)\setminus\{2\}$. Из [21] следует, что в этом случае группа G разрешима. Последнее невозможно. Если G изоморфна одной из групп $Sp_6(2)$ или $\Omega_8^+(2)$, то подгруппа Картана H также единична и данные случаи рассматриваются аналогично случаю $G\cong L_6(2)$. Случай $G\cong Sp_4(3)\cong U_4(2)$ был рассмотрен выше. Снова пришли к противоречию, которое окончательно устанавливает, что группа G не проста.

Пусть N — ее минимальная нормальная подгруппа. Рассмотрим факторгруппу G/N. Пусть P/N — ее силовская p-подгруппа для некоторого простого $p \in \pi(G/N)$. Тогда найдется такая подгруппа $P_1 \in Syl_p(G)$, что $P/N = P_1N/N$. Так как подгруппа P_1 пронормальна в G, по лемме 17.5 из [22] имеем

$$N_{G/N}(P/N) = N_{G/N}(P_1N/N) = N_G(P_1N)/N = N_G(P_1)N/N.$$

Отсюда ввиду леммы 1 нормализатор любой силовской подгруппы группы G/N является G/N-перестановочной подгруппой в G/N. Ввиду выбора группы G из |G/N|<|G| имеем, что G/N— разрешимая группа. Кроме того, N— единственная минимальная нормальная подгруппа группы G.

Если N — элементарная абелева p-подгруппа для некоторого $p \in \pi(G)$, то группа G разрешима, что противоречит ее выбору. Следовательно, N является прямым произведением изоморфных простых неабелевых групп. Пусть

$$N = N_1 \times N_2 \times \cdots \times N_t$$
,

где $t \ge 1$ и N_1, N_2, \ldots, N_t — изоморфные простые группы.

Пусть $p \in \pi(N)$, $P \in Syl_p(G)$ и A — произвольная подгруппа в N. Ввиду условия теоремы для некоторого $x \in G$ существует подгруппа $F = A^x N_G(P)$. Тогда ввиду тождества Дедекинда имеем

$$F \cap N = A^x N_G(P) \cap N = A^x (N_G(P) \cap N).$$

Если $y \in N_G(P) \cap N$, то из $N \subseteq G$ следует, что $y \in N_N(P \cap N)$. Поэтому

$$N_G(P) \cap N \subseteq N_N(P \cap N).$$

Из теоремы Силова следует, что $P \cap N \in Syl_p(N)$. Кроме того, подгруппа $P \cap N$ содержится в $N_G(P) \cap N$. Таким образом, подгруппа $F \cap N$ представима в виде $F \cap N = A^xL$, где

$$P \cap N \subseteq L = N_G(P) \cap N \subseteq N_N(P \cap N)$$

и $P \cap N \in Syl_p(N)$.

Предположим далее, что $A\subseteq N_1$. Так как группа G действует транзитивно на множестве $\Sigma=\{N_1,N_2,\ldots,N_t\}$, то $N_1^x=N_k$ и $A^x\subseteq N_k$ для некоторого $k\in\{1,2,\ldots,t\}$.

Ввиду тождества Дедекинда имеем

$$F \cap N_k = (F \cap N) \cap N_k = A^x(N_G(P) \cap N) \cap N_k = A^x(N_G(P) \cap N_k).$$

При этом $P\cap N_k\subseteq N_G(P)\cap N_k\subseteq N_{N_k}(P\cap N_k)$ и $P\cap N_k\in Syl(N_k)$. Отсюда следует, что

$$(A^x(N_G(P)\cap N_k))^{x^{-1}} = A(N_G(P^{x^{-1}})\cap N_1) \subseteq N_1.$$

По теореме Силова $P^{x^{-1}} \cap N_1 = (P \cap N_1)^y$ для некоторого $y \in N_1$, а значит, $A^{y^{-1}}(N_G(P) \cap N_1)$ — подгруппа группы N_1 , причем $N_G(P) \cap N_1 \subseteq N_{N_1}(P \cap N_1)$ и $P \cap N_1 \in Syl_p(N_1)$.

Итак, для любого простого $p \in \pi(N_1)$, каждой силовской p-подгруппы \widetilde{P} простой неабелевой группы N_1 и любой ее подгруппы A найдется такой элемент $z \in N_1$, что подгруппа A^z перестановочна с некоторой подгруппой L из N_1 , содержащей \widetilde{P} и содержащейся в $N_{N_1}(\widetilde{P})$.

Таким образом, некоторая подгруппа $L\subset N_1$ такая, что $\widetilde{P}\subseteq L\subseteq N_{N_1}(\widetilde{P})$, является N_1 -перестановочной с любой подгруппой $A\subseteq N_1$ (в частности, она является N_1 -перестановочной с любой силовской и любой максимальной подгруппами из N_1). Анализ доказательства теоремы в случае, когда G — простая неабелева группа, показывает, что нормализатор $N_G(P)$ не перестановочен либо с некоторой силовской подгруппой группы G, либо с некоторой максимальной подгруппой группы G. Легко заметить, что если для $\widetilde{P}\in Syl(N_1)$ заменить $N_{N_1}(\widetilde{P})$ подгруппой L с условием $\widetilde{P}\subseteq L\subseteq N_{N_1}(\widetilde{P})$, то соответствующие противоречия получаются в точности так же.

3. Доказательство теоремы 2

Ввиду теоремы 1 группа G разрешима. Поэтому по лемме 7 нормализатор каждой силовской подгруппы из G является \mathbb{P} -субнормальной подгруппой. Отсюда, очевидно, следует, что любая силовская подгруппа группы G \mathbb{P} -субнормальна в G, а значит, $G \in w\mathfrak{U}$.

Предположим, что группа G не является сверхразрешимой. Не нарушая общности рассуждений, можем считать, что G — минимальная несверхразрешимая группа. Так как $G \in w\mathfrak{U}$, ввиду леммы 8 G — трипримарная минимальная несверхразрешимая группа. Пусть $\pi(G) = \{p,q,r\}$, где p > q > r, и пусть $P \in Syl_p(G), \ Q \in Syl_q(G), \ R \in Syl_r(G)$. Из теорем 9 и 10 работы [16] следует, что G — группа одного из двух следующих типов:

- (1) G=P:(QR), где R циклическая подгруппа порядка r^{s+t} ($s\geq 1$, $t\geq 0$), нормализующая подгруппу Q; $Q/\Phi(Q)$ неприводимый R-модуль над полем из q элементов с ядром D порядка $r^t;$ P неприводимый QR-модуль над полем из p элементов; q и r делят p-1;
- (2) G=P:(QR), где R циклическая подгруппа порядка 2^{s+t} ($s\geq 1$, $t\geq 0$), нормализующая подгруппу $Q;\,Q/\Phi(Q)$ неприводимый R-модуль над полем из q элементов с ядром D порядка $2^t;\,P$ экстраспециальная группа порядка p^3 экспоненты $p;\,P/\Phi(P)$ неприводимый QR-модуль над полем из p элементов; q и 2^s делят p-1.

Простая проверка показывает, что $\Phi(P)=1$ в первом случае и $|\Phi(P)|=p$ во втором. Кроме того, $N_G(Q)\Phi(P)$ — максимальная подгруппа группы G, дополняющая главный фактор $P/\Phi(P)$ группы G, который ввиду леммы 9 не является циклической группой.

С другой стороны, ввиду условия теоремы для максимальной подгруппы A группы P найдется элемент $x \in G$ такой, что $A^x N_G(Q)$ — подгруппа группы G. Так как $A^x N_G(Q) \neq G$ и $\Phi(P) \subseteq A^x$, то

$$A^x N_G(Q) = A^x (N_G(Q)\Phi(P)).$$

Теперь из максимальности $N_G(Q)\Phi(P)$ в G следует, что $A^x\subseteq N_G(Q)\Phi(P)$, а значит, $A^x\subseteq \Phi(P)$. Отсюда P — циклическая группа. Пришли к противоречию, которое завершает доказательство теоремы 2.

Благодарность. Авторы благодарны рецензенту за полезные замечания и советы, которые позволили значительно улучшить работу.

ЛИТЕРАТУРА

- 1. Ore O. Contributions in the theory of groups of finite order $/\!/$ Duke Math. J. 1939. V. 5. P. 431–460.
- 2. Го В., Скиба А. Н., Шам К. П. X-перестановочные подгруппы // Сиб. мат. журн. 2007. Т. 48, № 4. С. 742–759.
- 3. *Каморников С. Ф.*, *Тютянов В. Н.* Конечные группы с наследственно *G*-перестановочными минимальными подгруппами // Тр. Ин-та математики и механики УрО РАН. 2023. Т. 29, № 1. С. 102–110.
- **4.** *Каморников С.* Ф., *Тютянов В. Н.* О разрешимости и сверхразрешимости конечных групп // Сиб. мат. журн. 2023. Т. 64, № 2. С. 312–320.
- Ballester-Bolinches A., Kamornikov S. F., Pérez-Calabuig V., Tyutyanov V. N. Finite groups with G-permutable Schmidt subgroups // Mediterranean J. Math. 2023. V. 20, N 3. Article 174. P. 1–12.
- Ballester-Bolinches A., Kamornikov S. F., Pérez-Calabuig V., Tyutyanov V. N. Finite groups with hereditarily G-permutable Schmidt subgroups // Bull. Austral. Math. Soc. 2024. V. 109, N 3. P. 522–528.

- 7. Doerk K., Hawkes T. Finite soluble groups. Berlin; New York: Walter de Gruyter, 1992.
- Seitz G. M. Flag-transitive subgroups of Chevalley groups // Ann. Math. 1973. V. 97, N 1. P. 27–56.
- **9.** *Тютянов В. Н., Шеметков Л. А.* Тройные факторизации в конечных группах // Докл. НАН Беларуси. 2002. Т. 46, № 4. С. 52–55.
- 10. Liebeck M. W., Praeger C. E., Saxl J. The maximal factorizations of the finite simple groups and their automorphism groups // Mem. Am. Math. Soc. 1990. V. 86, N 432. P. 1–151.
- Wiegold J., Williamson A. G. The factorisation of the alternating and symmetric groups // Math. Z. 1980. V. 175, N. P. 171–179.
- 12. Zsigmondy K. Zur Theorie der Potenzreste // Monatsh. Math. Phys. 1892. V. 3, N 1. P. 265–284.
- **13.** *Васильев А.* Ф., *Васильева Т. И.*, *Тютянов В. Н.* О конечных группах сверхразрешимого типа // Сиб. мат. журн. 2010. Т. 51, № 6. С. 1270–1281.
- Huppert B. Normalteiler und maximale Untergruppen endlicher Gruppen // Math. Z. 1954.
 V. 60. P. 409–434.
- 15. Doerk K. Minimal nicht überauflösbare endliche Gruppen // Math. Z. 1966. V. 91. P. 198–205.
- **16.** Ballester-Bolinches A., Esteban-Romero R. On minimal non-supersoluble groups // Rev. Mat. Iberoam. 2007. V. 23, N 1. P. 127–142.
- 17. Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A. Atlas of finite groups. Oxford: Oxford Univ. Press, 1985.
- Kazarin L. S. Product of two solvable subgroups // Commun. Algebra. 1986. V. 14, N 6. P. 1001–1066.
- 19. Guralnick R. M. Subgroups of prime power index in a simple group // J. Algebra. 1983. V. 81, N 2. P. 304–311.
- 20. Huppert B. Endliche Gruppen I. Berlin: Springer-Verl., 1968.
- 21. Тютянов В. Н. К гипотезе Холла // Укр. мат. журн. 2002. Т. 54, № 7. С. 981–990.
- **22.** Шеметков Л. А. Формации конечных групп. М.: Наука, 1978.
- 23. Гальт А. А., Тютянов В. Н. О существовании G-перестановочных подгрупп в простых спорадических группах // Сиб. мат. журн. 2022. Т. 63, № 4. С. 831–841.

Поступила в редакцию 4 января 2024 г. После доработки 27 апреля 2024 г.

Принята к публикации 20 июня 2024 г.

Каморников Сергей Федорович (ORCID 0000-0002-1464-1656) Гомельский государственный университет имени Ф. Скорины, ул. Советская, 104, Гомель 246028, Беларусь

sfkamornikov@mail.ru

Тютянов Валентин Николаевич

Гомельский филиал Международного университета "МИТСО", пр. Октября, 46а, Гомель 246029, Беларусь vtutanov@gmail.com

Шеметкова Ольга Леонидовна (ORCID 0009-0004-8754-3303) Российский экономический университет имени Г. В. Плеханова, Стремянный переулок, 36, Москва 117997 ol-shem@mail.ru