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Построен канонический тензор энергии-импульса и сформулированы законы сохранения энергии и импульса линейно-
го массивного беспинового поля, адаптированного в качестве калибровочно-инвариантной модели гравитации в рам-
ках специальной теории относительности. Показано, что общее требование положительной определенности плотности 
энергии любой физической реальности в случае гравитационного поля предопределяет его скалярную природу и дале-
ко идущую гравитационную изменчивость инертной массы частиц материи.  
 
Ключевые слова: массивная скалярная гравитация, энергия гравитационного поля, гравитационная изменчивость 
массы. 
 
For a linear massive spinless field adapted as a gauge-invariant model of gravity in the framework of the special theory of rela-
tivity, a canonical energy-momentum tensor is constructed and the laws of conservation of energy and momentum are formu-
lated. It is shown that the general requirement of a positive definiteness of the energy density of any physical reality in the case 
of an attractive field determines its scalar nature and far-reaching gravitational variability of the inertial mass of matter parti-
cles.  
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Introduction 
By all the criteria of the modern Standard 

Model of particle physics, the depressing fact of the 
absence of ten special relativistic integrals of motion 
in the general theory of relativity is the worst thing 
that should have happened with a physical theory in 
order to abandon it without hesitation as a model of 
one of the four existing fundamental interactions. 
Each time, referring to general relativity and fitting 
Riemannian geometry to physical reality, we must 
not forget that on the other side of the scale there is 
the outstanding achievement of a higher physical 
and philosophical resonance, obtained almost simul-
taneously with the advent of the general theory of 
relativity. This is 100-year-old Emmy Noether’s 
brilliant theorem on the nature of conservation laws. 
This theorem is the exciting result, which explains 
the origin of conservation of energy, momentum, 
angular momentum, and center-of-mass velocity for 
the matter and physical fields from the undistorted 
symmetry of the Minkowski space-time. The princi-
ples of conservation that nature obeys, which, thanks 
to Emmy Noether, have become a theorem, are an 
outstanding achievement of physical science, and 
they cannot be sacrificed even for the fascinating 
Einstein’s idea of a strong equiavalence, which 

creates the Riemannian curvature of spacetime and 
makes it one of the physical fields capable of spec-
tacularly interpreting the four well-known tests.  

On the other hand, although the approximation 
of a weak gravitational field within general relativity 
allows us to distinguish it as a tensor field against 
the background of the flat Minkowski metric and to 
formulate the law of conservation of energy, never-
theless this well-known trick does not resolve all the 
energy problems associated with gravitation. Postu-
lating gravity in such an approach as a classical ten-
sor field of the second rank, we immediately en-
counter the insoluble problem of the lack of positive 
definiteness of the energy density of this field.  

Our consideration of the law of energy conser-
vation has shown that among the force fields of 
various tensor dimensions, which could have attrac-
tive properties, only one, simplest of them, the field 
of zero rank, can satisfy the necessary general physi-
cal requirement for the field energy density to be 
positively defined. This means that in the classical 
field-theoretical approach to the problem of con-
structing a dynamic theory of gravity, in which all 
ten special-relativistic integrals of motion are pre-
sent, definitely only a scalar field can be considered 
as a candidate to represent the gravitational field.  

ФИЗИКА
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1 The law of energy-momentum conser-
vation of massive spin-zero gravitational field  

Continuing, begun in [1] , the adaptation of the 
canonical scalar massive field as a possible model of 
gravity for its further use in solving existing prob-
lems of dark mass and dark energy in cosmology, in 
this article we formulate the law of energy-mo-
mentum conservation, which is a stumbling block 
for the general theory of relativity.  

For a system of interacting scalar field and 
massive particles, we form the action invariant with 
respect to the Lorentz group. Obeying the principle 
of simplicity we use the expression quadratic in the 
field as the Lagrangian density for a system of inter-
acting classical particles and a massive scalar field,  
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and the spatial density of the Lagrangian of gravita-
tionally interacting classical particles (dustlike mat-
ter) coupled to this field, is given by the expression  
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In the case of the real classical scalar field   

described by the Lagrangian density (1.1), the ca-
nonical energy-momentum tensor  

 T  
  




   


L

L 


          (1.3) 

leads immediately to the expression  
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As we see, this tensor is symmetric, as it should be 
for the spin-zero field. Using the definition  
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of the strength vector in terms of the field variable 
( )x  and its derivatives with respect to four-

dimensional coordinates, we can represent the en-
ergy-momentum tensor (1.4) in the form [2]  
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The densities of energy, energy flux, momen-
tum, and momentum flux of the field appear in this 
formalism in the usual way as the following compo-
nents of the energy-momentum tensor:  
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and ij
ij ijT T    respectively.  

Thus, from (1.6), using the notation 

 g Q   g  we obtain all four dynamical character-

istics of the field listed above:  
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Now we return to the equation of motion of a 
test particle in the field, expressed in the four-
dimensional form (equation (1.5) in the previous 
paper [1]): 
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We recall that in this formula 1u c dx d      is the 

four-velocity of a particle, 1 21 ( )d c ds v c dt     

is its proper time. The four-vector 2p cm u    

represented in components as  
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consists of the canonical expressions pL   p v  

and p pL L    v vE  for momentum and energy 

of a separate particle, if we keep in mind its La-
grange function  
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As can be seen from the equation (1.11) represented 
in unpacked three-dimensional form, these are the 
same field-dependent expressions that were first 
introduced by Nordström in [3] :  
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Presented in these formulas the energy content 
factor 2  is the same that has already appeared in 

formula  
 2m m                           (1.16) 

in [1] for the inertial and gravitational masses of a 
particle. It is important to note as a significant 
achievement of a theory that this factor presents also 
in (1.7)–(1.10) for the densities and fluxes of the 
corresponding physical quantities of the field itself. 
Thereby the numerical values of all these physical 
quantities are multiplied by the same conversion 
factor 2  under the gauge transformation 

       just as in the case where the adopted 

unit of mass is replaced by another one.  
We emphasize the fact that in other numerous 

scalar relativistic models of the gravitational field, 
motivated by different reasons, this is not the case. 
Particularly, in Nordström’s theory presented in [4], 
the mass of a particle, its energy and momentum 
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depend on the gravitational field, as in (1.14)–(1.16), 

by the factor 2  (denoted by Nordström as 
2g ce  ), 

whereas the densities of energy and energy flux of 
the field itself are proportional to 4  (for details of 

analysis, see in [5]).  
From the exact expression (1.14), it is useful to 

get an approximate formula for estimating the small 
changes in the energy content of nonrelativistic par-
ticles moving in a weak gravitational field. Setting in 

(1.14) 
22 ce  and taking the traditional conven-

ient gauge condition 0   for the gravitational 
potential at infinity, we arrive at the known expres-
sion (see formula (87.10) in [6])  
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for the energy of particle (1.14) in the non-
relativistic and weak-field approximation, linear in 
small quantities 2 2v c  and 2c     

It is straightforward to verify that in empty 
space in the absence of gravitating masses, the ex-
pression (1.6) obtained as the energy-momentum 
tensor of the field satisfies the continuity equation  

 0T                            (1.18) 

This equation expresses in a differential form the 
conservation of energy and momentum of a free 
gravitational field, which in the case under consid-
eration is a closed physical system.  

In the presence of massive particles, the total 
four-divergence of the energy-momentum tensor of 
the field is no longer equal to zero due to the energy 
and momentum exchange between the field and mat-
ter. Using (1.5) and the field equations (3.4) and (3.5) 
of our previous paper [1], it can be shown immedi-
ately from (1.6) that, instead of (1.18), in this case  
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Of course, for the closed system consisting of 
the gravitational field and the massive particles 
gravitationally interacting with each other, the full 
energy and momentum are strictly conserved. In 
fact, integrating equation (1.19) over a certain vol-
ume V  bounded by a closed smooth surface   
with the aid of equation (1.11) for the four-vector 
(1.12) and using the Gauss theorem, we obtain the 
balanced equation for the energy and momentum in 
the integral form  

 0

( )

1
,i

i
V V

d
p T dV T df

dt c
   
   

 
  



 (1.20) 

where ( )id dff  is an infinitesimal normal vector of 

the the closed surface   directed outward of the 
chosen volume V. The summation in (1.20) extends 
over all the particles contained in this volume. This 
equation expresses the law of conservation of total 
energy and momentum of the field and matter in the 
integral form.  

Setting in (1.20) the index   equal to zero and 

using the formulas (1.14), (1.7), and (1.8), we find 
the equation expressed the conservation law of total 
energy of the particles and field:  
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This equation asserts that the rate of change of the 
total energy of particles given by formula (1.14) and 
of the field with the positive density defined by (1.7) 
in a certain volume V is exactly equal to the amount 
of energy passing per unit time with the field energy 
flux of density (1.8) into the surrounding space or 
back through the closed surface   bounding this 
volume.  

Along with (1.21), choosing the spatial compo-
nents of (1.20) and omitting the indexes, we obtain 
the separate three-dimensional vector equation  
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which expresses the momentum conservation of 
particles and field. The three-dimensional tensor of 
second rank   on the right-hand side of this equa-
tion represents the momentum flux density of the 
field; its components are defined by (1.10).  

Analysis of the integral relation (1.22) reveals 
that, if we use the perturbed Lagrangian (1.13), the 
generalized momentum L   v  canonically conju-
gate to r coincides with (1.15) and participates in the 
conservation law as a momentum of a particle in a 
gravitational field. Whereas it is well known that in 
classical mechanics of a charged particle in an elec-
tromagnetic field, the unperturbed Lagrangian of a 
free particle should be used for this purpose. For this 
reason, after obtaining formulas (1.14) and (1.15) for 
the energy and momentum of a particle using in their 
canonical definition (1.3) the Lagrange function 
(1.13), some doubts can still arise against the actual 
physical meaning of these quantities.  

The proved theorems of conservation of energy 
and momentum in the form of equations (1.21) and 
(1.22), containing expressions (1.14) and (1.15), 
demonstrate the groundlessness of such doubts. Pre-
cisely the covariant form (1.20) of these equations 
enables us to associate 0T   with p  and gives the 

final arguments to identify with confidence the cor-
responding components of tensor (1.6) as densities 
of energy, energy flux, momentum, and momentum 
flux of the field listed in (1.7)–(1.10).  

Let us turn for the moment to the post-
Newtonian equation of a static gravitational field 
(equation (3.6) in [1]). As we have already noted in 
[1], this equation in the case of massless field, that is 
in the form  
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was proposed by Brillouin [7] and Hooft [8]. In this 
connection we note that the appearance in it of the 
nonlinear term quadratic in field g was motivated by 
these authors by the necessity to include the field 
energy into the source of the field itself. This was 
done in [7], [8] “by hand”, using the negative 
pseudo-energy density  
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principally different of positive expression (1.7). In 
different dynamical theories of gravitation, including 
general relativity, this expression is indeed widely 
known and currently accepted as the energy density 
of static gravitational field in Newtonian approxima-
tion. Indeed, formula (1.24) is derived by many au-
thors. It can be found, for example, in books [7], [8], 
which were already quoted, and also in [6], [9], [10], 
[11]. 

In this connection we note that, although the 
post-Newtonian equation (1.23) (similarly to the 
covariant four-dimensional equation (3.4) in [1]) 
represents the field g as a self-acting one, as it 
should, our starting equation (3.2) in [1] for the main 
scalar field variable   has the canonical form; that 

is, it is essentially linear and homogeneous, as re-
quired by gauge symmetry.  

Returning now to the equation (1.13) in [1], we 
see that if a particle moves in static external field 

( )r  which is characterized by the vector strength 

0 g  while its scalar strength 0Q    then the en-

ergy (1.14) of this particle is conserved.  
In turn, as can be seen from (1.12) in [1], if the 

field variable   depends only on time, so that 

0 g  the particle momentum (1.15) is conserved 

despite the presence of field Q in this case. Although 
field strength Q causes, according to (1.21) in [1] , a 
change in the velocity of a moving particle, its mo-
mentum in the presence of this field is conserved. 
From formula (1.15) of the present paper, it follows 
that this is possible simultaneously with a suitable 
balanced change in the variable inertial mass 

2m m   of a particle.  

We make now one remark relating to the ex-
pressions for the densities of the field energy and 
momentum and of their fluxes in formulas (1.7)–
(1.10) and in (1.21), (1.22). From these formulas, it 
may seem at first sight that if   vanishes at some 

instant of time or within a finite region of space, 
then the total energy and momentum of particles and 
fields together with fluxes of the field energy and 
momentum vanish simultaneously. However, this is 
not the case, as can be seen by comparing the formu-
las (1.4) and (1.6). We recall that the factor 2  

arises in energy-momentum tensor (1.6) and 

naturally in expressions (1.7) and (1.8) as a result of 
the replacement in (1.4) of the ordinary gradient 

   by logarithmic derivatives of   that are hidden 

in the observables g    
As for the expressions (1.14) and (1.15) of the 

energy and momentum of a moving particle, these 
quantities do not vanish also when 0   This can 

be easily proved by writing down the Hamiltonian of 
the particle  
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which corresponds to the Lagrangian (1.13) and re-
produces the equation of motion (1.12) in [1] as the 
canonical Hamilton equation  

d H

dt


  


p

r
 

From (1.25) it follows that if 0   then the rela-

tion between the energy and momentum of the parti-
cle takes the form cp E  that is, as in the case of a 

massless particle moving with the light velocity.  
 

2 Gravitational variability of the inertial mass 
Our consideration of the law of energy conser-

vation in the previous section shows that the logic of 
the scalar field approach to the problem of gravity 
within the framework of the special theory of rela-
tivity that we follow here allows us to specify the 
initial concepts of inertial mass and mass, under-
stood as a gravitational charge, which were intro-
duced in the construction of the Lagrangian (1.2). 
The results already obtained in previous sections 
make it possible to establish a clear connection be-
tween these two fundamental physical concepts and, 
therefore, to better understand the physical essence 
hidden in them.  

In order to clearly trace the connection between 
the parameter m identified by (1.13) as the gravita-
tional charge of a particle and its inertial properties, 
resulting from the adopted Lagrangian (1.1) [ac-
counting (1.2)], we first turn to the general definition 
of the inertial mass as such in the case of a moving 
particle. Very reasonable arguments in favor of the 
special-relativistic definition of this physical quan-
tity as the magnitude (in sense of pseudo-Euclidean 
Minkowski metric) of momentum-energy four-vec-
tor are given by Taylor and Wheeler in [12] (Section 
12). But even earlier, such a Poincaré-invariant defi-
nition of inertial mass as a measure of the rest en-
ergy of a relativistic particle, given by the expression  

2 2 2
2

1 1
p p c p

c c


   E  

was used by Herman Weil [13] (pp. 407–408), and 
then was especially convincingly and persistently 
advocated by Lev Okun’ [14], [15] .  

Two previously obtained formulas (1.14) and 
(1.15) for the energy and momentum enable us to 
calculate this quantity. The expression found in this 
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way is already known to us: it coincides with (1.16), 
so that  

1
m p p

c


    

as it should. Using, as before, the definition 
22 ce  of potential   we write it again in the 

original form  
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obtained for the first time by Hunnar Nordström in 
his “first” theory of gravitation (see [3], formula 
(1.5)) and also in the “second” one ([4], formula (53)).  

The orthodox (non-metric) field-theoretical ap-
proach to gravity, presented here, shows that the 
gravitational variability of the inertial mass with 
necessity is predetermined by the very scalar nature 
of the field coupled to it, independently of the spe-
cific type and form of field equations. This fact is 
caused already by the special form of the gravita-
tional analogue of the Poynting vector. It is easy to 
see that energy flow vector, as the only possible 
three-dimensional vector quadratic form in the com-
ponents of the strength four-vector  
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must be proportional, as in (1.8), to the product Q g  

We write it again in the form  
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This means that the flow of gravitational energy 
arises only in the presence of two fields of strengths, 
g and Q, simultaneously. But in all cases, the field 
energy is transferred exclusively along or against the 
strength field g. 

Consequently, in space where a gravitating 
substance is present, an external gravitational field 
with a time-varying potential ext  and, therefore, 

with non-zero strength extQ  initiates the redistribu-

tion of field energy in space. The transfer of the en-
ergy around each individual body occurs along or 
opposite the direction of its proper convergent field 

prop g  that is, into or out the body, depending on the 

sign of the scalar strength extQ  of the external field. 

It is worth recalling that the described gravitational 
mechanism of changing the inertial mass of a gravi-
tating body was known still to Nordström over a 
hundred years ago and was presented in his pioneer 
work [3].  

If the gravitational potential ext  increases, 

that is, if the time component 1
ext extQ c t     of 

the four-vector strength g  of the field in (2.2) is 
positive, then the induced energy flux, according to 
(1.8), will be convergent, just as the strength propg  

of the field produced by the body. Thus, in this case, 
because of the energy inflow of the gravitational 

field from the surrounding space, there is an increase 
in the energy 2mc E  stored in the body in the 
form of its inertial mass m  On the contrary, an ex-
ternal field with negative strength extQ  (that is, with 

a decreasing potential )ext  will provoke the proc-
ess of evacuation of energy accumulated in the body 
into the surrounding space and its transformation in 
the form of the energy of gravitational field. The 
actual inertial mass m  of the body, determined by 
formula (2.1), will decrease in this case. Of course, 
the same applies to the inertial mass of the atoms 
that make up the body, and in general to all massive 
elementary particles.  

A similar mechanism of mass change due to 
energy transfer works in the absence of the field extQ  
if the massive gravitating particle moves in an exter-
nal static field extg  produced by another massive 
body at rest. In this case, the nonzero field Q, which 
provokes, according to (2.3), the transfer of the field 
energy, appears in the rest frame of the moving par-
ticle. This fact can be easily verified by going to this 
reference frame.  

As an example, let us consider the case when a 
test body (particle) moves uniformly with a certain 
velocity v  in the external static gravitational field 

extg  produced by some other massive body, for ex-
ample, by the earth. Suppose that in the rest frame of 
the earth (the daily rotation is neglected), this body 
at the point x  of its own world line has a velocity 
v  directed upward, opposite the field strength ext g  
Now we choose in the reference frame associated 
with the earth the three-dimensional coordinate sys-
tem in which the 3x -axis is directed along the veloc-
ity of the particle. So, in the frame chosen in this 
way, (0 0 )v  v  and the strength four-vector in the 

indicated world point x  is 
(0 ) (0 0 0 )ext ext extg g        g  

Then, as a result of the Lorentz transformations, the 
set of transformed components of this four-vector  

( )ext ext extg Q   g  
in the rest frame of the particle at the same world 
point is  

2 2

( )
0 0

1 ( ) 1 ( )

ext ext
ext

v c g g
g

v c v c


        
     

 

As expected, the nonvanishing scalar strength of the 
gravitational field  

 
2

( )

1 ( )

ext
ext

v c g
Q

v c

 
 

                    (2.4) 

appeared among them as the time component.  
The formula (2.4) thus obtained determines the 

positive scalar strength extQ  of the external field, 

which together with the vector self-field properg  of 

the particle forms a convergent flow of gravitational 
energy (1.8):  
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 

 
  

S g  

that increases the particle rest energy and, conse-
quently, its inertial mass as it moves opposite the 
external field ext g  On the contrary, the motion of a 

particle along extg  leads to the appearance of a scalar 

field strength extQ  in its rest frame, similar to (2.4), 

but negative. Accordingly, this field will provoke an 
outflow of energy accumulated in the particle and a 
corresponding decrease in its inertial mass.  

There exists the essential difference between 
the geometric patterns of energy transfer arising in 
two similar cases: around a massive particle in a 
scalar gravitational field, where the density of en-
ergy flux S is proportional to Q g  and around a 

charged particle in a vector electromagnetic field, 
where S  is proportional to  E H  The additional 
electromagnetic energy flows associated with the 
proper electric field of a charged particle, which 
arise when it appears in an external electromagnetic 
field, are strictly orthogonal to the radial direction of 
the Coulomb field of this particle. For this reason, 
there never arise radial convergent or divergent flows 
of electromagnetic energy that could change the rest 
energy of a charged particle. As a result, unlike the 
scalar model of gravitation, in the Maxwell – Lorentz 
electrodynamics, the proper energies of particles and 
hence their inertial masses remain inviolable.  

The above elementary reasoning shows that the 
variability of the inertial mass (mass defect) of iso-
lated material particles is absent in electrodynamics 
and inherent in scalar theories of the gravitational 
field. It is easy to understand that this difference in 
the features of mass with respect of these two types 
of fields is due to the difference in their tensor di-
mensions (tensor ranks). In other words, this differ-
ence is due the vector nature of the electromagnetic 
field and the scalar nature (adopted in our study) of 
the gravitational field. [Note, by the way, that the 
scalar-tensor theory of gravitation proposed in [16], 
which parametrizes the hypothetical evolution of the 
gravitational constant by means of an auxiliary sca-
lar field minimally coupled to matter, also leads for 
the same reason to the correctional variability of the 
inertial mass on a cosmological time scale.] 

Thus, we have found answers to the fundamen-
tal questions arising in the scalar model of gravity, 
how and why the actual inertial mass of particles 
(1.16) or, equivalently, (2.1) changes as they are at 
rest in a gravitational field that varies with time, or if 
they move in an external gravitational field. We 
stated also that there is a big difference between the 
gravitational variability of the rest energy of any 
massive particles (macroscopic bodies, atoms, nuclei, 
and even elementary particles), on the one hand, and 
the usual small defect of mass associated with other 
fundamental interactions: electromagnetic, weak, 

and strong, which manifests itself, for example, in 
the decay of unstable particles, as well as in nuclear 
and chemical transformations, on the other hand. We 
see that in the first case the inertial mass of elemen-
tary particles can be changed up to zero when the 
logarithmic potential of external gravitational field 
varying in time or space goes through zero.  

In connection with the unexpectedly discov-
ered progress in understanding the variability of the 
inertial mass, we recall that Vladimir Fock in [17] 
(Section 34) formulated the problem: why does the 
rest energy of elementary particles in all processes 
except annihilation “behaves passively”, so that even 
its small part never turns into other types of energy, 
in particular, in “active” kinetic form? Since the spe-
cial theory of relativity neither in itself nor with the 
help of general relativity can explain the special sta-
bility of the prevailing part of the rest energy of mat-
ter, Fock actually leaves the problem unanswered, 
stating that the cause of the inviolability of the en-
ergy stored in the mass of elementary particles is of 
a quantum nature.  

Leaving aside the Fock's hypothesis about the 
quantum nature of the inertial mass, in all other re-
spects he is undoubtedly right. The rest energy of 
particles participating in electromagnetic interaction 
is inviolable, and the inclusion of Einstein's theory 
of gravitation does not make the understanding of 
the problem raised by Fock more profound. 
Whereas, having overcome Einstein’s “taboo” and 
turned to the scalar special relativistic theory of 
gravitation, we can meaningfully discuss the dynam-
ics of the formation of the inertial mass of elemen-
tary particles, hidden in the phenomenology of 

2 ,mcE  with the participation of gravitational 
interaction. 

 
3 Special-relativistic effect of the gravita-

tional shift of atomic spectra 
According to the general expression (1.14), the 

energy of atom in n-th stationary state located at rest 
in gravitational field with potential   is 

20 / .c
n n eE E  

Here 0
nE  is the rest energy of this or another 

identical atom in the same quantum state removed 
far from gravitating matter, where we choose the 
gauge condition 0.   Therefore, the frequency of 
the photon emitted by the atom changes with a 
change of potential as 

2
0 0

/( ) .cn m
nm e

  


E E
 

From this formula it follows that the wave-
length 

2/
0 0

2 2
( )

( )
c

nm
nm n m

c c
e 

   
  


E E

      (3.1) 

increases with decreasing potential. Introducing the 
usual “redshift”' parameter equal to the fractional 
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increase in the radiated wavelength when the poten-
tial decreases by an amount :  

( ) ( )
,

( )
nm nm

nm

z
    


 

 

we get from (3.1) the rigorously valid relation re-
gardless of the value of :  

2/ 1.cz e                          (3.2) 
In cases of a weak field or small potential 

variations, when 2/ 1,c ∣ ∣  we can easily dedu-

ce from (3.2) the well-known approximate formula 

2
.z

c


                            (3.3) 

A detailed analysis of the classical phenome-
non of a decrease of the characteristic frequencies of 
atoms and nuclei placed in a static gravitational field 
on the basis of a formula that coincides with our 
approximate formula (3.3) is given in a methodo-
logical article [18] by Okun’, Selivanov, and Teleg-
di. As in our article, the decrease in the frequency of 
a photon or gamma-quantum emitted by atom or 
nucleus in a static gravitational field is considered in 
[18] as a result of a “blue shift” of these sources, that 
is, due to increase in their rest energy with height; at 
the same time, it is assumed that the frequency of the 
propagating electromagnetic radiation is unaffected 
by the presence of a gravitational field. 

The special-relativistic “blue shift” of mass-
energy (2.1) in the gravitational field has been 
known thanks to Nordström [3] for more than a hun-
dred years. But unfortunately, in the literature there 
is sometimes an erroneous statement that the gravita-
tional redshift cannot be explained within the special 
theory of relativity. A characteristic examples of this 
are the books [19] and [20] by Norbert Straumann. 
In the first of them a brave verdict “The Gravita-
tional Red Shift is not Consistent with Special Rela-
tivity” author has made as the title of the relevant 
section. But we just saw a completely opposite con-
clusion, therefore, the author’s pseudo-arguments 
given to prove the quoted statement, as well as the 
pseudo-proof itself, we leave without comment. 

 
We are grateful to N.V. Maksimenko and 

Yu.P. Vyblyi for the fruitful discussions, careful 
reading of the manuscript, and helpful comments.  
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