Tom 26 № 3

УДК 512.542

КРИТЕРИЙ СУБНОРМАЛЬНОСТИ В КОНЕЧНОЙ ГРУППЕ: РЕДУКЦИЯ К ПРОСТЕЙШИМ БИНАРНЫМ РАЗБИЕНИЯМ

Ф. Сунь, С. Йи, С. Ф. Каморников

В статье развивается критерий Виландта о субнормальности подгруппы в конечной группе. Для множества $\pi=\{p_1,p_2,\ldots,p_n\}$ и разбиения $\sigma=\{\{p_1\},\{p_2\},\ldots,\{p_n\},\{\pi\}'\}$ доказано, что подгруппа H σ -субнормальна в конечной группе G тогда и только тогда, когда она $\{\{p_i\},\{p_i\}'\}$ -субнормальна в G для любого $i=1,2,\ldots,n$. В частности, подгруппа H субнормальна в G тогда и только тогда, когда для любого простого числа p она $\{\{p\},\{p\}'\}$ -субнормальна в $\langle H,H^x\rangle$ для каждого элемента $x\in G$.

Ключевые слова: конечная группа, субнормальная подгруппа, σ -субнормальная подгруппа, простейшее бинарное разбиение.

F. Sun, X. Yi, S. F. Kamornikov. Criterion of subnormality in a finite group: Reduction to elementary binary partitions.

Wielandt's criterion for the subnormality of a subgroup in a finite group is developed. For a set $\pi = \{p_1, p_2, \ldots, p_n\}$ and a partition $\sigma = \{\{p_1\}, \{p_2\}, \ldots, \{p_n\}, \{\pi'\}'\}$, it is proved that a subgroup H is σ -subnormal in a finite group G if and only if it is $\{\{p_i\}, \{p_i\}'\}$ -subnormal in G for every $i = 1, 2, \ldots, n$. In particular, H is subnormal in G if and only if it is $\{\{p\}, \{p\}'\}$ -subnormal in (H, H^x) for every prime P and any element P and P is subnormal in P in P

Keywords: finite group, subnormal subgroup, σ -subnormal subgroup, elementary binary partition.

MSC: 20D25, 20D35

DOI: 10.21538/0134-4889-2020-26-3-211-218

Введение

В работе рассматриваются только конечные группы.

Хорошо известен следующий критерий субнормальности Виландта [1]: $noderpynna\ H$ субнормальна в группе G тогда и только тогда, когда она субнормальна в $\langle H, H^x \rangle$ для любого элемента $x \in G$.

Признак субнормальности, ослабляющий требование субнормальности подгруппы H в подгруппе $\langle H, H^x \rangle$, приводится в настоящей работе.

Пусть $\sigma = \{\sigma_i | i \in I\}$ — некоторое разбиение множества всех простых чисел \mathbb{P} , т.е. $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ и $\sigma_i \cap \sigma_j = \emptyset$ для всех $i \neq j$. Если $\sigma = \{\pi, \pi'\}$ для некоторого множества π простых чисел, то разбиение σ будем называть бинарным, а если, кроме того, $\pi = \{p\}$, где p — некоторое простое число, то будем говорить, что $\sigma = \{\{p\}, \{p\}'\}$ — простейшее бинарное разбиение.

В работе предлагается подход, который позволяет для ряда специальных разбиений редуцировать решение некоторых задач, связанных с исследованием свойств σ -субнормальных подгрупп, к случаю простейших бинарных разбиений.

В теории конечных групп концепция σ -субнормальной подгруппы, развивающая идею субнормальной подгруппы, предложена А. Н. Скибой в статье [2]. Эта концепция базируется на следующих определениях.

Группа G называется σ -примарной, если она является σ_i -группой для некоторого $i \in I$. Подгруппа H группы G называется σ -субнормальной, если существует цепь подгрупп

$$H = H_0 \subseteq H_1 \subseteq \ldots \subseteq H_k = G$$

такая, что для каждого $i=1,2,\ldots,k$ либо подгруппа H_{i-1} является нормальной в H_i , либо $H_i/Core_{H_i}(H_{i-1})$ — σ -примарная группа. В случае простейшего бинарного разбиения $\sigma=\{\{p\},\{p\}'\}$ подгруппа H группы G — σ -субнормальна, если существует цепь подгрупп

$$H = H_0 \subseteq H_1 \subseteq \ldots \subseteq H_k = G$$

такая, что для каждого $i=1,2,\ldots,k$ либо подгруппа H_{i-1} является нормальной в H_i , либо $H_i/Core_{H_i}(H_{i-1})-p$ -группа, либо $H_i/Core_{H_i}(H_{i-1})-p'$ -группа.

Понятно, что подгруппа H субнормальна в группе G тогда и только тогда, когда она σ -субнормальна в G для минимального разбиения $\sigma = \{\{2\}, \{3\}, \{5\}, \ldots\}$. Отметим еще, что $\{\{p\}, \{p\}'\}$ -субнормальная подгруппа не всегда является субнормальной в G (например, любая подгруппа p'-группы G является $\{\{p\}, \{p\}'\}$ -субнормальной в G).

Главная цель данной работы — доказательство теорем 1 и 2.

Теорема 1. Пусть $\pi = \{p_1, p_2, \dots, p_n\}$ — некоторое множество простых чисел. Если $\sigma = \{\{p_1\}, \{p_2\}, \dots, \{p_n\}, \{\pi\}'\}$, то подгруппа H группы G является σ -субнормальной в G тогда и только тогда, когда она $\{\{p_i\}, \{p_i\}'\}$ -субнормальна в G для любого $i = 1, 2, \dots, n$.

В случае, когда $\pi = \mathbb{P}$ — множество всех простых чисел, получаем

Следствие 1. Подгруппа H субнормальна в группе G тогда и только тогда, когда она $\{\{p\}, \{p\}'\}$ -субнормальна в G для любого простого числа p.

Соединяя следствие 1 с критерием Виландта из [1], имеем

Следствие 2. Подгруппа H субнормальна в группе G тогда u только тогда, когда для любого простого числа p она $\{\{p\}, \{p\}'\}$ -субнормальна в $\langle H, H^x \rangle$ для каждого элемента $x \in G$.

Следствие 3. Подгруппа H субнормальна в группе G тогда u только тогда, когда для любого простого числа p она $\{\{p\}, \{p\}'\}$ -субнормальна в $\langle H, x \rangle$ для каждого элемента $x \in G$.

Отметим, что следствия 2 и 3 вытекают также из работы Кляйдмана [3], который, отвечая на вопрос Кегеля [4] и Виландта [5], доказал, что подгруппа H группы G является субнормальной в G, если для любого простого числа p она является p-субнормальной в G, т.е. $H \cap P$ — силовская p-подгруппа из H для любой силовской p-подгруппы P группы G. Условие $\{\{p\}, \{p\}'\}$ -субнормальности подгруппы H в группе G более сильное по сравнению с условием p-субнормальности. Как показал A. H. Скиба в [2], любая $\{\{p\}, \{p\}'\}$ -субнормальная подгруппа группы G является p-субнормальной. Простые примеры показывают, что обратное утверждение не верно.

Отмеченный выше критерий Виландта из [1] инициировал следующий вопрос, поставленный А. Н. Скибой в [2] под номером 4.10:

Верно ли, что подгруппа H является σ -субнормальной в G, если она σ -субнормальна в $\langle H, x \rangle$ для любого элемента $x \in G$.

Положительный ответ на данный вопрос для частных разбиений σ , опирающихся на простейшие бинарные разбиения, сформулирован в следующей теореме.

Теорема 2. Пусть $\pi = \{p_1, p_2, \dots, p_n\}$ — некоторое множество простых чисел, содержащее число 2. Если $\sigma = \{\{p_1\}, \{p_2\}, \dots, \{p_n\}, \{\pi\}'\}$, то подгруппа H группы G является σ -субнормальной в G тогда и только тогда, когда она σ -субнормальна в $\langle H, x \rangle$ для любого $x \in G$.

1. Основные определения и предварительные результаты

Основные свойства σ -субнормальных подгрупп, которые многократно используются в доказательствах, приведем в виде лемм. Доказательство первых двух из них осуществляется простой проверкой.

Лемма 1. Пусть H и N — подгруппы группы G, причем подгруппа N нормальна в G. Тогда:

- 1) если подгруппа H является σ -субнормальной в G, то подгруппа HN/N σ -субнормальна в G/N;
- 2) если $N \subseteq H$, то подгруппа H σ -субнормальна в G тогда и только тогда, когда подгруппа H/N σ -субнормальна в G/N.

Лемма 2. Пусть H и K — подгруппы группы G, причем подгруппа H σ -субнормальна в G. Тогда:

- 1) если $K \subseteq H$ и подгруппа K σ -субнормальна в H, то K σ -субнормальна в G;
- 2) подгруппа $K \cap H$ σ -субнормальна в K;
- 3) если $H \subseteq K$, то H σ -субнормальна в K.

Напомним, что формация — это класс групп, замкнутый относительно взятия гомоморфных образов и конечных подпрямых произведений. Если \mathfrak{F} — непустая формация, то через $G^{\mathfrak{F}}$ обозначается пересечение всех нормальных подгрупп N группы G, для которых $G/N \in \mathfrak{F}$ (подгруппа $G^{\mathfrak{F}}$ называется \mathfrak{F} -корадикалом группы G).

Класс \mathfrak{F} называется *классом Фиттинга*, если он удовлетворяет следующим требованиям:

- 1) \mathfrak{F} нормально наследственный класс;
- 2) из G = AB, где A и B нормальные подгруппы группы G, принадлежащие \mathfrak{F} , всегда следует $G \in \mathfrak{F}$.

Формация Фиттинга — это формация, являющаяся классом Фиттинга.

Следуя [2], будем говорить, что группа G σ -нильпотентна, если она прямое произведение некоторых σ -примарных групп. В случае, когда $\sigma=\{\{p\},\{p\}'\}$, группа G является σ -нильпотентной тогда и только тогда, когда она p-разложима, т. е. представима в виде $G=G_p\times G_{p'}$. Как отмечено в [2], класс \mathfrak{N}_{σ} всех σ -нильпотентных групп — наследственная формация Фиттинга. Отсюда, в частности, получаем, что в любой группе G существует σ -нильпотентных корадикал — наименьшая нормальная подгруппа, факторгруппа, по которой σ -нильпотентна. Кроме того, в любой группе G существует наибольшая нормальная σ -нильпотентная подгруппа. Эта подгруппа обозначается через $F_{\sigma}(G)$ и называется σ -нильпотентным радикалом группы G. Если $\sigma=\{\{p\},\{p\}'\}$, то, очевидно, $F_{\sigma}(G)=O_p(G)\times O_{p'}(G)$.

При доказательстве теорем нам понадобится также следующая информация о свойствах σ -субнормальных подгрупп группы G.

Лемма 3 [6, лемма 1.3]. Если подгруппа H группы G является σ -субнормальной в G, то \mathfrak{N}_{σ} -корадикал подгруппы H субнормален в G.

Лемма 4 [2, лемма 2.6 (п. 11)]. Если подгруппа H группы G является σ -субнормальной в G и $H \in \mathfrak{N}_{\sigma}$, то H содержится в \mathfrak{N}_{σ} -радикале группы G.

Будем говорить, что пара (G,H) является контримером к теореме 2, если для любого $x\in G$ подгруппа H σ -субнормальна в $\langle H,x\rangle$, но H не σ -субнормальна в G. Если при этом пара (G,H) такова, что сумма |G|+|H| минимальна, то контриример (G,H) будем называть минимальным контриримером к теореме 2.

Лемма 5. Если (G, H) — минимальный контрпример к теореме 2, то справедливы следующие утверждения:

- 1) H группа простого порядка p;
- 2) либо G простая неабелева группа, либо она является почти простой с цоколем N и имеет вид G = N > H.

Д о к а з а т е л ь с т в о. Предположим, что группа G не является простой. Пусть N — ее минимальная нормальная подгруппа. Согласно лемме 1 подгруппа HN/N σ -субнормальна в

$$\langle HN/N, xN \rangle = \langle H, x \rangle N/N$$

для любого $x \in G$. Так как |G/N| + |HN/N| < |G| + |H|, то из минимальности контрпримера выводим, что подгруппа HN/N σ -субнормальна в G/N, а значит, подгруппа HN σ -субнормальна в G. Если |HN| < |G|, то с учетом выбора группы G подгруппа H σ -субнормальна в HN. Теперь по лемме 2 подгруппа H σ -субнормальна в G. Пришли к противоречию с выбором группы G и ее подгруппы H.

Поэтому полагаем далее, что G = HN и $Core_G(H) = 1$.

Ввиду леммы 3 для любого элемента $x \in G$ подгруппа $H^{\mathfrak{N}_{\sigma}}$ субнормальна в $\langle H, x \rangle$. Но тогда подгруппа $H^{\mathfrak{N}_{\sigma}}$ субнормальна в $\langle H^{\mathfrak{N}_{\sigma}}, x \rangle$ для любого $x \in G$. Отсюда согласно теореме 3 из [1] подгруппа $H^{\mathfrak{N}_{\sigma}}$ является субнормальной в группе G.

Пусть M — максимальная подгруппа группы G, содержащая H. Так как |M|+|H|<|G|+|H|, то из минимальности контрпримера имеем, что подгруппа H σ -субнормальна в M. По лемме 7.3.16 из [7] $H^{\mathfrak{N}_{\sigma}} \subseteq Core_G(M)$. Если $H^{\mathfrak{N}_{\sigma}} \neq 1$, то из минимальности контрпримера следует, что подгруппа $HCore_G(M)$ σ -субнормальна в G. $HCore_G(M) \subseteq M$, поэтому H σ -субнормальна в $HCore_G(M)$. Теперь по лемме 2 подгруппа H является σ -субнормальной в G. Снова пришли к противоречию. Итак, $H^{\mathfrak{N}_{\sigma}} = 1$ и $H \in \mathfrak{N}_{\sigma}$.

Предположим, что H не является примарной циклической группой. Тогда в H найдутся две различные максимальные подгруппы H_1 и H_2 . Поскольку подгруппа H принадлежит формации \mathfrak{N}_{σ} , то подгруппы H_1 и H_2 σ -субнормальны в H. Следовательно, ввиду леммы 2 для любого $x \in G$ подгруппа H_1 σ -субнормальна в $\langle H_1, (H_1)^x \rangle$, а подгруппа H_2 σ -субнормальна в $\langle H_2, (H_2)^x \rangle$. Но тогда из минимальности контрпримера следует, что подгруппы H_1 и H_2 σ -субнормальны в G. По теореме 1.1 из [6] формация \mathfrak{N}_{σ} обладает решеточным свойством. Поэтому подгруппа $H = \langle H_1, H_2 \rangle$ σ -субнормальна в G. Пришли к противоречию с условием.

Следовательно, H — примарная циклическая группа. Не нарушая общности рассуждений, будем считать, что $|H|=p^n$, где $p\in\sigma_1$.

Предположим, что n>1. Пусть D- подгруппа порядка p^{n-1} из H. Очевидно, подгруппа D σ -субнормальна в H. Отсюда по лемме 2 она будет σ -субнормальной в подгруппе $\langle D, D^x \rangle$ для любого $x \in G$. Так как |G|+|D|<|G|+|H|, то из минимальности контрпримера следует, что подгруппа D σ -субнормальна в G. Но тогда по лемме 4 подгруппа D содержится в \mathfrak{N}_{σ} -радикале группы G. А так как D является σ_1 -группой, то $D\subseteq O_{\sigma_1}(G)$. Если $D\neq 1$, то сучетом примитивности группы G имеем, что $N\subseteq O_{\sigma_1}(G)$. А значит, группа G=HN является σ_1 -группой и подгруппа G от G0, что противоречит условию.

Таким образом, D=1, т.е. H есть группа простого порядка p. Тогда либо G — простая неабелева группа, либо $H\cap N=1$ и $G=N\leftthreetimes H$, где $H=\langle h\rangle$.

Предположим, что подгруппа N не является простой. Тогда она представляется в виде $N=N_1\times N_2\times\ldots\times N_t$, где t>1 и $N_1,\,N_2,\,\ldots,\,N_t$ — изоморфные простые группы. При этом N_1 не является σ_1 -группой, так как в противном случае H σ -субнормальна в G. Как следует из 1.1.40 [8], $t=|G:N_G(N_1)|=|G:N|=|H|=p$. Подгруппа H сопряжением действует транзитивно на множестве $\{N_1,N_2,\ldots,N_p\}$. Так как |H|=p — простое число, то, очевидно, что $H=\langle h\rangle$ для всякого неединичного элемента $h\in H$. Поэтому для каждого N_i из множества $\{N_1,N_2,\ldots,N_p\}$ имеем $N_i^h\neq N_i$. Таким образом, H действует на множестве $\{N_1,N_2,\ldots,N_p\}$ регулярно. Отсюда если Q — силовская q-подгруппа из N_1 для некоторого

простого числа q, не принадлежащего σ_1 , то $R=Q\times Q^h\times\ldots\times Q^{h^{p-1}}$ — силовская q-подгруппа прямого произведения $N=N_1\times N_2\times\ldots\times N_p$. При этом подгруппа H нормализует R. Так как |HR|<|G|, то с учетом выбора группы G подгруппа H σ -субнормальна в HR. Тогда по лемме 4 H содержится в \mathfrak{N}_{σ} -радикале подгруппы HR. Из этого факта, в частности, выводим, что $H\subseteq O_{\sigma_1}(HR)$. Поскольку H — силовская p-подгруппа группы HR и число q не принадлежит σ_1 , то $H=O_p(HR)$. А так как H нормализует R, то $HR=H\times R$. Пришли к противоречию с тем, что подгруппа H действует транзитивно на множестве $\{N_1,N_2,\ldots,N_p\}$. Следовательно, t=1 и подгруппа N является простой.

Лемма доказана.

2. Доказательство теоремы 1

Пусть $\pi = \{p_1, p_2, \dots, p_n\}$ и $\sigma = \{\{p_1\}, \{p_2\}, \dots, \{p_n\}, \{\pi\}'\}$. Если подгруппа H σ -субнормальна в группе G, то из определения σ -субнормальной подгруппы и вида разбиения σ следует, что H является $\{\{p_i\}, \{p_i\}'\}$ -субнормальной в G для любого $i = 1, 2, \dots, n$.

Докажем обратное утверждение. Пусть G — группа наименьшего порядка, обладающая подгруппами, которые $\{\{p_i\}, \{p_i\}'\}$ -субнормальны в G для любого $i=1,2,\ldots,n$, но не являются σ -субнормальными в G. Среди всех таких подгрупп выберем некоторую подгруппу H. Очевидно, $H \neq 1$.

Пусть N — минимальная нормальная подгруппа группы G. По лемме 1 подгруппа HN/N $\{\{p_i\},\{p_i\}'\}$ -субнормальна в G/N для любого $i=1,2,\ldots,n$. Тогда с учетом выбора группы G подгруппа HN/N σ -субнормальна в G/N, а значит, по лемме 1 подгруппа HN σ -субнормальна в G. Отметим, что согласно лемме 2 подгруппа H является $\{\{p_i\},\{p_i\}'\}$ -субнормальной в HN для любого $i=1,2,\ldots,n$. Поэтому если |HN|<|G|, то ввиду выбора группы G подгруппа H будет σ -субнормальной в HN. Но тогда по лемме 2 она σ -субнормальна в G. Пришли к противоречию с выбором подгруппы H.

Полагаем далее, что HN=G для любой минимальной нормальной подгруппы N группы G. При этом, очевидно, $Core_G(H)=1$. Рассмотрим два случая.

- 1. Пусть N абелева p-группа для некоторого простого p. Тогда, очевидно, H максимальная подгруппа группы G. По определению имеем, что для любого $i=1,2,\ldots,n$ либо подгруппа H субнормальна в G, либо $G/Core_G(H)$ является p_i -группой, либо $G/Core_G(H)$ p_i' -группа. Ясно, что ввиду выбора подгруппа H не может быть субнормальной в G. Если группа $G/Core_G(H)$ есть p_i -группа, то подгруппа $H/Core_G(H)$ нормальна в $G/Core_G(H)$, а значит, и сама подгруппа H нормальна в G; противоречие. Следовательно, $G/Core_G(H)$ является p_i' -группой для любого $i=1,2,\ldots,n$. Но тогда $G/Core_G(H)$ π' -группа. Отсюда и из $Core_G(H)$ = 1 следует, что G π' -группа. Это означает по определению, что подгруппа H является σ -субнормальной в группе G. Снова пришли к противоречию.
- 2. Пусть N неабелева группа и группа G не содержит абелевых минимальных нормальных подгрупп. Предположим сначала, что $H \cap N \neq 1$. Отметим, что по лемме 2 подгруппа $H \cap N \{\{p_i\}, \{p_i\}'\}$ -субнормальна в N для любого $i = 1, 2, \ldots, n$.

Пусть сначала N=G, т. е. G — простая неабелева группа. Тогда существует цепь подгрупп $H=H_0\subset H_1\subset\ldots\subset H_k=G$ такая, что для каждого $i=1,2,\ldots,k$ либо подгруппа H_{i-1} нормальна в H_i , либо $H_i/Core_{H_i}(H_{i-1})$ является p_i -группой, либо $H_i/Core_{H_i}(H_{i-1})-p_i'$ -группа. В частности, либо подгруппа H_{k-1} нормальна в G, либо $G/Core_G(H_{k-1})-p_i$ -группа, либо $G/Core_G(H_{k-1})$ является p_i' -группой. Так как группа G проста, то она является p_i' -группой для всех $i=1,2,\ldots,n$. Следовательно, $G-\pi'$ -группа. Но тогда подгруппа $H-\sigma$ -субнормальна в G. Противоречие.

Поэтому полагаем далее, что |N| < |G|. Тогда ввиду выбора группы G подгруппа $H \cap N$ будет σ -субнормальной в N (а значит, и в G, так как N нормальна в G). Предположим, что $(H \cap N)^{\mathfrak{N}_{\sigma}} \neq 1$. По лемме 3 подгруппа $(H \cap N)^{\mathfrak{N}_{\sigma}}$ субнормальна в N, а из строения N следует, что подгруппа $(H \cap N)^{\mathfrak{N}_{\sigma}}$ нормальна в N. С другой стороны, из нормальности $H \cap N$ в H

имеем, что подгруппа $(H \cap N)^{\mathfrak{N}_{\sigma}}$ нормальна в H. Поэтому $G = HN \subseteq N_G((H \cap N)^{\mathfrak{N}_{\sigma}})$, т. е. подгруппа $(H \cap N)^{\mathfrak{N}_{\sigma}}$ нормальна в G. Так как $(H \cap N)^{\mathfrak{N}_{\sigma}} \neq 1$, то приходим к противоречию с тем, что $Core_G(H) = 1$.

Соответственно полагаем далее, что $(H \cap N)^{\mathfrak{N}_{\sigma}} = 1$, т. е. $H \cap N - \sigma$ -нильпотентная группа. По лемме $4 \ H \cap N \subseteq F_{\sigma}(G)$. Отсюда следует, что $N - \pi'$ -группа. Так как подгруппа H является $\{\{p_i\}, \{p_i\}'\}$ -субнормальной в G, то существует цепь подгрупп

$$H = H_0 \subseteq H_1 \subseteq \ldots \subseteq H_k = G$$

такая, что для каждого $i=1,2,\ldots,k$ либо подгруппа H_{i-1} нормальна в H_i , либо группа $H_i/Core_{H_i}(H_{i-1})$ является p_i -группой, либо $H_i/Core_{H_i}(H_{i-1})-p_i'$ -группа. Но N есть π' -группа и G=HN. Поэтому $H_i/Core_{H_i}(H_{i-1})$ не может быть p_i -группой. Следовательно, либо подгруппа H_{i-1} нормальна в H_i , либо группа $H_i/Core_{H_i}(H_{i-1})$ является p_i' -группой. При этом если подгруппа H_{i-1} нормальна в H_i , то ввиду G=HN фактор H_{i-1}/H_i также является p_i' -группой. Теперь по лемме 3.17 из [9] подгруппа H содержит $\mathfrak{G}_{p_i'}$ -корадикал $O^{p_i'}(G)$ группы G, где $\mathfrak{G}_{p_i'}$ формация всех p_i' -групп. Если $O^{p_i'}(G) \neq 1$, то приходим к противоречию с тем, что $Core_G(H)=1$. Следовательно, $O^{p_i'}(G)=1$, а значит, $H-p_i'$ -группа. А так как N является p_i' -группой, то $G-p_i'$ -группа. С учетом произвольного выбора индекса i отсюда получаем, что $G-\pi'$ -группа. Но тогда подгруппа H σ -субнормальна в группе G; противоречие.

Итак, $H \cap N = 1$. Пусть $\mathfrak{F} = \mathfrak{N}_{\{\{p_i\},\{p_i\}'\}}$ — формация всех $\{\{p_i\},\{p_i\}'\}$ -нильпотентных групп. Ввиду леммы 3 подгруппа $H^{\mathfrak{F}}$ субнормальна в G. Более того, подгруппа $H^{\mathfrak{F}}$ нормальна в H и по теореме Виландта из [10] $N \subseteq N_G(H^{\mathfrak{F}})$. Поэтому $G = \langle H, N \rangle \subseteq N_G(H^{\mathfrak{F}})$, т. е. подгруппа $H^{\mathfrak{F}}$ нормальна в G. Если $H^{\mathfrak{F}} \neq 1$, то приходим к противоречию с тем, что $Core_G(H) = 1$.

Таким образом, $H^{\mathfrak{F}}=1$, т.е. $H-\{\{p_i\},\{p_i\}'\}$ -нильпотентная группа. По лемме 4 $H\subseteq F_{\{\{p_i\},\{p_i\}'\}}(G)$. Отсюда и из того, что группа G не содержит абелевых минимальных нормальных подгрупп, следует, что $H\subseteq O_{p_i'}(G)$. С учетом произвольного выбора индекса i отсюда получаем, что $H\subseteq O_{\pi'}(G)$. Если N не является π' -группой, то $G=O_{\pi'}(G)\times N$. Отсюда и из $H\subseteq O_{\pi'}(G)$ имеем, что подгруппа H является σ -субнормальной в группе G; противоречие. Если же N является π' -группой, то $G-\pi'$ -группа. Тогда, очевидно, подгруппа H σ -субнормальна в G. Снова приходим к противоречию.

Теорема доказана.

3. Доказательство теоремы 2

Пусть (G, H) — минимальный контрпример к теореме 2. Тогда согласно лемме 5 справедливы следующие утверждения:

- 1) H группа простого порядка p;
- 2) G простая неабелева группа либо является почти простой с цоколем N и имеет вид $G = N \leftthreetimes H$.

Пусть p принадлежит π . Так как по условию подгруппа H σ -субнормальна в $\langle H, x \rangle$ для любого элемента $x \in G$, то по лемме 4 $H \subseteq O_p(\langle H, x \rangle)$. В частности, $\langle H, H^x \rangle$ есть p-группа для любого $x \in G$. Отсюда по теореме Бэра из [11] $H \subseteq O_p(G)$. Пришли к противоречию с тем, что G — простая или почти простая группа.

Пусть теперь p не принадлежит π . Поскольку по условию подгруппа H σ -субнормальна в $\langle H, x \rangle$ для любого элемента $x \in G$, то по лемме 4 $H \subseteq O_{\pi'}(\langle H, x \rangle)$. Из этого следует, что $\langle H, x \rangle \subseteq O_{\pi'}(\langle H, x \rangle)\langle x \rangle$. Так как число 2 не принадлежит π' , то подгруппа $\langle H, x \rangle$ является разрешимой для любого $x \in G$. Отсюда ввиду теоремы 1 из [12] $H \subseteq R(G)$, где R(G) — наибольшая нормальная разрешимая подгруппа группы G. Снова пришли к противоречию с тем, что G — простая или почти простая группа.

Теорема доказана.

СПИСОК ЛИТЕРАТУРЫ

- 1. Wielandt H. Criterion of subnormality in finite groups // Math. Z. 1974. Vol. 138. P. 199–203. doi: 10.1007/BF01237117.
- 2. Skiba A.N. On σ -subnormal and σ -permutable subgroups of finite groups // J. Algebra. 2015. Vol. 436. P. 1–16. doi: 10.1016/j.jalgebra.2015.04.010.
- 3. **Kleidman P.B.** A proof of the Kegel-Wielandt conjecture on subnormal subgroups // Ann. Math. 1991. Vol. 133, no. 2. P. 369–428. doi: 10.2307/2944342.
- 4. **Kegel O.H.** Sylow-Gruppen und Subnormalteiler endlicher Gruppen // Math. Z. 1962. Vol. 78, no. 1. P. 205–221. doi: 10.1007/BF01195169.
- 5. Wielandt H. Zusammengesetzte Gruppen: Hölders Programm heute // Proc. Sympos. Pure Math. 1980. Vol. 37. P. 161–173. doi: 10.1090/pspum/037/604575.
- 6. **Kamornikov S.F.** Permutability of subgroups and \mathfrak{F} -subnormality // Sib. Math. J. 1996. Vol. 37, no. 5. P. 936–949. doi: 10.1007/BF02110725.
- 7. **Lennox J.C., Stonehewer S.E.** Subnormal subgroups of groups. Oxford: Clarendon Press, 1987. 270 p.
- 8. Ballester-Bolinches A., Ezquerro L.M. Classes of finite groups. N Y: Springer, 2006. 385 p. doi: 10.1007/1-4020-4719-3.
- 9. **Каморников С.Ф., Селькин М.В.** Подгрупповые функторы и классы конечных групп. Минск: Белорусская наука, 2003. 256 р.
- 10. Wielandt H. Über den Normalisator der subnormalen Untergruppen // Math. Z. 1958. Vol. 69, no. 8. P. 463-465. doi: 10.1007/BF01187422.
- 11. Baer R. Engelsche Elemente Noetherscher Gruppen // Ann. Math. 1957. Vol. 133, no. 3. P. 256–270. doi: 10.1007/BF02547953.
- 12. **Guest S., Levy D.** Criteria for solvable radical membership via p-elements // J. Algebra. 2014. Vol. 415. P. 88–111. doi: 10.1016/j.jalgebra. 2014. 06.003.

Поступила 4.06.2020 После доработки 30.06.2020 Принята к публикации 3.07.2020

Сунь Фенфен (Sun Fenfen)

Zhejiang Sci-Tech University, Hangzhou, P. R. China

Чжэцзянский политехнический университет, г. Ханчжоу

e-mail: sun4624@163.com

Йи Сяолан (Yi Xiaolan)

Zhejiang Sci-Tech University, Hangzhou, P. R. China

Чжэцзянский политехнический университет, г. Ханчжоу

e-mail: yixiaolan2005@126.com

Каморников Сергей Федорович

д-р физ.-мат. наук, профессор

Гомельский государственный университет им. Ф. Скорины, г. Гомель, Беларусь

e-mail: sfkamornikov@mail.ru

REFERENCES

- 1. Wielandt H. Criterion of subnormality in finite groups. $Math.\ Z., 1974, vol.\ 138, pp.\ 199–203$ (in German). doi: 10.1007/BF01237117.
- 2. Skiba A.N. On σ -subnormal and σ -permutable subgroups of finite groups. J. Algebra, 2015, vol. 436, pp. 1–16. doi: 10.1016/j.jalgebra.2015.04.010.
- 3. Kleidman P.B. A proof of the Kegel-Wielandt conjecture on subnormal subgroups. Ann. Math., 1991, vol. 133, no. 2, pp. 369-428. doi: 10.2307/2944342.

- 4. Kegel O.H. Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math~Z.,~1962,~vol.~78,~no.~1,~pp.~205–221.~doi: <math>10.1007/BF01195169.
- 5. Wielandt H. Zusammengesetzte Gruppen: Hölders Programm heute. Proc. Sympos. Pure Math., 1980, vol. 37, pp. 161–173. doi: 10.1090/pspum/037/604575.
- 6. Kamornikov S.F. Permutability of subgroups and \mathfrak{F} -subnormality. Sib. Math. J., 1996, vol. 37, no. 5, pp. 936–949. doi: 10.1007/BF02110725.
- 7. Lennox J.C., Stonehewer S.E. Subnormal subgroups of groups. Oxford: Clarendon Press, 1987, 270 p. ISBN: 9780198535522.
- 8. Ballester-Bolinches A., Ezquerro L.M. Classes of finite groups. N Y: Springer, 2006, 385 p. doi: 10.1007/1-4020-4719-3.
- 9. Kamornikov S.F., Sel'kin M.V. *Podgruppovye funktory i klassy konechnykh grupp* [Subgroup functors and classes of finite groups]. Minsk: Belarusskaya Nauka Publ., 2003. 256 p.
- 10. Wielandt H. Über den Normalisator der subnormalen Untergruppen. Math.~Z.,~1958,~vol.~69,~no.~8,~pp.~463–465. doi: 10.1007/BF01187422.
- 11. Baer R. Engelsche Elemente Noetherscher Gruppen. Math.~Ann.,~1957,~vol.~133,~no.~3,~pp.~256–270. doi: 10.1007/BF02547953.
- 12. Guest S., Levy D. Criteria for solvable radical membership via p-elements. J. Algebra, 2014, vol. 415, pp. 88–111. doi: 10.1016/j.jalgebra.2014.06.003.

Received June 4, 2020 Revised June 30, 2020 Accepted July 3, 2020

Fenfen Sun, Zhejiang Sci-Tech University, Hangzhou, P. R. China, e-mail: sun4624@163.com.

Xiaolan Yi, Zhejiang Sci-Tech University, Hangzhou, P. R. China, e-mail: yixiaolan2005@126.com.

Sergei Fedorovich Kamornikov, Dr. Phys.-Math. Sci., Prof., Francisk Skorina Gomel State University, 246019, Gomel, Republic of Belarus. e-mail: sfkamornikov@mail.ru.

Cite this article as: F. Sun, X. Yi, S. F. Kamornikov. Criterion of subnormality in a finite group: Reduction to elementary binary partitions, *Trudy Instituta Matematiki i Mekhaniki URO RAN*, 2020, vol. 26, no. 3, pp. 211–218.