= МАТЕМАТИКА

УДК 512.542

О р-СВЕРХРАЗРЕШИМОСТИ ОДНОГО КЛАССА КОНЕЧНЫХ ГРУПП

И.М. Дергачева, Е.А. Задорожнюк, И.П. Шабалина

Белорусский государственный университет транспорта, Гомель

ON *p*-SUPERSOLUBILITY OF ONE CLASS FINITE GROUPS

I.M. Dergacheva, E.A. Zadorozhnyuk, I.P. Shabalina

Belarusian State University of Transport, Gomel

Доказано следующее: конечная группа G p-сверхразрешима тогда и только тогда, когда она имеет нормальную подгруппу N с p-сверхразрешимой фактор-группой G/N такой, что либо N - p'-группа, либо p делит |N|, и $|G: N_G(L)|$ является степенью числа p для любой циклической p-подгруппы L из N порядка p или порядка 4 (если p = 2 и в N силовская 2-подгруппа является неабелевой).

Ключевые слова: конечная группа, р-нильпотентная группа, р-сверхразрешимая группа.

The following is proved: A finite group G is p-supersoluble if and only if it has a normal subgroup N with p-supersoluble quotient G / N such that either N is p' -group or p divides |N| and $|G : N_G(L)|$ equals to a power of p for any cyclic p-subgroup L of N of order p or order 4 (if p = 2 and a Sylow 2-subgroup of N is non-abelian).

Keywords: finite group, p-nilpotent group, p-supersoluble group.

Mathematics Subject Classification (2000): 20D10, 20D15.

Introduction

Throughout this paper, all groups are finite. A group G is said to be p-supersoluble if every chief factor of G is either cyclic or is a p'-group. There are a large number of criteria supersolubility groups (see [1]). And at the same time p-supersolvable groups remain relatively poorly understood. In this note we prove the following result in this trend.

Theorem. Let G be a group and p a prime. Then G is p-supersoluble if and only if it has a normal subgroup N with p-supersoluble quotient G/Nsuch that either N is p'-group or p divides |N| and $|G:N_G(L)|$ equals to a power of p for any cyclic p-subgroup L of N of order p or order 4 (if p = 2 and a Sylow 2-subgroup of N is non-abelian).

Bercovich and Kazarin proved [2, Theorem 1] that if for any cyclic *p*-subgroup *L* of *G* of prime order or order 4, $|G:C_G(L)|$ equals to a power of *p*, then *G* is *p*-nilpotent. From our theorem we obtain the following similar result for the *p*-supersoluble groups.

Corollary 0.1 Let G be a group and p a prime divisor of |G|. If for any cyclic p-subgroup L of G of order p or order 4, $|G: N_G(L)|$ equals to a power of p, then G is p-supersoluble.

Corollary 0.2 (Ito, Gaschütz [3, IV, Theorem 5.7]). If every minimal subgroup of a group G is normal in G, then the commutator subgroup G' of G is 2-closed.

Corollary 0.3 (Buckley [4]). Let G be a group of odd order. If every minimal subgroup of G is normal in G, then G is supersoluble.

All unexplained notations and terminology are standard. The reader is referred to [5] or [6] if necessary.

1 Some lemmas

In order to prove the theorem we need the following lemmas.

Lemma 1.1 Let $L \le G$ and p be a prime divisor of L. Suppose that L is p-closed and $|G: N_G(L)|$ is a power of p. Then the Sylow p-subgroup of L is contained in $O_p(G)$.

Proof. Let L_p be the Sylow *p*-subgroup of L, Pa Sylow subgroup of G containing L_p . Since L_p is characteristic in L, $N_G(L) \le N_G(L_p)$. Hence

$$(L_p)^G = (L_p)^{N_G(L_p)^P} = (L_p)^P \le O_p(G).$$

Lemma 1.2 [7, Theorem 2.4]. Let P be a pgroup, α a p'-automorphism of P.

(1) If $[\alpha, \Omega_2(P)] = 1$, then $\alpha = 1$.

(2) If $[\alpha, \Omega_1(P)] = 1$ and either p is odd or P is abelian, then $\alpha = 1$.

Proof. We use, following [5], $\mathcal{A}(p-1)$ to denote the formation of all abelian groups of exponent dividing p-1. The symbol $Z_{\mathcal{U}}(G)$ denotes the largest normal subgroup of a group G such that every chief factor of G below $Z_{\mathcal{U}}(G)$ is cyclic. \Box

Lemma 1.3 [8, Lemma 2.2]. *Let* E *be a normal* p *-subgroup of a group* G. *If* $E \leq Z_{\mathcal{U}}(G)$, *then*

 $(G / C_G(E))^{\mathcal{A}(p-1)} \leq O_n(G / C_G(E)).$

[©] Dergacheva I.M., Zadorozhnyuk E.A., Shabalina I.P., 2019

Lemma 1.4 Let P be a normal p -subgroup of a group G. Let D be a characteristic subgroup of a psubgroup P such that every non-trivial p'-automorphism of P induces a non-trivial automorphism of D. Suppose that $D \le Z_{\mathcal{U}}(G)$. Then $P \le Z_{\mathcal{U}}(G)$.

Proof. Let $C = C_G(P)$, H/K any chief factor of G below P. Then

 $O_p(G/C_G(H/K)) = 1$

by [1, Appendix C, Corollary 6.4]. Since $D \le Z_{\mathcal{U}}(G)$, then $(G/C_G(D))^{\mathcal{A}(p-1)}$ is a *p*-group by Lemma 1.3. Hence $(G/C)^{\mathcal{A}(p-1)}$ is a *p*-group. Thus

 $G / C_G(H / K) \in \mathcal{A}(p-1)$

and so |H/K| = p by [1, Chapter 1, Theorem 1.4]. Therefore $P \le Z_{ii}(G)$.

Lemma 1.5 Let G be a p-group of class at most 2. Suppose that $\exp(G/Z(G))$ divides p.

(1) If p > 2, then $\exp(\Sigma(G)) = p$.

(2) If G is a non-abelian 2-group, then $\exp(\Sigma(G)) = p$.

Proof. See page 3 in [2].

Lemma 1.6 Let P be a normal p-subgroup of a group G. Suppose that $|G: N_G(L)|$ equals to a power of p for any cyclic p-subgroup L of P of prime order or order 4 (if P is a non-abelian 2-group). Then $P \leq Z_{\mathcal{U}}(G)$.

Proof. Suppose that this lemma is false and let *G* be a counterexample with |G||P| minimal. Let $Z = Z_{\mathcal{U}}(G)$. If *P* is not a non-abelian 2-group we use Ω to denote the subgroup $\Omega_1(P)$. Otherwise, $\Omega = = \Omega_2(P)$. Let *D* be a Thompson critical subgroup of *P*.

(1) *G* has a normal subgroup $R \le P$ such that P/R is a non-cyclic chief factor of *G*, $R \le Z$ and $V \le R$ for any normal subgroup $V \ne P$ of *G* contained in *P*.

Let P/R be a chief factor of G. Then the hypothesis holds for (G, R). Therefore $R \le Z$ by the choice of (G, P) and so P/R is not cyclic. Now let $V \ne P$ be any normal subgroup of G contained in P. Then $V \le Z$. If $V \le R$, then from the G – isomorphism

 $P / R = VR / R \simeq V / V \cap R$

we deduce $P \le Z$, contrary to the choice of (G, P). Hence $V \le R$.

(2) $\Omega = P = D$.

Indeed, suppose that $\Omega < P$. Then, in view of (1), $\Omega \le Z$. Hence $P \le Z$ by Lemmas 1.3 and 1.4, which contradicts the choice of (G, P). Hence $\Omega = P$. In view of Theorem 3.11 in [9, Chapter 5] we obtain similarly that P = D.

(3) The final contradiction.

Let L/R be any minimal subgroup of $P/R \cap Z(G_p/R)$, where G_p is a Sylow *p*-subgroup of *G*. Let $x \in P \setminus R$. Then $|\langle x \rangle|$ is ether prime or 4 by Lemma 1.5. Hence $|G: N_G(\langle x \rangle)|$ is a power of *p*. Hence $L/R = = \langle x \rangle R/R$ is normal in G/R, which contradicts (1).

Lemma 1.7 *Let* $L \le N$ *be subgroups of a group* G, where N is normal in G. Then $|N: N_N(L)|$ divides $|G: N_G(L)|$.

Proof. This follows from $|N: N_N(L)| = |N: N_G(L) \cap N|$

$$N: N_N(L) \models N: N_G(L) \cap N \models$$
$$= |NN_G(L): N_G(L)|.$$

Recall that a formation \mathfrak{F} is a class of groups which is closed under taking homomorphic images and such that each group *G* has the smallest normal subgroup (denoted by $G^{\mathfrak{F}}$) whose quotient is in \mathfrak{F} . A formation \mathfrak{F} is said to be saturated if $G \in \mathfrak{F}$ for any group *G* with $G/\Phi(G) \in \mathfrak{F}$. A group *G* is said to be a minimal non- \mathfrak{F} -group if $G \notin \mathfrak{F}$ but $H \in \mathfrak{F}$ for every proper subgroup *H* of *G*. In what follows we shall need the following result.

Lemma 1.8 [5, Chapter VI, Theorem 25.4]. Let \mathfrak{F} be a saturated formation. Let G be a minimal non- \mathfrak{F} -group such that $G^{\mathfrak{F}}$ is soluble.

(a) $P = G^{\tilde{s}}$ is a p-group for some prime p and P is of exponent p or of exponent 4 (if P is a non-abelian 2-group).

(b) $P/\Phi(P)$ is a chief factor of G and

 $(P / \Phi(P)) \land (G / C_G(P / \Phi(P))) \notin \mathfrak{F}.$

Lemma 1.9 Let p be a prime and G a p-soluble group. Assume that $O_{p'}(G) = 1$. Then the following statements are equivalent.

(i) *G* is *p*-supersoluble;

(ii) G is supersoluble;

(iii) $G/O_p(G)$ is an abelian group of exponent dividing p-1.

Proof. (i) \Rightarrow (ii). Since *G* is *p*-supersoluble, for every chief *p*-factor H/K of *G*, we have |H/K| = p and so $G/C_G(H/K)$ is an abelian group of exponent dividing p-1 (see [1, Chapter 1, Theorem 1.4]. Since $O_{p'}(G) = 1$, the intersection of the centralizers of all chief factors H/K of |H/K| = p is $O_{p',p}(G) = O_p(G)$. Hence *G* is supersoluble by [1]. By using the same arguments, we also see that (ii) \Rightarrow (iii) and (iii) \Rightarrow (i). \Box

2 Proof of Theorem

We have only to prove that if a group G has a normal subgroup N with p-supersoluble quotient such that either N is p'-group or p divides |N| and $|G:N_G(L)|$ equals to a power of p for any cyclic *p*-subgroup *L* of *N* of order *p* or order 4 (if p = 2 and a Sylow 2-subgroup of *N* is non-abelian), then *G* is *p*-supersoluble. Suppose that this is false and let *G* be a counterexample with |G| + |N| minimal. Then *p* divides |N|. Let *P* be Sylow *p*-subgroup of *N*.

(1) $O_{n'}(G) = 1$.

Let $D = O_{p'}(G)$ and H/D a cyclic *p*-subgroup of ND/D of prime order *p* or order 4. Then in view of Schur-Zassenhaus Theorem, there is a cyclic subgroup H_0 of *G* such that $|H_0| = |H/D|$ and $H_0D = H$. Since $(|H_0|, |D|) = 1$ and $H_0 \le ND$ we have $H_0 \le N$. Hence $|G: N_G(H_0)|$ equals to a power of *p* by the hypothesis and so $|G/D: N_{G/D}(H/D)|$ equals to a power of *p*. Therefore the hypothesis holds for (G/D, ND/D). If $D \ne 1$, then G/D is *p*-supersoluble by the choice of |G| + |N|, which implies the *p*-supersolubility of *G*. Thus D = 1.

(2) N is p-supersoluble.

Suppose that N is not p-supersoluble. Then p divides |N|. Moreover, N = G, otherwise N is p-supersoluble by Lemma 1.7 and the choice of G.

(a) For any subgroup H of G we have $O_p(H) \leq Z_{\mathcal{U}}(H)$.

By Lemma 1.6, $O_p(G) \leq Z_u(G)$. Let $P = O_p(H)$ and H be a cyclic p-subgroup of H of prime order or order 4 (if p = 2 and a Sylow 2-subgroup of N is non-abelian). If P is not a nonabelian 2-group we use Ω to denote the subgroup $\Omega_1(P)$. Otherwise, $\Omega = \Omega_2(P)$. By Lemma 1.1, $H \leq O_p(G)$. Hence

 $\Omega \leq Z_{\mathcal{U}}(G) \cap H \leq Z_{\mathcal{U}}(H)$

and so $P \leq Z_{\mathcal{U}}(H)$ by Lemmas 1.2 and 1.4.

(b) *G* is not soluble.

Assume that *G* is soluble and let *H* be a minimal non-*p*-supersoluble subgroup of *G*. Let \mathfrak{F} be the class of all *p*-supersoluble groups. Then \mathfrak{F} is a saturated formation by [3, Chapter VI, Theorem 8.6]. Hence by Lemma 1.8, $P = H^{\mathfrak{F}}$ is a *p*-group and *P* is of exponent *p* or of exponent 4 (if *P* is a non-abelian 2-group). Moreover, $P/\Phi(P)$ is a non-cyclic chief factor of *H*. But from Claim (a) we deduce that $P \leq Z_{\mathcal{U}}(H)$, so $|P/\Phi(P)| = p$. This contradiction shows that we have (b).

(c) $O^q(G) = G$ for all primes $q \neq p$.

Suppose that for some prime $q \neq p$ we have $O^q(G) \neq G$. The hypothesis is true for $(O^q(G), O^q(G))$ by Lemma 1.7, so $O^q(G)$ is *p*-supersoluble by the choice of (G, N) = (G, G). Since $O_{p'}(O^q(G))$ a characteristic subgroup of $O^q(G)$, it is normal in *G*.

Hence in view of (1), $O_{p'}(O^q(G)) = 1$. Therefore $C_G(H/K)$ is supersoluble and $C_G(O^q(G))$ is an abelian group of exponent dividing p-1 by Lemma 1.9. Therefore by Claim (a),

$$O_p(O^q(G)) = O_p(G) \le Z_{\mathcal{U}}(G)$$

and so G is p-supersoluble. This contradiction shows that we have (c).

(d) $O_p(G) \leq Z_{\infty}(G)$.

In view of Lemma 1.1, $O_p(G) \neq 1$. Let H/Kbe any chief factor of G below $O_p(G)$. By Claim (a), |H/K| = p. Hence $G/C_G(H/K)$ a cyclic group of exponent dividing p-1. Suppose that $C_G(H/K) \neq G$. The for some prime $q \neq p$ we have $O^q(G) \neq G$, which contradicts (c). Hence $C_G(H/K) = G$ for each chief factor H/K of Gbelow $O_p(G)$.

The final contradiction for (2).

Let *H* be a minimal non-*p*-nilpotent subgroup of *G*. Then, by [3, Chapter IV, Theorem 5.4], $H = P \ge Q$ is a Schmidt subgroup of *G*, where *P* is a Sylow *p*-subgroup of *H* and *Q* is a Sylow *q*subgroup of *H* for some prime Moreover, *P* is of exponent *p* or of exponent 4 (if *P* is a non-abelian 2group). By Claim (a), $P \le Z_{\mathcal{U}}(H)$, so |P| = p. But then by Lemma 1.1 and (d),

$$P \le Z_{\infty}(G) \cap H \le Z_{\infty}(H),$$

so H is nilpotent. This contradiction completes the proof of (2).

(3) $O_p(N)$ is a Sylow p-subgroup of N and $O_p(N) \leq Z_u(G)$.

By (1), $O_{p'}(N) = 1$, so N is supersoluble and $O_p(N)$ is a Sylow *p*-subgroup of N by Lemma 1.9. On the other hand, $O_p(N)$ is characteristic in N and hence it is normal in G. Finally, $O_p(N) \le Z_u(G)$ by Lemma 1.6.

Final contradiction.

Every chief factor of G below of N either is cyclic or is a p'-group by Claim (3). Hence G is psupersoluble since G/N is p-super-soluble by hypothesis, contrary to the choice of G.

REFERENCES

1. Weinstein, M. Between Nilpotent and Solvable / M. Weinstein. – Polygonal Publishing House, 1982. – 231 p.

2. Bercovich, Ya.G. Indices of elements and normal structure of finite groups / Ya.G. Bercovich, L.S. Kazarin // J. Algebra. – 2005. – Vol. 283, № 1. – P. 564–583.

3. *Huppert*, *B*. Endliche Gruppen I / B. Huppert. – Springer – Verlag, 1967. – 808 p.

4. *Buckley*, *J*. Finite groups whose minimal subgroups are normal / J. Buckley // Math. Z. – 1970. – Vol. 15. – P. 15–17.

5. *Shemetkov*, *L.A.* Formations of algebraic systems / L.A. Shemetkov, A.N. Skiba. – Moscow: Nauka, Main Editorial Board for Physical and Mathematical Literature, 1989. – 257 p.

6. *Doerk*, *K*. Finite Soluble Groups / K. Doerk, T. Hawkes. – Berlin – New York: Walter de Gruyter, 1992. – 901 p. 7. Gagen, T.M. Topics in Finite Groups / T.M. Gagen. – Cambridge University Press, 1976. – 85 p.

8. *Skiba*, *A.N.* A characterization of the hypercyclically embedded subgroups of finite groups / A.N. Skiba // Journal of Pure and Applied Algebra. – 2011. – Vol. 215, \mathbb{N} 3. – P. 257–261.

9. *Gorenstein*, *D*. Finite Groups / D. Gorenstein. – New York – Evanston – London: Harper & Row Publishers, 1968. – 519 p.

Поступила в редакцию 12.04.19.