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Подгруппа A называется полунормальной в группе G, если существует подгруппа B такая, что G = AB и AB1 – собствен-
ная в G подгруппа для каждой собственной подгруппы B1 из B. Если подгруппа A либо субнормальна в G, либо полу-
нормальна в G, то A называется полусубнормальной в группе G. В настоящей работе доказана сверхразрешимость 
группы G при условии, что все силовские подгруппы из двух несопряженных максимальных подгрупп полусубнор-
мальны в группе G. Установлена нильпотентность второго коммутанта ( )G   группы G при условии, что все макси-

мальные подгруппы из двух несопряженных максимальных подгрупп полусубнормальны в группе G.  
 
Ключевые слова: сверхразрешимая группа, полусубнормальная подгруппа, коммутант, силовская подгруппа, макси-
мальная подгруппа. 
 
A subgroup A of a group G is called seminormal in G, if there exists a subgroup B such that G = AB and AB1 is a proper sub-
group of G for every proper subgroup B1 of B. We introduce the new concept that unites subnormality and seminormality. A 
subgroup A of a group G is called semisubnormal in G, if either A is subnormal in G, or is seminormal in G. In this paper we 
proved the supersolubility of a group G under the condition that all Sylow subgroups of two non-conjugate maximal subgroups 
of G are semisubnormal in G. Also we obtained the nilpotency of the second derived subgroup ( )G   of a group G under the 

condition that all maximal subgroups of two non-conjugate maximal subgroups are semisubnormal in G.  
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Introduction  
Throughout this paper, all groups are finite and 

G always denotes a finite group.  
A subgroup A of a group G is called seminor-

mal in G, if there exists a subgroup B such that 
G AB  and 1 1AB B A G   for every proper sub-

group 1B  of B.  

Groups with some seminormal subgroups were 
investigated in works of many authors, see, for ex-
ample, [1]–[10]. In particular, the supersolubility of 
a group with seminormal Sylow subgroups was ob-
tained in [7], [9]. In [6] the supersolubility of a 
group with seminormal 2-maximal subgroups was 
proved. In [10] first two authors obtained the suffi-
cient conditions for the supersolubility of G under 
the condition that all Sylow subgroups or all maxi-
mal subgroups of two non-conjugate maximal sub-
groups of G are seminormal in G.  

We introduce the new concept that unites sub-
normality and seminormality.  

Definition. A subgroup A of a group G is 
called semisubnormal in G, if either A is subnormal 
in G, or is seminormal in G.  

Let M and H be non-conjugate maximal sub-
groups of G. In the present paper we proved the su-
persolubility of a group G under the condition that 
all Sylow subgroups of M and H are semisubnormal 
in G. We also obtained the nilpotency of the second 

derived subgroup ( )G   of a group G under the con-

dition that all maximal subgroups of M and H are 
semisubnormal in G.  
 

1 Preliminary results  
We use the standart terminology of [11], [12]. 

Recall that |G gA A g G   is the subgroup gen-

erated by all subgroups of G that are conjugate to A. 
Denote by ( )G  the set of all prime divisors of or-

der of G and by | |G A  the index of subgroup A in 

G. We use N G  to denote a normal subgroup N of 
G. For maximal subgroup M of G we will use the 
following notation: M G    We write O ( )p G  to 

denote the greatest normal p-subgroups of G. The 
semidirect product of a normal subgroup A and a 
subgroup B is written as follows: A B  A sub-
group U is called subnormal in G, if there exist the 
subgroups 0 1 sU U … U    such that  

0 1 1s sU U U … U U G       

Let F  be a non-empty formation. If G is a group 

then GF  denotes the F -residual of G, that is the 
intersection of all those normal subgroups N of G for 
which G N  F  We define { | }G G  HF H F  

and call F H  the formation product of F  and H  

see [13, IV, 1.7]. As usually, 2  F F F  A formation 

МАТЕМАТИКА



Finite groups with restrictions on two maximal subgroups 
 

Problems of Physics, Mathematics and Technics, № 3 (40), 2019 89

F  is said to be saturated if ( )G G  F  implies 

that G F  In this paper N  U  and A  denote the 
formations of all nilpotent, all supersoluble and all 
abelian groups respectively. The other definitions 
and terminology about formations could be referred 
to [11], [13], [14].  

Lemma 1.1. (1) If H is a semisubnormal sub-
group of G and H X G    then H is semisubnor-
mal in X.  

(2) If H is a semisubnormal subgroup of G and 
N is normal in G, then HN N  is semisubnormal in 
G N    

(3) If H is a semisubnormal subgroup of G and 
Y is a non-empty set of elements from G, then  

|Y yH H y Y   

is semisubnormal in G. In particular, gH  is 
semisubnormal in G for any g G    

Proof. If H is subnormal in G, then the state-
ments (1)–(3) are true, see [11, Lemma 2.41, Theo-
rem 2.43]. If H is seminormal, then this statements 
was proved in [8, Lemma 2]. Thus the statements 
(1)–(3) are true.  

Lemma 1.2. (1) Let p be the greatest in ( )G  

and P be a Sylow p-subgroup of G. If P is semisub-
normal in G, then P is normal in G.  

(2) If any Sylow subgroup of G is semisubnor-
mal in G, then G is supersoluble.  

(3) Let H be a maximal subgroup of G. If H is 
semisubnormal in G, then the index of H in G is a 
prime.  

(4) If every maximal subgroup of G is semisub-
normal in G, then G is supersoluble.  

(5) If the index of H in G is a prime, then H is 
semisubnormal in G.  

Proof. (1) It is clear that if P is subnormal in G, 
then P is normal in G. If P is seminormal in G and p 
is greatest in ( )G   then by [7, Lemma 4], P is nor-

mal in G.  
(2) Suppose that G has at least one subnormal 

Sylow subgroup P. Then P is normal in G and there-
fore is seminormal in G. Hence any Sylow subgroup 
of G is seminormal in G. By [7, Corollary 6], G is 
supersoluble.  

(3) If H is subnormal in G, then H is normal in 
G and by [11, Lemma 3.17 (6)], G H    is prime. 

Let H be a seminormal subgroup in G and K be a 
subgroup of G such that HK G  and 1HK  is a 

proper subgroup of G for every proper subgroup K1 
of K. Let prime r divides the index G H    and R 

be a Sylow r-subgroup of K. Then HR = G and 
G H x  for \x R H   We choose an element x 

such that its order is the smallest. Then 
r rH x x H H   and G H r      

(4) Let M be a maximal subgroup of G. By (3), 
the index of M in G is a prime. By [12, VI.9.2 (2)], 
G is supersoluble.  

(5) Let G H r    and R be a Sylow r-sub-

group of G. Then R is not contained in H and there 
exists an element x R\ H   Let ax r   and 

1ax H r    It is obvious that 1a a   hence  

1

Ga
r

a

x H r
x H G x H G

rx H

 

     


 

Now rx  belongs to H and H is seminormal in G, and 
therefore is semisubnormal in G.  

Lemma 1.3. (1) If A is a semisubnormal 2-nil-
potent subgroup of G, then GA  is soluble.  

(2) Let p be the smallest prime divisor of order 
of G. If A is semisubnormal in G and p does not di-
vide the order of A, then p does not divide the order 
of GA    

Proof. (1) If A is subnormal in G, then by [11, 
Theorem 5.31], GA  is soluble. If A is seminormal in 
G, then GA  is soluble by [8, Lemma 10].  

(2) If A is a subnormal p -subgroup of G, then 

by [11], GA  is a p -subgroup. If A is a seminormal 

p -subgroup of G, then GA  is a p -subgroup by [8, 

Lemma 11].  
Lemma 1.4 [15, Lemma 6]. Let G be a soluble 

group. Assume that G  U  but G K U  for every 
non-trivial normal subgroup K of G. Then:  

(1) G contains a unique minimal normal sub-
group N, ( ) O ( ) ( )p GN F G G C N    for some 

( )p G    
(2) ( ) O ( ) ( ) 1pZ G G G       

(3) G is primitive; G N M   where M is 
maximal in G with trivial core; 

(4) N is an elementary abelian subgroup of or-
der np   1n     

(5) if V is a subgroup G and G VN   then 
xV M  for some x G    

Lemma 1.5. Let F  be a formation. Then N F  
is a saturated formation.  

Proof. According to [14], the product N F  is 
a local formation. Since saturated formation and 
local formation are equivalent concepts, N F  is a 
saturated formation.  

Lemma 1.6. Let F  be a saturated formation 
and G be a group. Assume that G F  but 
G N F  for all non-trivial normal subgroups N of 
G. Then G is a primitive group.  

Proof. Since F  is a saturated formation, it fol-

lows that ( ) 1G   and G contains a unique mini-

mal normal subgroup N. For some maximal sub-
group M of G, we have G NM   because 

( ) 1G    It is obvious that the core 1GM    Hence 

G is a primitive group.  
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Lemma 1.7 [11, Theorem 4.40–4.42]. Let G be 
a soluble primitive group and M is a primitivator of 
G. Then the following statements hold: 

(1) ( ) 1G     

(2) ( ) ( ( )) ( )G pF G C F G O G   and ( )F G  is 

an elementary abelian subgroup of order pn for 
some prime p and some positive integer n;  

(3) G contains a unique minimal normal sub-
group N and moreover, ( )N F G    

(4) ( )G F G M   and O ( ) 1p M     
Lemma 1.8 [18]. Let G be a minimal non-

supersoluble group. Then the following holds:  
(1) G is soluble;  
(2) G contains a unique normal Sylow sub-

group P and P G U   

(3) ( )P P   is a minimal normal subgroup of 

( )G P   such that ( )P P p       

 
2 Supersolubility of a group with semisub-

normal Sylow subgroups of two maximal sub-
groups  

Lemma 2.1. Let M be a maximal subgroup of 
G. If all Sylow subgroups of M is semisubnormal in 
G, then G M  is a prime, M and GG M  is super-

soluble. In particular, G is soluble.  
Proof. First we prove that G is soluble. We use 

induction on the order of G. Let R be an arbitrary 
Sylow subgroup of M. By Lemma 1.1, R is semisub-
normal in M. Because it is true for any Sylow sub-
group of M, it follows that M is supersoluble by 
Lemma 1.2 (2). In particular, M is 2-nilpotent. 
Hence every subgroup of M is also 2-nilpotent. By 
Lemma 1.3 (1), GR  is soluble. If GMR G   then G 

soluble, since G G G GG R MR R M M R       is 

supersoluble. Let GR M   Hence GG R  has a 

maximal subgroup GM R   Let GS R  be a Sylow 

t-subgroup of GM R  and T be a Sylow t-subgroup 

of S. By [11, Theorem 1.65], G GTR R  is  a Sylow  

t-subgroup of GS R   Then GS TR  and T is a Sy-
low t-subgroup of M. By hypothesis, T is semisub-
normal in G and by Lemma 1.1, G G GTR R S R    

is semisubnormal in GG R   Then by induction, 
GG R  is soluble, consequently G is soluble. So the 

solubility of G is proved.  
We use induction on the order of G and prove 

that GG M  is supersoluble. If 1GM    then 

GM M  is a maximal subgroup of GG M   As in 

the previous indent it is easy to verify that the quo-
tient GG M  with maximal subgroup GM M  sat-

isfy all conditions of the lemma. By induction, 
( ) ( )

GG G G MG M M M     is supersoluble. Since 

( ) 1
GG G MM M     it follows that GG M  is super-

soluble and G GG M M M G M      is a prime.  

Therefore we consider that 1GM    Now G is 

primitive and G N M   where N is a r-subgroup. 

Since M is supersoluble, it follows that M P T   

where pP M  is a Sylow p-subgroup for the great-

est ( )p M   Let p r   Then ( ) 1pO M    a con-

tradiction. Hence p r  and P is a Sylow p-sub-

group of G. Suppose that P is subnormal in G. Then 
P G  a contradiction. Consequently P is semi-
normal in G. Now G has a subgroup U such that 
G PU   It is clear that N U   Let x be an elemen-

tof prime order that lies in N. Then P x G   If 

p r   then P P x   Thus P M x G    a 

contradiction. If p r   then N is a Sylow r-sub-

group of G, since p is the greatest in ( )M   Now all 

Sylow subgroups of G is semisubnormal in G. By 
Lemma 1.2 (2), G is supersoluble. Hence G M  is 

a prime. The lemma is proved.                                  
Remark 2.1. Soluble groups containing a su-

persoluble subgroup of prime index were studied in 
[16], [17].  

Theorem 2.1. Suppose that G has two non-
conjugate maximal subgroups H and K. If all Sylow 
subgroups of H and of K are semisubnormal in G, 
then G is supersoluble.  

Proof. We use induction on the order of G. By 
Lemma 2.1, G is soluble, H and K are supersoluble. 
Besides, quotients GG H  and GG K  are super-

soluble. In particular, indices of subgroups H and K 
in G are primes. By Lemma 1.2 (5), subgroups H 
and K are semisubnormal in G.  

Let N be an arbitrary non-trivial normal sub-
group in G. If N is not contained in H K   then N 
is either not contained in H, or N not contained in K. 
If N is not contained in H, then HN G  and  

G N HN N H H N       
is supersoluble. Similarly, if N is not contained in K, 
then KN G  and G N  is supersoluble. Let 

N H K    Then ( )( )G N H N K N      Let R  

be a Sylow r-subgroup of H N   Then H has a Sy-

low r-subgroup R such that R RN N    By hy-
pothesis, R is semisubnormal in G. By Lemma 1.1 
(2), R RN N   is semisubnormal in G N   Simi-
larly, every Sylow subgroup of K N  is semisub-
normal in G N   By induction, G N  is supersoluble. 

So, in any case G N  is supersoluble. By 
Lemma 1.6, G is primitive and statements (1)–(5) of 
the Lemma 1.4 are true. In particular, nN p p     

If N H   then G N H   Since H is semisub-

normal in G, then by Lemma 1.2 (5), N G H     
is a prime, a contradiction. Similarly, in the case 
when N K   Hence we consider that N H K    
Because H and K are supersoluble and ( )GN C N   
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we have p is the greatest in ( )H  and in ( )K   

hence p is the greatest in ( )G   Since O ( ) 1p G N   

and G N  is supersoluble, p does not divide the 
order of G N  and N is a Sylow p-subgroup of G.  

Let 1N N   1N p   and R be a Sylow 

r-subgroup of M. Since p p pM G H K      it follows 

that r rR H K  for some Sylow r-subgroups rH  and 

rK  of H and of K respectively. By hypothesis, sub-

groups rH  and rK  are semisubnormal in G. If rH  

is subnormal in G, then by [14, Corollary 7.7.2 (1)], 
( ) ( ) 1r r pH O G O G     Similarly, if rK  is sub-

normal in G, then ( ) 1r pK O G    Consequently 

rH  and rK  are semisubnormal in G. Hence there 

exists a subgroup U such that rG H U  and rH  is 

permutable with any subgroup of U. Since N U   
we have rH  is permutable with 1N   Similarly, rK  

is permutable with 1N   Hence R is permutable with 

1N   It is true for any ( )r M   Therefore M is 

permutable with 1N   Now 1MN  is a subgroup of G 

and 1N  is normal in 1MN   Since N is abelian, 1N  is 

normal in NM G   a contradiction with N p    
The theorem is proved.                                              

Example 2.1. The group (2 5)G PSL   has 

maximal subgroups 3 2H Z Z   and 5 2K Z Z   

Maximal subgroups of Sylow subgroups of H and K 
are trivial, hence are semisubnormal in G, but G is 
not soluble. Therefore the semisubnormality of 
maximal subgroups of Sylow subgroups of H and K 
under the conditions of Theorem 2.1 is not sufficient 
condition for the solubility of G.  

Corollary 2.1.1 [10, Theorem E]. Suppose that 
G has two non-conjugate maximal subgroups H and 
K. If all Sylow subgroups of H and of K are semi-
normal in G, then G is supersoluble.  
 

3 On a group with semisubnormal maximal 
subgroups of two maximal subgroups  

Lemma 3.1. Let M be a maximal subgroup of 
G. If all maximal subgroups of M are semisubnor-
mal in G, then G is soluble.  

Proof. We use induction on the order of G. Let 
K be a maximal subgroup of M. By hypothesis, K is 
semisubnormal in G and by Lemma 1.1 (1), K is 
semisubnormal in M. By Lemma 1.2 (4), M is super-
soluble and consequently is 2-nilpotent. Then K is 
also 2-nilpotent and by Lemma 1.3, GK  is soluble. 
Since M is a maximal subgroup of G, then either 

GMK G   or GK M   If GMK G   then G is 

soluble. Let GK M   Then GM K  is a maximal 

subgroup of GG K   Let S  be a maximal subgroup 

of GM K   Then M has a maximal subgroup S such 

that GK S  and GS S K    By hypothesis, S is 

semisubnormal in G. By Lemma 1.1, G GSK K  is 

semisubnormal in GG K   Since GK S   we have 
GS SK  and GS K  is semisubnormal in GG K   

By induction, GG K  is soluble. Then G is soluble. 
The lemma is proved.                                                

Example 3.1. In the condition of the Lemma 
3.1, the index G M    may not be a prime. For ex-

ample, the group 4G A A B    The subgroup B 

has the order 3. Besides, B is maximal in G and all 
maximal subgroups of B are semisubnormal in G, 
but 4G B   is not a prime.  

Example 3.2. The alternating group 4G A  of 

degree 4 has two non-conjugate maximal subgroups 

3A Z  and 2 2B Z Z    It is clear that all maximal 

subgroups of A and of B are semisubnormal in G. 
But G is non-supersoluble.  

Theorem 3.1. Let H and K are non-conjugate 
maximal subgroups of G. If all maximal subgroups 
of H and of K are semisubnormal in G, then the sec-
ond derived subgroup ( )G   is nilpotent.  

Proof. Note that the nilpotency of the second 
derived subgroup ( )G   is equivalent to 2G N A   

Assume that the claim is false and let G be a 
minimal counterexample. By Lemma 3.1, G is solu-
ble. By Lemma 1.1 (1), every maximal subgroup of 
H is semisubnormal in H and by Lemma 1.2 (4), H 
is supersoluble. Similarly, K is supersoluble.  

Let N be an arbitrary non-trivial normal sub-
group in G. Then either HN G   or HN H   If 
HN G   then  

2G N HN N H H N         N A N A  
If HN H   then N H   Similarly either KN G  

and 2G N  N A  or N K   Let N H K    
Then G N  has non-conjugate maximal subgroups 

H N  and K N   If S  is a maximal subgroup of 
H N   then H has a maximal subgroup S such that 

S S N    By hypothesis, S is semisubnormal in G 

and by Lemma 1.1 (2), S S N   is semisubnormal 

in G N   Similarly, if T  is a maximal subgroup of 
K N   then it is semisubnormal in G N   Therefore 
for G N  with non-conjugate maximal subgroups 
H N  and K N  the conditions of the theorem are 

satisfied. By induction, 2G N  N A   
By Lemmas 1.5 and 1.6, G is primitive. Then 

for G we have Lemma 1.7. Hence ( ) 1G   и G 

contains a unique minimal normal subgroup N such 
that ( )GN C N    

Suppose that at least one of the subgroups H or 
K is normal in G. For example, let H be normal in G. 
Then G H q    and by [16, Theorem 1], G N T   

where T has abelian subgroup of index q. Since 
2T  A  it follows that 2G N A  a contradiction.  
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Therefore in the future we assume that the sub-
groups H and K are non-normal. By [16, Theorem 
2], G N T   where 

( ) ( )TT C N T y t z        

and ( )z Z T    Since ( )GN C N   we have 

( ) 1TC N   and ( )T y z t         because 

( )z Z T    Thus 2T A  and 2G N A  a con-

tradiction. The theorem is proved.                             
Corollary 3.1.1. If all 2-maximal subgroups of 

G are semisubnormal in G, then the derived sub-
group G  is nilpotent.  

Proof. Note that the nilpotency of the derived 
subgroup G  is equivalent to G N A   

Assume that the claim is false and let G be a 
minimal counterexample. It is easy to show that 
G N  satisfies the hypothesis of the corollary, 
where N is an arbitrary non-trivial normal subgroup 
of G. By induction, G N  N A  Hence by Lem-
mas 1.5 and 1.6, G is primitive.  

Let M be an arbitrary maximal subgroup of G. 
Then by Lemmas 1.1 (1) and 1.2 (4), M is super-
soluble. Hence either G is supersoluble, or G is a 
minimal non-supersoluble group.  

If G is supersoluble, then G N A  by [11, 
Theorem 4.52], a contradiction.  

Let G be a minimal non-supersoluble group. 
By Lemmas 1.7 and 1.8, G is soluble, P is a unique 
minimal normal subgroup of G, P p   and P is a 

Sylow p-subgroup of G such that G P M   
where M is a maximal subgroup of G. Besides, M is 
a Hall p -subgroup of G. Let 1P  be a subgroup of 

prime order p of P.  
If M is abelian, then G N A  a contradic-

tion. Therefore we assume that M is non-abelian. 
Hence M has maximal subgroups 1M  and 2M  such 

that 1 2M M M    If at least one of the subgroups 

1M  or 2M  is subnormal in G, then ( ) 1pO G    a 

contradiction. Thus 1M  and 2M  are seminormal in 

G. Hence there are the subgroups 1V  and 2V  such 

that  

1 1 2 2 1 1 1 1 2 1 1 2M V M V G M P PM M P PM        
because 1 2P V V    Then 1 1( )GM N P  and 

2 1( )GM N P   Therefore 1 1 2P G P M M    a 

contradiction. The corollary is proved.                     
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